CSW% diagnostics m\py

Article
Deep Learning-Based Morphological Classification of
Human Sperm Heads

Imran Igbal 19, Ghulam Mustafa ? and Jinwen Ma 1*

1 Department of Information and Computational Sciences, School of Mathematical Sciences and LMAM,

Peking University, Beijing 100871, China; imranigbalrajput@pku.edu.cn

Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China;
mustafabme@gmail.com

*  Correspondence: jwma@math.pku.edu.cn; Tel.: +86-10-6276-0609

check for
Received: 15 February 2020; Accepted: 15 May 2020; Published: 20 May 2020 updates

Abstract: Human infertility is considered as a serious disease of the reproductive system that
affects more than 10% of couples across the globe and over 30% of the reported cases are related
to men. The crucial step in the assessment of male infertility and subfertility is semen analysis
that strongly depends on the sperm head morphology, i.e., the shape and size of the head of a
spermatozoon. However, in medical diagnosis, the morphology of the sperm head is determined
manually, and heavily depends on the expertise of the clinician. Moreover, this assessment as well as
the morphological classification of human sperm heads are laborious and non-repeatable, and there
is also a high degree of inter and intra-laboratory variability in the results. In order to overcome these
problems, we propose a specialized convolutional neural network (CNN) architecture to accurately
classify human sperm heads based on sperm images. It is carefully designed with several layers,
and multiple filter sizes, but fewer filters and parameters to improve efficiency and effectiveness. It is
demonstrated that our proposed architecture outperforms state-of-the-art methods, exhibiting 88%
recall on the SCIAN dataset in the total agreement setting and 95% recall on the HuSHeM dataset for
the classification of human sperm heads. Our proposed method shows the potential of deep learning
to surpass embryologists in terms of reliability, throughput, and accuracy.

Keywords: classification; convolutional neural network (CNN); deep learning; infertility; sperm head
morphology

1. Introduction

Human spermatozoon is the gamete—the male reproductive cell-that may fertilize the mature
oocyte. It is produced in the seminiferous tubules of the testicles. Structurally, normal human
spermatozoa have four main parts: head, midpiece, tail, and end piece, as shown in Figure 1 [1].
A normal human sperm has a smooth oval head which looks like the shape of an egg. The sperm head
can be further divided into two subunits: nucleus and acrosome.
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Figure 1. The diagram of a human spermatozoon.
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Embryologists can observe the behavior of a spermatozoon by means of a microscope. It resembles
a translucent tadpole since it has a long lashing tail and a circular head. The shape of the tail expedites
the spermatozoon to progress keenly after it is evacuated from the reproductive gland. The tail
supports propulsion of the spermatozoon towards the uterus in pursuit of an egg in the salpinges.
Moreover, the tail of the spermatozoon enables the required motion to bind to and further penetrate a
mature oocyte when it arrives.

Male human infertility or subfertility occurs when male reproductive cells fail to let a fertile
female conceive a child or delay pregnancy after one or more years of regular unprotected sexual
intercourse [2,3]. When a man fails to produce an adequate quantity of spermatozoa and/or produces
low quality spermatozoa, these spermatozoa are called sub-optimal.

The generation of low quality spermatozoa minimizes the pregnancy rate [4]. These spermatozoa
can be immotile or/and abnormal in shape. The immotile spermatozoa cannot move up to the fallopian
tubes. As a result, they cannot fertilize a female ovum. The abnormally shaped spermatozoa may
be able to travel, but even if they manage to reach the female gametocyte, they may not bind to and
penetrate its shell and therefore the woman may reduce her chance of getting pregnant. Conversely,
when a male body produces a low number of reproductive cells, the probability that one of the sperm
in the semen unites an egg to form a zygote significantly decreases. There are some possible factors
in the male body such as the age, anxiety, pathogens, and diet, which may impact the number of
abnormal sperm in the semen [5,6]. It is clear that high sperm head deformities lead to low fertilization,
implantation, and pregnancy rates [7].

Human infertility is a disease of the reproductive system that affects more than 10% of couples
across the globe and over 30% of reported cases are related to men [8]. The crucial step for male fertility
diagnosis relies on the examination of sperm morphology through the seminogram. The key types
of defects of the abnormal sperm are: head, neck, tail and excess residual cytoplasm [9], but head
abnormalities play a major role in male infertility. There are two main tasks in sperm morphology
analysis; the first is to classify the types of defects in the sperm head, neck, and tail, and the second is
to estimate the number of abnormal sperm. In this study, we emphasis on the classification of the head
morphological defects or abnormalities.

In practice, the results derived from manual morphological analyses of sperm rely heavily on the
expertise of laboratory technicians [10]. Moreover, this manual examination is laborious, non-repeatable,
time intensive, and there is a high degree of inter and intra-laboratory variability [11]. For animal
spermatozoon analysis, there exist certain computer-aided sperm analysis (CASA) using commercial
software. However, human semen samples have a much lower quality of spermatozoa than animal
semen samples [12], and thus the same software may not be directly applied to human spermatozoon
analysis. Furthermore, it was found that the application of the CASA system to analyze human
spermatozoa required human assistance which may affect results of the assessment subjectively [13].

According to the above analysis, it is important to design accurate, automatic, and efficient
artificial intelligence (AI) systems to improve the numerical analysis of human spermatozoa from the
sperm images. Actually, the morphological classification of human sperm heads plays an important
role in the numerical analysis of human spermatozoa, which has already attracted extensive interest
relating to the diagnosis of male infertility. Our main interest here is to focus on the development of
deep learning model to extract features directly from sperm images for morphological classification
of human sperm heads. According to the World Health Organization (WHO), there are 11 abnormal
categories of human sperm heads, which are defined according to certain particular morphometric
characteristics of the heads. They differ in shape, size, and texture in a very complicated way so that
the task becomes extremely difficult even for a human expert. In addition to intra-class differences,
there are also inter-class similarities. For instance, an elongated Amorphous head is similar to a
Tapered head or pear-shaped like Pyriform head, and a Tapered head that is constricted near the tail is
identical to a Pyriform head.
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From the public SCIAN dataset [14] and recent studies, it was found that the morphological
classification of human sperm heads is very challenging for the following reasons: (1) There is
a high degree of inter-class similarities as well as certain intra-class differences in some cases;
(2) Low-magnification microscopic images of sperm heads are very noisy; (3) The size of the images is
very small: the length and width of the sperm heads are about 4 um and 3 pum, respectively, and the size
of each image is approximately 35 by 35 pixels; (4) The number of sperm head examples is insufficient
for training a complex machine learning model; (5) The two-thirds of the examples in the SCIAN
(partial agreement) dataset consists of only 2-out-of-3 human expert agreement; (6) The classes are
highly imbalanced (e.g., the Amorphous class has ten times more examples than the Small class);
(7) The Amorphous class has no common structure, and their forms can change in different ways.

The main aim of this research is to develop, implement, and calibrate an advanced deep learning
model in the context of morphological sperm assessment. This specialized deep CNN architecture can
accurately classify microscopic human sperm head images according to WHO criteria. Our proposed
deep learning architecture is good to expedite the automatic classification process of human sperm
heads. This innovative method has the potential of deep learning to exceed embryologists in terms of
accuracy, reliability, and throughput.

2. Related Work

According to the guidelines of WHO, there are 11 categories of abnormalities of human sperm
heads: Tapered, Pyriform, Amorphous, Small, Small acrosome, Large, Large acrosome, Round,
Two heads, Vacuolated, and Vacuoles in the post-acrosomal region. Among them, the Tapered, Pyriform,
Amorphous, and including Normal categories can mainly be discriminated by the precise shapes of their
samples. Therefore, it is extremely challenging to distinguish them even by an embryologist. However,
the remaining abnormal categories can mainly be discriminated by the different sizes of their heads or
the existence of vacuoles or the acrosome and thus it is relatively easy to distinguish and recognize
them. For sperm classification tasks, conventional machine learning algorithms have been adopted to
alleviate the laborious work of embryologists and improve classification performance. Nonetheless,
the input of these algorithms contain certain manually extracted spermatozoon features like the head
perimeter, area, and eccentricity [15,16]. Although several approaches have been established for
the semen analysis of animals (e.g., [17,18]), there are only a few approaches for the morphological
classification of human sperm heads. We now briefly review some machine learning approaches
related to the morphological classification of human sperm heads.

In 2017, Chang et al. [14] introduced a gold standard dataset, SCIAN-MorphoSpermGS, for the
analysis and evaluation of morphological classification of human sperm heads. Notably, there had
been no open and free available dataset before this gold standard dataset became public. The SCIAN
dataset has five classes of human sperm heads for semen analysis namely: Normal, Tapered, Pyriform,
Amorphous, and Small, which are available in the WHO laboratory manual. It consists of 1854 sperm
head images, which were labeled by three Chilean referent domain experts as specified by the
guidelines of WHO. Chang et al. [19] further proposed a two-phase analysis pipeline, CE-SVM, for the
morphological classification of human sperm heads in the SCIAN dataset. In the first phase, a classifier
is trained to distinguish the Amorphous category from the remaining four categories. In the second
phase, four classifiers are trained for the four non-Amorphous categories, where each classifier aims to
distinguish the specific non-Amorphous category from the Amorphous category.

From a different direction, Shaker et al. [20] released the Human Sperm Head Morphology
(HuSHeM) dataset and proposed an adaptive dictionary learning (APDL)-based approach,
which extracts certain square patches from the sperm head images to train the dictionaries to recognize
those sperm head categories. At the evaluation stage, square patches are recreated with the dictionary
and the minimum overall error among those of all the categories is computed to identify the best sperm
head category. Recently, with the fast development of deep learning techniques, Riordon et al. [21]
used a VGG16 architecture (FT-VGG) for the morphological classification of human sperm heads.



Diagnostics 2020, 10, 325 4 of 21

First, the VGG network was pre-trained on ImageNet [22] and then fine-tuned on the SCIAN dataset.
Their experimental results demonstrated that this automatic deep learning method can facilitate and
boost the seminogram effectively.

3. Methodology

3.1. Datasets Descrption, Partitioning, and Augmentation

SCIAN [14] is a gold-standard dataset for the morphological classification of human sperm heads
with five categories: Normal, Tapered, Pyriform, Amorphous, and Small. The manual labeling of
sperm head images in this dataset was independently performed by three referent Chilean experts who
had experience in sperm morphology examination for several years. The images in this dataset are
of greyscale with stained sperm heads, being taken at 63x magnification and their height and width
are both 35 pixels or 7 pm. There are three separate agreement settings among three domain experts:
no agreement, partial agreement, and total agreement. The first set consists of 1854 sperm head images
(175 Normal, 420 Tapered, 188 Pyriform, 919 Amorphous, and 152 Small), but an image in this set can
be labeled manually into three dissimilar classes by three domain experts. The second set comprises
1132 images (100 Normal, 228 Tapered, 76 Pyriform, 656 Amorphous, and 72 Small) but an image
can be labeled into two different sperm head classes. The third set includes 384 images (35 Normal,
69 Tapered, 7 Pyriform, 262 Amorphous, and 11 Small), all three experts assigned the same class label
to a sperm head image. From the number of images in these three sets, we can appreciate the difficulty
of the morphological classification of human sperm heads even by human experts. For illustration
(Figure 2), we show typical samples of human sperm heads of microscopic images of the five classes in
the partial agreement setting of the SCIAN dataset and the four classes of the HuSHeM dataset.
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First human expert label: Normal Tapered Tapered Amorphous Small
Second human expert label: Small Tapered Pyriform Pyriform Small
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Human experts label: Normal Tapered Pyriform Amorphous

Figure 2. Typical samples of human sperm heads of microscopic images of the five classes in the partial
agreement setting of the SCIAN dataset and the four classes of the HuSHeM dataset.

For effective usage of the SCIAN dataset, all images are converted into three channels and rotated
so that all human sperm heads share the same orientation. For the convenience of comparison, we also
adopt a stratified five-fold cross-validation scheme as used in [21]. That is, the SCIAN dataset is
randomly partitioned into five parts, where the four parts that contain approximately 80% of the data
from each class form the training set, while the remaining part which has roughly 20% of the data from
each class forms the test set. The complete training/evaluation procedure is repeated five times for
all possible choices of the training and test sets and the average results is reported. To compare the
performance of our proposed model directly with the previous published results [20,21], each five-fold
cross-validation procedure runs three times for stability. In addition, 20% of the fold-1 images are
considered as the development set to tune the hyperparameters of our proposed network (see Table 1
for the details).
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Table 1. The stratified five-fold partition of the SCIAN dataset (partial agreement), where the numbers
denote the distinct sample sizes in different classes while the numbers in parentheses denote the total
number of augmented with the addition of original samples in different classes at each fold. Moreover,
the bold numbers in the training set (fold-1) denote the number of samples in different classes assigned
to the development set for tuning the hyperparameters of the network. To avoid repetition, folds 2 and
3 are described together.

Sperm Head Classes
Fold Set Total
Normal Tapered Pyriform Amorphous Small
1 Train  80-20 (4860) 182-46 (4896)  60-15 (4860)  525-131 (4728)  58-14 (4840)  905-226 (24184)

Test 20 46 16 131 14 227

2and 3 Train 80 (6400) 182 (6370) 61 (6405) 525 (6300) 58 (6380) 906 (31855)
an Test 20 46 15 131 14 226

4 Train 80 (6240) 183 (6222) 61 (6283) 525 (6300) 57 (6270) 906 (31315)
Test 20 45 15 131 15 226

5 Train 80 (6240) 183 (6222) 61 (6283) 524 (6288) 57 (6270) 905 (31303)
Test 20 45 15 132 15 227

In order to tackle the issue of skewed classes and training image scarcity, we implement more
augmentation options to the minority classes, and less augmentation options to the majority classes
to balance the sample size in each class of the training set. Therefore, the training set is extended
virtually for the deep learning task with the actual classes being balanced. For example, the Pyriform
and Amorphous classes in the fold-5 partition of the partial agreement setting (see Table 1) have 61
and 524 distinct images, respectively, but the sample image sizes in the two corresponding augmented
classes are similar, i.e., 6283 and 6288, respectively.

As for the specific data augmentation, we adopt three common techniques for the SCIAN
dataset: rotation, translation, and flipping. For each sample image, we rotate it by -5 to 5 degrees.
For translation, we shift ~6% of the original image to the left, the right, up, and down. For flipping,
we vertically flip the image. For both partial (Table 1) and total (Table 2) agreement settings, we make
a stratified five-fold partition of the SCIAN dataset as well as its augmentation for the evaluation of
the proposed deep architecture. Similar pre-processing, partitioning, and augmentation are performed
on the HuSHeM dataset. The details are available in Section 4.3 and Table 3. It should be noted that
our data augmentation options are only implemented for the training set, while the development and
test sets only contain the original sample images.

Table 2. The stratified five-fold partition of the SCIAN dataset (total agreement), where the numbers
denote the distinct sample sizes in different classes while the numbers in parentheses denote the total
number of augmented with the addition of original samples in different classes at each fold. To avoid
repetition, folds 1 and 2 are described together.

Sperm Head Classes
Fold Set Total
Normal Tapered Pyriform  Amorphous  Small
1and 2 Train 93 (7719) 214 (7704) 74 (7696) 604 (7852) 70 (7700) 1055 (38671)
an Test 7 14 2 52 2 77
3 Train 93 (7719) 214 (7704) 75 (7725) 604 (7852) 70 (7700) 1056 (38700)
Test 7 14 1 52 2 76
4 Train 93 (7719) 214 (7704) 75 (7725) 603 (7839) 70 (7700) 1055 (38687)
Test 7 14 1 53 2 77

Train 93 (7626)  215(7525)  75(7575) 603 (7839)  69(7590) 1055 (38155)
Test 7 13 1 53 3 77
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Table 3. The stratified five-fold partition of the HuSHeM dataset, where the numbers denote the
distinct sample sizes in different classes while the numbers in parentheses denote the total number of
augmented with the addition of original samples in different classes at each fold. To avoid repetition,
folds 1, 2 and 3 are described together.

Sperm Head Classes
Fold Set Total
Normal Tapered Pyriform  Amorphous
1 2and3 Train 43 (4730) 42 (4620) 46 (5060) 42 (4620) 173 (19030)
’ Test 11 11 11 10 43
. Train 43 (4730) 43 (4730) 45 (4950) 41 (4510) 172 (18920)
Test 11 10 12 11 44
5 Train 44 (4840) 43 (4730) 45 (4950) 41 (4510) 173 (19030)
Test 10 10 12 11 43

3.2. Proposed Deep CNN Architecture and Learning Paradigm

With the above pre-processing, partitioning, and augmentation of the SCIAN and the HuSHeM
datasets, we try to design a deep CNN architecture especially for the morphological classification of
human sperm heads. The deep CNN architectures [23-28] obtained the top results in many complicated
classification and regression tasks. Since the morphological classification of human sperm heads is an
image classification task, it is proper to apply the deep CNN to solve such a complicated problem.
To combat this problem, our proposed deep CNN architecture, Morphological Classification of Human
Sperm Heads (MC-HSH), consists of four main kernel components as shown in Figure 3.

Specifically, components one to four are all denoted by Block D with 3, 4, 6, and 3 repetitions from
top to bottom in the upper left subfigure, respectively. It is clear that x” with prefix 3, 4, or 6 near the
lower right corner of Block D denote that this block repeats 3, 4, or 6 times. Moreover, these components
are connected by Block E each time. Actually, Block D is a combination of Block A, B, and C, and their
concatenation and addition operations are shown in the bottom subfigure, where Block A, B, and C are
shown in the upper right. The numbers of filters in Block A, B, and C are 128, 32, and 32, while their
filter sizes are 1 by 1, 5 by 5, and 3 by 3, respectively. In the first component, we use 9 convolutional
layers to detect the simple features such as those of nucleus and nuclear vacuoles. In the second
component, we use 12 convolutional layers to detect the complex features such as the acrosome and
outer acrosome membrane patterns. In the third component, we further implement 18 convolutional
layers to identify the more complex features such as those of peri and sub-acrosomal space. In the
fourth component, we add 9 more convolutional layers to learn the features that are quite precise to
describe the categories of human sperm heads. As a result, this deep CNN architecture is effective for
the morphological classification of human sperm heads.

There are a total of 53 convolutional layers in our proposed deep CNN architecture. Before each
convolutional layer, the batch normalization [29] and LeakyReLU [30] are implemented. In Block D,
we use element-wise addition and channel-wise concatenation to make this architecture more effective
for this classification. The number of filters in Block E is equal to half the number of existing channels.
LeCun uniform initializers [31] are used to initialize the weights and biases. LeakyReLU and softmax
are utilized as the activation functions for the convolutional layers and output layer, respectively.
We use an L, norm as the kernel regularizer with A being 0.005 in a dense layer to prevent overfitting.

We utilize the Adam learning algorithm [32] to train our proposed deep CNN model with a
mini batch size of 1024 for 50 epochs for the SCIAN dataset. The learning rate is set by 0.0005 with a
0.0055 decay rate, while 31 and (3, are respectively set to be 0.9 and 0.999 in the moment estimates.
Moreover, the categorical cross entropy is employed as the loss/cost function. We implement the
training procedure by using Keras [33] with TensorFlow [34] backend on GPU. We further tune the
hyperparameters of the model on the development set. Specifically, the hyperparameters are selected
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according to the lowest loss of the model evaluated on the development set. Finally, the obtained
model is used to assess the test set.

Block A

[ 7 x 7 Conv, 64, stride 2 }

l Batch Normalization
Leaky ReLU
1 x 1 Conv 128, stride 1

3 x 3 Max pool, stride 2

[ Block D ]
3x
Block B
[ Block E ]
Batch Normalization
Leaky ReLU
5x 5 Conv 32, stride 1
[ Block D ]
4x
[ Block E ]
Block C
Batch Normalization
[ Block D ] Leaky ReLU
6 X 3 x 3 Conv 32, stride 1
[ Block E ]
Block E
[ Block D ]
3x Batch Normalization
Leaky ReLU
Global Avg pool 1 x 1 Conv, stride 1
l 2 x 2 Avg pool, stride 2
FC
Block D
Block A Block B
(o} {2
(Element-wise addition)
Concatenate
(Channel-wise concatenation)
Concatenate

(Channel-wise concatenation)

Figure 3. The layout of the proposed deep CNN architecture, where ‘FC” denotes the fully connected layer.
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4. Experimental Results

In this section, we ran five-fold cross-validation analyses for our proposed deep CNN model
for the morphological classification of human sperm heads in the SCIAN and the HuSHeM datasets.
We tested it on both partial and total agreement settings of the SCIAN and the HuSHeM, and compared
our results with the state-of-the-art methods. We used the metrics of the precision, recall, specificity,
Fi-score, Jaccard similarity coefficient, geometric mean (G-mean), Matthews correlation coefficient
(MCC), and Cohen’s kappa score (CKS) for the classification assessment and comparison. There are two
types of averaging: macro-averaging and weighted-averaging. That is, when computing the average
of the indices of the classes, equal weight is assigned to all the classes in the way of macro-averaging,
while a different weight is assigned to a class that is proportional to the number of its images in the
way of weighted-averaging. According to the stratified five-fold partitions of the SCIAN (in both
partial and total agreement settings) and the HuSHeM datasets and the learning paradigm given in the
previous section, we implement our model using the TensorFlow and Keras framework on a NVIDIA
GeForce GTX 1080 card with 8GB GDDR5X memory. The training process takes roughly 18 h in total for
the SCIAN dataset. We also evaluate our deep learning model on the HuSHeM dataset. The training
process takes approximately 5 h in total on this dataset. In the following subsections, we summarize
and discuss the experimental results and comparisons in both partial and total agreement settings of
the SCIAN dataset as well as the results on the HuSHeM dataset.

4.1. On the Stratified Five-Fold Partition of the SCIAN Dataset with the Partial Agreement Setting

Our proposed model is first evaluated on the stratified five-fold partition of the SCIAN dataset in
the partial agreement setting. We train the deep CNN architecture on each choice of training set in the
partial agreement setting and tune the hyperparameters on the development set. The experimental
results of our proposed model on the SCIAN dataset with the partial agreement setting is shown in
Figure 4a-h. The detailed experimental results are shown in Supplementary Materials (Figures S1-58).
Figure 4a-b show typical classification accuracy and cost curves with the number of epochs on a
specific choice of training and test sets. It is seen that the training process converged within 50 epochs.
Notably, our proposed model achieves much better accuracy and recall than the previous methods in
the partial agreement setting (Table 4). By the stratified five-fold cross-validation, we get the confusion
matrix (Figure 4c), from which we can see how often images of each individual class (Normal, Tapered,
Pyriform, Amorphous, and Small) are predicted by our proposed model on the test set in the partial
agreement setting only for a typical run. We also get the average confusion matrix over 15 runs (5 folds
x 3 runs) as shown in Table 5. After carefully examining these tables, we find that the Amorphous
class is very difficult to distinguish from the remaining classes. The main reason for this may be
that the Amorphous class has a variety of forms. On the contrary, we also find that the average true
positive rate (TPR) of the Tapered class is relatively high so that the Tapered images can be easily
detected. The precision, recall, and F;-score curves of five classes respectively on the test set in the
partial agreement setting through a typical run are shown by Figure 4d—f. From these three subfigures,
we can see that the five class curves for each of the precision, recall and F;-score globally tend to
stabilize and increase as the number of epochs increase. We further plot the precision-recall curves of
five classes on the test set as well as their micro-averaging precision-recall curve (Figure 4g) for a typical
run. A large area under the precision-recall curve (PR-AUC) signifies the high precision as well as the
high recall. Having observed this subfigure, we find out that the Amorphous class has the highest
PR-AUC, whereas the Pyriform class has the lowest one. Furthermore, we plot the receiver operating
characteristic (ROC) curves of five classes on the test set as well as their macro and micro-averaging
ROC curves (Figure 4h) for a typical run. The area under the ROC curve (ROC-AUC) is also valuable
because it shows the tradeoff between the TPR and false positive rate (FPR). From this subfigure,
we can further find out that the Normal class has the highest ROC-AUC, whereas the Amorphous class
has the lowest one. Finally, we summarize the detailed results of each fold in the partial agreement
setting for each run in Table 8 which includes all the possible evaluation metrics such as the precision,
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recall, specificity, Fi-score, Jaccard similarity coefficient, G-mean, ROC-AUC, PR-AUC, MCC, CKS,
and evaluation time. The standard deviation in the last row of this table shows the stability of the
result of our proposed model with a training run for each index. Since all standard deviations are less
than 0.09, our proposed model is therefore quite stable with the learning algorithm.

Recall False posiive rate

(€3] (h)

Figure 4. The experimental results in the partial agreement setting of the SCIAN dataset: (a,b) Typical
classification accuracy and cost curves with the number of epochs during the training on the training
and test sets; (c) The confusion matrix on the test set; (d—f) The precision, recall, and F;-score curves of
five classes respectively on the test set; (g) The precision-recall curves of five classes on the test set as
well as their micro-averaging precision-recall curve; (h) The receiver operating characteristic (ROC)
curves of five classes on the test set as well as their macro and micro-averaging ROC curves.
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Table 4. The performance comparison of our proposed model with the previous methods in the partial
agreement setting of the SCIAN dataset in terms of accuracy, precision, recall, specificity, and F;-score
metrics. Bold font shows the best results. All the metrics are described in percentages. The accuracy,
precision, specificity, and Fj-score of the method in [21] were not reported directly, but calculated from
its confusion matrix. The symbol *-" stands for unreported results.

True Positive Rate Acc.uracy Recall Precision  Specificity = F1-Score
Model . (Weighted (Average (Macro) (Macro) (Macro)
Normal Tapered Pyriform Amorphous Small Average TPR) TPR)
MorphoSpermGS
(SVM with Zernike 44 62 33 23 70 36 46
moments) [14]
MorphoSpermGS
(SVM with Fourier 57 68 53 15 54 34 49
descriptors) [14]
CE-SVM [19] 62 64 50 30 82 44 58
APDL [20] 71 67 71 35 68 49 62 - - -
FT-VGG [21] 67 57 69 38 78 49 62 47 87 53
Proposed model
(MC-HSH) 70 79 62 57 71 63 68 56 90 61

Table 5. The average confusion matrix on the stratified five-fold partition of the SCIAN dataset in the
partial agreement setting, where each cell value (in percent) is the average of 15 runs (5 folds X 3 runs).

Normal 70 3 3 20 4
Tapered 2 79 5 13 1
True Class Pyriform 3 8 62 26 1
Amorphous 10 16 8 57 9
Small 10 2 1 16 71
Normal Tapered Pyriform Amorphous Small
Predicted Class

4.2. On the Stratified Five-Fold Partition of the SCIAN Dataset with the Total Agreement Setting

Our proposed model is further evaluated on the stratified five-fold partition of the SCIAN dataset
in the total agreement setting. Similarly, we train the deep CNN architecture on each choice of training
set in the total agreement setting. However, we no longer tune the hyperparameters since they have
been tuned in the previous case of the partial agreement setting. The experimental results of our
proposed model in the total agreement setting are shown in Figure 5a-h. The detailed experimental
evaluations in the total agreement setting are available in Supplementary Materials (Figures S9-516).
Specifically, Figure 5a-b show typical classification accuracy and cost curves during the training on a
specific choice of training and test sets. It is seen that our proposed model obtains very high classification
accuracy in the total agreement setting when the training process converged. Our proposed model also
attains a much higher accuracy and recall than the previous methods in the total agreement setting,
which is clearly shown in Table 6 by simply comparing the precision, specificity, and F;-score indices
of our proposed model and the VGG model in [21]. For the elaborate comparisons with the models
in [20,21], we employ the stratified five-fold cross-validation scheme in the total agreement setting.
Figure 5c illustrates the confusion matrix of the classification for a typical run. We also compute the
average confusion matrix over 15 runs (5 folds X 3 runs), as shown in Table 7. According to these
tables, the Amorphous class remains the most difficult class to be differentiated from the other classes.
Nevertheless, we can also find that the average TPRs of the Normal, Tapered, Pyriform, and Small
classes become better. Therefore, the experimental results confirm that the Amorphous class is the
most difficult to distinguish from the other classes. The precision, recall, and F;-score curves of five
classes on the test set in the total agreement setting through a typical run are shown in Figure 5d—f,
respectively. From these three subfigures, we can again see that the five class curves of each of the
precision, recall, and F;-score globally tend to stabilize and increase as the number of epochs increases.
We further plot the precision-recall curves of five classes on the test set as well as their micro-averaging
precision-recall curve in Figure 5¢g for a typical run. It is clearly observed from this subfigure that the
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Amorphous and Normal classes have a higher PR-AUC than the other classes, while the Pyriform class
has the lowest one. Moreover, we plot the ROC curves of five classes on the test set as well as their
macro and micro-averaging ROC curves in Figure 5h for a typical run. From this subfigure, we can
see that the Normal class has the highest ROC-AUC, while the Amorphous class has the lowest one.
The detailed results of each fold in the total agreement setting for each run are available in Table 9.
From the last row of this table, we can also see low standard deviations of different indices from our
proposed model with a training run in the total agreement setting, demonstrating the stability of our
proposed model with the learning algorithm. As the agreement is strict in this case, common and
essential features can be extracted effectively from the labeled images so that the classification results
are improved considerably. In summary, our proposed model attains an overall accuracy of 77%,
a macro precision of 64%, a macro recall of 88%, and a macro specificity of 94% in the total agreement
setting, which are much better than the previous results.

Table 6. The performance comparison of our proposed model with the previous methods in the total
agreement setting of the SCIAN dataset in terms of accuracy, precision, recall, specificity, and F;-score
metrics. The bold font shows the best results. All the metrics are described in percentages. The accuracy,
precision, specificity, and F;-score of the method in [21] were not reported directly, but calculated from
its confusion matrix. The symbol -" stands for unreported results.

True Positive Rate Accuracy Recall .. e j
Model (Weighted (Average I’&\edﬂsw;\ Sﬁ\e/laﬁmty I(:llwscorf
Normal Tapered Pyriform Amorphous Small Average TPR) TPR) acro, acro) acro,
CE-SVM [19] 74 70 92 30 100 46 73 - - -
FI-VGG [21] 72 67 95 44 84 53 72 45 90 55
Proposed model
(MC-HSH) 80 86 100 72 100 77 88 64 94 74

Table 7. The average confusion matrix on the stratified five-fold partition of the SCIAN dataset in the
total agreement setting, where each cell value (in percent) is the average of 15 runs (5 folds X 3 runs).

Normal 80 0 3 10 7
Tapered 2 86 0 9 3
True Class Pyriform 0 0 100 0 0
Amorphous 8 11 2 72 7
Small 0 0 0 0 100

Normal  Tapered Pyriform Amorphous Small
Predicted Class
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Table 8. The stratified five-fold cross-validation results for the morphological classification of human sperm heads in the partial agreement setting of the SCIAN
dataset for every fold and every run, where all the metrics except Matthews correlation coefficient (MCC) and Cohen’s kappa score (CKS) are described in percentages.

Precision Recall Specificity Fq-Score Jaccard G-mean ROC-AUC PR-AUC Evaluation Time
Fold Run . Weighted . X X R MCC CKS per Image
Macro Weighted Macro —————— Macro Weighted Macro Weighted Macro Weighted Macro Weighted Macro Micro  Micro (milliseconds)
Accuracy

First 57 71 67 67 90 86 60 67 44 51 77 75 88 90 69 +0.52  +0.50
1 Second 54 70 67 63 90 87 58 64 41 48 77 74 87 89 63 +0.48  +0.47
Third 53 70 66 63 90 87 56 64 40 46 76 74 87 89 64 +0.48  +0.46
First 59 72 73 65 90 88 63 66 47 49 81 75 89 90 69 +0.52  +0.50
2 Second 58 72 73 65 90 87 63 66 46 50 81 76 88 90 67 +0.52  +0.50
Third 62 72 71 67 91 86 65 68 48 51 80 76 89 91 72 +0.53  +0.52
First 50 66 63 56 88 86 52 56 36 39 73 68 85 84 53 +0.43  +0.39

3 Second 50 68 63 54 88 88 52 55 35 38 74 68 84 84 51 +0.42  +0.38 ~0.2
Third 47 63 62 52 87 85 50 53 34 36 73 66 83 83 48 +0.38  +0.35
First 58 71 69 65 90 86 62 66 45 49 79 75 89 91 72 +0.51  +0.49
4 Second 62 72 69 69 91 84 65 70 48 54 79 76 89 91 73 +0.54 +0.53
Third 63 73 68 70 91 86 65 71 48 55 78 77 90 92 75 +0.55 +0.54
First 56 70 68 65 90 85 60 66 43 50 78 74 88 89 63 +0.50  +0.48
5  Second 58 71 68 67 90 84 61 68 45 52 78 75 88 89 62 +0.51  +0.50
Third 55 70 69 63 90 86 59 64 42 47 79 73 87 87 58 +0.49  +047
Average 56 70 68 63 90 86 59 64 43 48 78 73 87 89 64 +0.49  +0.47

Standard

deviation 0.0470 0.0263 0.0331 0.0533 0.0116 0.0122 0.0494 0.0539 0.0475 0.0572 0.0259 0.0336 0.0199 0.0282  0.0835  0.0478 0.0561
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Table 9. The stratified five-fold cross-validation results for the morphological classification of human sperm heads in the total agreement setting of the SCIAN dataset

for every fold and every run, where all the metrics except Matthews correlation coefficient (MCC) and Cohen’s kappa score (CKS) are described in percentages.

Precision Recall Specificity F1-Score Jaccard G-mean ROC-AUC PR-AUC
Fold Run Weighted MCC CKS
Macro  Weighted Macro ———————— Macro Weighted Macro Weighted Macro Weighted Macro Weighted Macro Micro Micro
Accuracy
First 69 88 82 73 94 97 68 77 57 64 87 84 95 94 77 +0.61  +0.56
1 Second 62 85 88 70 93 96 67 72 52 57 90 81 96 93 75 +0.60  +0.54
Third 62 87 83 75 94 96 66 79 52 67 88 85 94 93 75 +0.62  +0.59
First 69 82 83 78 93 85 72 79 61 67 87 81 94 95 82 +0.61  +0. 60
2 Second 60 84 87 77 93 90 65 79 50 66 89 83 94 94 81 +0.62  +0.60
Third 62 80 83 77 92 94 68 77 52 64 87 80 95 95 85 +0.59  +0.58
First 62 83 91 76 92 91 71 77 56 63 92 83 95 94 77 +0.63  +0.60
3 Second 64 84 87 80 93 87 72 81 57 69 90 83 95 94 79 +0.65  +0.64
Third 57 84 89 74 94 94 64 75 49 61 91 83 94 93 73 +0.61  +0.57
First 60 87 89 79 95 95 67 81 52 69 92 87 97 96 86 +0.66  +0.64
4 Second 70 81 85 77 92 86 75 78 63 65 89 81 95 95 82 +0.59  +0.58
Third 66 86 91 79 95 92 74 80 59 68 92 85 97 95 82 +0.66  +0.64
First 59 86 92 77 94 95 68 78 53 64 93 85 97 96 84 +0.66  +0.62
5 Second 67 89 94 79 95 97 75 80 61 68 94 87 98 96 86 +0.70  +0.66
Third 67 87 94 82 96 95 76 83 61 71 94 88 98 96 86 +0.71  +0.69
Average 64 85 88 77 94 93 70 78 56 66 90 84 96 95 81 +0.63  +0.61
Standard 0.0404 0.0261 0.0405 0.0300 0.0123 0.0401 0.0394 0.0267 0.0456 0.0356 0.0247 0.0243 0.0145 0.0112  0.0442  0.0374 0.0421

deviation
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Figure 5. The experimental results in the total agreement setting of the SCIAN dataset: (a,b) Typical
classification accuracy and cost curves with the number of epochs during the training on the training
and test sets; (c) The confusion matrix on the test set; (d—f) The precision, recall, and F;-score curves of
five classes respectively the on test set; (g) The precision-recall curves of five classes on the test set as
well as their micro-averaging precision-recall curve; (h) The receiver operating characteristic (ROC)
curves of five classes on the test set as well as their macro and micro-averaging ROC curves.

4.3. On the Stratified Five-Fold Partition of the HuSHeM Dataset

Our proposed model is finally evaluated on the HuSHeM [20] dataset. This is another dataset
for the morphological classification of human sperm heads with 216 images (54 Normal, 53 Tapered,
57 Pyriform, and 52 Amorphous). Its images are also manually annotated by three human experts,
but only the images with three-expert agreement are recorded. Each image consists of 131 by 131 pixels,
being taken at 100X magnification.
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In the pre-processing step, we first rotate the images so that all human sperm heads share the
same orientation. We then crop the sample images so that the sperm heads appear in the center of
the images. After this step, the images are reduced to 90 by 90 pixels. Approximately 80% of the
images are considered for training and the remaining images for the evaluation. We further employ
data augmentation techniques to solve the scarcity of training images. As for the data augmentation,
we adopt three common techniques as we used in the training set of the SCIAN dataset. For rotation,
we rotate the training image by —25 to 25 degrees. For translation, we shift ~6% of the original image to
the left, the right, up, and down. For flipping, we vertically flip the image. Due to the same distribution
of classes within this dataset, we apply equal augmentation options to each class. For the convenience
of comparison, we also adopt a stratified five-fold cross-validation scheme as used in [20,21]. We utilize
the Adam learning algorithm to train our proposed deep CNN model with mini a batch size of 256
for 25 epochs for the HuSHeM dataset. To compare the performance of our proposed model directly
with previously published results [20,21], each five-fold cross-validation procedure runs three times
for stability.

The experimental results of our proposed model on the HuSHeM dataset are shown in
Figure 6a—e. The detailed experimental results are shown in Supplementary Materials (Figures S17-521).
The experimental results of our proposed model as well as the previous methods on the HuSHeM
dataset are shown in Table 10. It is clearly seen that our proposed model achieves better accuracy,
recall, precision, specificity, and F;-score than previous methods. Moreover, from the confusion matrix
of our proposed model (Table 11), we can see that Pyriform classes in the test set are predicted 97%
correctly. Results on the HuSHeM dataset are the average of 15 runs (5 folds X 3 runs). We also plot the
precision-recall curves of four classes on the test set as well as their micro-averaging precision-recall
curve in Figure 6d for a typical run. Furthermore, we plot the ROC curves of four classes on the test
set as well as their macro and micro-averaging ROC curves in Figure 6e for a typical run. Finally,
we summarize the detailed results of each fold for each run in Table 12 which includes all the possible
evaluation metrics such as the precision, recall, specificity, Fi-score, Jaccard, G-mean, ROC-AUC,
PR-AUC, MCC, CKS, and evaluation time.

Table 10. The performance comparison of our proposed model with the previous methods on the
HuSHeM dataset in terms of accuracy, recall, precision, specificity, and F;-score metrics. Bold font
shows the best results. All the metrics are described in percentages. The specificity of the methods in
[19-21] were not reported directly, but calculated from their confusion matrices.

True Positive Rate

Model Accurac Recall  Precisi Specificit F1-Score
ode Normal Tapered Pyriform Amorphous y eca recision P y !
CE-SVM [19] 75.9 773 85.9 75.0 785 785 80.5 92.9 789
APDL [20] 94.4 94.3 87.7 94.2 92.2 92.3 93.5 97.5 92.9
FT-VGG [21] 96.4 94.5 92.3 93.2 94.0 94.1 94.7 98.1 94.1
Proposed model
(MC-HSH) 95.8 94.5 96.6 96.4 95.7 95.5 96.1 98.5 95.5

Table 11. The average confusion matrix of our proposed model on the HuSHeM dataset, where each
cell value (in percent) is the average of 15 runs.

Normal 96 3 1 0
True Tapered 1 94 2 3
Class Pyriform 0 1 97 2
Amorphous 2 2 0 96

Normal Tapered Pyriform  Amorphous

Predicted Class
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Figure 6. The experimental results of the HuSHeM dataset: (a,b) Typical classification accuracy and cost

curves with the number of epochs during the training on the training and test sets; (c) The confusion

matrix on the test set; (d) The precision-recall curves of four classes on the test set as well as their

micro-averaging precision-recall curve; (e) The receiver operating characteristic (ROC) curves of four

classes on the test set as well as their macro and micro-averaging ROC curves.
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Table 12. The stratified five-fold cross-validation results for the morphological classification of human sperm heads on the HuSHeM dataset for every fold and every
run, where all the metrics except Matthews correlation coefficient (MCC) and Cohen’s kappa score (CKS) are described in percentages.

Precision Recall Specificity F1-Score Jaccard G-mean ROC-AUC PR-AUC Evaluation Time
Fold R . i . . . . MCC CKS I
° un Macro Weighted Macro w Macro Weighted Macro Weighted Macro Weighted Macro Weighted Macro Micro  Micro (nﬂflris:;:)iils)
Accuracy
First 98 98 98 98 99 99 98 98 96 96 98 98 100 100 100 +097 +0.97
1 Second 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 +1.00 +1.00
Third 98 98 98 98 99 99 98 98 96 96 98 98 100 100 100 +0.97 +0.97
First 95 96 95 95 98 98 95 95 91 91 97 97 100 99 98 +0.94 +0.94
2 Second 95 96 95 95 98 98 95 95 91 91 97 97 100 100 99 +0.94 +0.94
Third 93 93 93 93 98 98 93 93 87 87 95 95 100 99 99 +0.91 +0.91
First 95 96 95 95 98 98 95 95 91 91 97 97 100 99 99 +0.94 +0.94
3 Second 95 96 95 95 98 98 95 95 91 91 97 97 99 99 98 +0.94 +0.94 ~0.9
Third 95 96 95 95 98 98 95 95 91 91 97 97 100 99 98 +0.94 +0.94
First 98 98 98 98 99 99 98 98 95 96 98 98 100 100 100 +0.97  +0.97
4 Second 95 95 95 95 99 99 95 95 91 91 97 97 100 100 100 +094 +094
Third 95 96 95 95 99 99 95 95 91 92 96 97 100 100 100 +0.94 +0.94
First 94 94 93 93 98 98 93 93 87 87 95 95 100 100 100 +091 4091
5 Second 95 96 96 95 99 99 95 95 91 91 97 97 100 99 98 +0.94 +0.94
Third 94 94 93 93 98 98 93 93 87 87 95 95 100 99 99 +091 +0.91
Average 96 96 96 96 99 99 96 96 92 92 97 97 100 100 99 +0.94 +0.94

Standard

deviation 0.0191 0.0181 0.0207 0.0207 0.0064 0.0064 0.0207 0.0207 0.0365 0.0372 0.0133 0.0131 0.0026 0.0052  0.0086  0.0250 0.0250
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5. Discussion and Conclusions

We have established an advanced deep CNN architecture, MC-HSH, specially for the
morphological classification of human sperm heads. In this deep learning architecture, there are a total
of 53 convolutional layers. Before each convolutional layer, the batch normalization and LeakyReLU
are used. We also apply the channel-wise concatenation and element-wise addition to make this model
more effective for the morphological classification of human sperm heads. We employ the L, penalty
as the kernel regularizer in the dense layer to prevent overfitting. We utilize several layers and multiple
filter sizes, but fewer filters and parameters, and we also make a new arrangement of convolutional
layers, addition and concatenation operations for this classification task.

According to the WHO criteria [9], human sperm heads are classified into categories such as
Normal, Tapered, Pyriform, Amorphous, and Small and their morphological classification is very
challenging. Based on a golden standard SCIAN dataset of microscopic sperm images and the
HuSHeM dataset, data-driven machine learning models and algorithms can be utilized to solve this
difficult problem. By making careful pre-processing, partition, and argumentation of the SCIAN
and the HuSHeM datasets, we design a specialized deep CNN architecture for the morphological
classification of sperm heads based on the microscopic human sperm head images. The stratified
five-fold cross-validation results demonstrate that our proposed model (along with the deep learning
algorithm) is much more effective than the previous methods [14,19-21] for the morphological
classification of human sperm heads. The performance indices on five classes (see Tables 4-7) indicate
that it is reliable in recognizing the images in the Normal class as well as the four abnormal classes.
By attaining the embryologist level performance of the classification, our proposed model is also a
balanced classifier where the TPR is similar to the positive predictive value (PPV).

It can be found from Tables 4 and 6 that the previous methods are not so powerful to extract
effective features from microscopic images for the classification of human sperm heads. Our proposed
model achieves 68% and 88% average TPR on the SCIAN dataset in the partial and total agreement
settings, respectively. We find out that our proposed model improves the accuracy and recall by a
factor of 29% and 10%, respectively, in the partial agreement setting and 46% and 22%, respectively,
in the total agreement setting compared with the state-of-the-art results reported in [21]. In the total
agreement setting, our proposed model achieves a much better accuracy (77%) and recall (88%) because
the training set has more images and the test set has the total expert agreement images in comparison
with the accuracy (63%) and recall (68%) of the partial agreement setting. Our proposed model can
extract the morphometric features for seminogram which are significant for sperm binding to the oocyte.
The morphological classification of human sperm heads is an intricate problem because of intrinsic
inter-class similarities and intra-class variabilities. Our proposed model achieves better classification
results than the previous state-of-the-art methods without using transfer leaning. On the HuSHeM
dataset, the results of our proposed model are also better than the state-of-the-art results. Our proposed
approach achieves 96% accuracy and 95% recall on the HuSHeM dataset. The accuracy, recall, precision,
and Fj-score increase approximately 2%, whereas the specificity improves roughly 0.5% in comparison
with [21]. The results of our proposed model are much better on the HuSHeM dataset than the SCIAN
dataset. This improvement is due to three main reasons: (1) the HuSHeM dataset has only four sperm
head classes; (2) its images have a high resolution; (3) and all of its images are 3-out-of-3 human expert
agreement. The evaluation time of our proposed model is ~0.2 milliseconds (ms) for the SCIAN dataset,
while ~0.9 ms for the HuSHeM dataset per image.

Developing an automated classification system of human sperm heads can greatly reduce the
workload of embryologists and also decrease the subjectivity and inaccuracy of the classification
induced by the human error. This automated system can become necessary and more valuable when
experienced embryologists are not readily available and for inexperienced clinicians in underdeveloped
countries. In fact, the classification results of our proposed model are comparable to those of the
domain experts. Consequently, our proposed model can even be used to assign a class label to any new
sperm head image, and this deep CNN architecture is good to expedite the automatic classification
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procedure of human sperm heads. Indeed, our research provides more strong evidence that the deep
learning approach is able to play a key role in healthcare systems, assisting doctors to achieve higher
conception and gestation rates. Our proposed architecture shows the potential of deep learning to
surpass embryologists in terms of throughput, accuracy and reliability.

It is worth indicating the limitations of this study. As mentioned before, experiments are conducted
on two publicly available datasets. The SCIAN dataset has 1132 and 384 human sperm heads images in
the partial and total agreement settings, respectively, while the HuSHeM dataset has only 216 human
sperm head images. These numbers of images are relatively small. Consequently, to obtain better
generalizability, it is essential to increase the number of images for experimentation in the future.
Secondly, due to limited computational power and memory the training time is high. Lastly, additional
work remains to be done to evaluate the deep learning models in fertility clinics.

Supplementary Materials: Available online at http://www.mdpi.com/2075-4418/10/5/325/s1. Figure S1. Detailed
experimental results of the proposed model through 50 epochs in the partial agreement setting of the SCIAN
dataset, where 15 classification accuracy curves with the number of epochs during the training on each of five
possible choices of the training and test sets for 3 runs (5 folds x 3 runs) are illustrated; Figure S2. Detailed
experimental results of the proposed model through 50 epochs in the partial agreement setting of the SCIAN
dataset, where 15 cost curves with the number of epochs during the training on each of five possible choices of the
training and test sets for 3 runs (5 folds X 3 runs) are illustrated; Figure S3. Detailed experimental results of the
proposed model through 50 epochs in the partial agreement setting of the SCIAN dataset, where 15 confusion
matrixes on each of five possible choices of the test sets for 3 runs (5 folds x 3 runs) are illustrated; Figure S4.
Detailed experimental results of the proposed model through 50 epochs in the partial agreement setting of
the SCIAN dataset, where 15 precision curves of each class with the number of epochs during the training on
each of five possible choices of the test sets for 3 runs (5 folds x 3 runs) are illustrated; Figure S5. Detailed
experimental results of the proposed model through 50 epochs in the partial agreement setting of the SCIAN
dataset, where 15 recall curves of each class with the number of epochs during the training on each of five possible
choices of the test sets for 3 runs (5 folds x 3 runs) are illustrated; Figure S6. Detailed experimental results of
the proposed model through 50 epochs in the partial agreement setting of the SCIAN dataset, where 15 F1-score
curves of each class with the number of epochs during the training on each of five possible choices of the test
sets for 3 runs (5 folds X 3 runs) are illustrated; Figure S7. Detailed experimental results of proposed model
in the partial agreement setting of the SCIAN dataset, where 15 precision-recall curves of each class and their
micro-averaging precision-recall curve on each of five possible choices of the test sets for 3 runs (5 folds x 3 runs)
are illustrated. A high area under the curve signifies the high precision as well as high recall; Figure S8. Detailed
experimental results of proposed model in the partial agreement setting of the SCIAN dataset, where 15 receiver
operating characteristic (ROC) curves of each class and their macro and micro-averaging ROC curves on each of
five possible choices of the test sets for 3 runs (5 folds X 3 runs) are illustrated. These plots show the tradeoff
between the true positive rate and false positive rate; Figure S9. Detailed experimental results of the proposed
model through 50 epochs in the total agreement setting of the SCIAN dataset, where 15 classification accuracy
curves with the number of epochs during the training on each of five possible choices of the training and test
sets for 3 runs (5 folds X 3 runs) are illustrated; Figure S10. Detailed experimental results of the proposed model
through 50 epochs in the total agreement setting of the SCIAN dataset, where 15 cost curves with the number of
epochs during the training on each of five possible choices of the training and test sets for 3 runs (5 folds x 3 runs)
are illustrated; Figure S11. Detailed experimental results of the proposed model through 50 epochs in the total
agreement setting of the SCIAN dataset, where 15 confusion matrixes on each of five possible choices of the test
sets for 3 runs (5 folds X 3 runs) are illustrated; Figure S12. Detailed experimental results of the proposed model
through 50 epochs in the total agreement setting of the SCIAN dataset, where 15 precision curves of each class with
the number of epochs during the training on each of five possible choices of the test sets for 3 runs (5 folds x 3 runs)
are illustrated; Figure S13. Detailed experimental results of the proposed model through 50 epochs in the total
agreement setting of the SCIAN dataset, where 15 recall curves of each class with the number of epochs during
the training on each of five possible choices of the test sets for 3 runs (5 folds X 3 runs) are illustrated; Figure S14.
Detailed experimental results of the proposed model through 50 epochs in the total agreement setting of the
SCIAN dataset, where 15 F1-score curves of each class with the number of epochs during the training on each of
five possible choices of the test sets for 3 runs (5 folds x 3 runs) are illustrated; Figure S15. Detailed experimental
results of proposed model in the total agreement setting of the SCIAN dataset, where 15 precision-recall curves of
each class and their micro-averaging precision-recall curve on each of five possible choices of the test sets for 3
runs (5 folds x 3 runs) are illustrated. A high area under the curve signifies the high precision as well as high recall;
Figure S16. Detailed experimental results of proposed model in the total agreement setting of the SCIAN dataset,
where 15 receiver operating characteristic (ROC) curves of each class and their macro and micro-averaging ROC
curves on each of five possible choices of the test sets for 3 runs (5 folds x 3 runs) are illustrated. These plots show
the tradeoff between the true positive rate and false positive rate; Figure S17. Detailed experimental results of
the proposed model through 25 epochs of the HuSHeM dataset, where 15 classification accuracy curves with
the number of epochs during the training on each of five possible choices of the training and test sets for 3 runs
(5 folds x 3 runs) are illustrated; Figure S18. Detailed experimental results of the proposed model through 25
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epochs of the HuSHeM dataset, where 15 cost curves with the number of epochs during the training on each of
five possible choices of the training and test sets for 3 runs (5 folds X 3 runs) are illustrated; Figure S519. Detailed
experimental results of the proposed model through 25 epochs of the HuSHeM dataset, where 15 confusion
matrixes on each of five possible choices of the test sets for 3 runs (5 folds X 3 runs) are illustrated; Figure S20.
Detailed experimental results of proposed model of the HuSHeM dataset, where 15 precision-recall curves of
each class and their micro-averaging precision-recall curve on each of five possible choices of the test sets for 3
runs (5 folds X 3 runs) are illustrated. A high area under the curve signifies the high precision as well as high
recall; Figure 521. Detailed experimental results of proposed model of the HuSHeM dataset, where 15 receiver
operating characteristic (ROC) curves of each class and their macro and micro-averaging ROC curves on each of
five possible choices of the test sets for 3 runs (5 folds X 3 runs) are illustrated. These plots show the tradeoff
between the true positive rate and false positive rate.
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