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Abstract

Compared with standard supervised learning, the key

difficulty in semi-supervised learning is how to make full

use of the unlabeled data. A recently proposed method,

virtual adversarial training (VAT), smartly performs adver-

sarial training without label information to impose a lo-

cal smoothness on the classifier, which is especially bene-

ficial to semi-supervised learning. In this work, we propose

tangent-normal adversarial regularization (TNAR) as an

extension of VAT by taking the data manifold into consid-

eration. The proposed TNAR is composed by two comple-

mentary parts, the tangent adversarial regularization (TAR)

and the normal adversarial regularization (NAR). In TAR,

VAT is applied along the tangent space of the data mani-

fold, aiming to enforce local invariance of the classifier on

the manifold, while in NAR, VAT is performed on the nor-

mal space orthogonal to the tangent space, intending to im-

pose robustness on the classifier against the noise causing

the observed data deviating from the underlying data man-

ifold. Demonstrated by experiments on both artificial and

practical datasets, our proposed TAR and NAR complement

with each other, and jointly outperforms other state-of-the-

art methods for semi-supervised learning.

1. Introduction

The main challenge in semi-supervised learning (SSL)

is how to utilize the large amount of the unlabeled data to

obtain useful information, benefiting the supervised learn-

ing on the relatively insufficient amount of labeled data. For

this purpose, one of the important line of research focuses

on the manifold assumption on the data distribution, i.e., the

observed data is distributed on a low dimensional manifold

that could be characterized using the large amount of the un-

labeled data, and aims to learn a proper classifier based on

∗Equal contributions.
†Corresponding author.

the data manifold [1, 24, 19, 11, 13]. Following this stream,

we sort out three reasonable assumptions to motivate our

idea for semi-supervised learning:

The manifold assumption The observed data x presented

in high dimensional space R
D is with high probability

concentrated in the vicinity of some underlying man-

ifold with much lower dimensionality [3, 18, 4, 24],

denoted asM∼= R
d.

The noisy observation assumption The observed data x
can be decomposed into two parts as x = x0 + n,

where x0 is exactly supported on the underlying mani-

foldM and n is some noise independent of x0 [2, 23].

The semi-supervised learning assumption If two points

x1, x2 ∈ M are close in manifold distance, then the

conditional probability p(y|x1) and p(y|x2) are simi-

lar [1, 24, 19]. In other words, the true classifier, or

the true condition distribution p(y|X) varies smoothly

along the underlying manifoldM.

According to the three assumptions, the best classifier we

aim to obtain should be 1) smooth along the data manifold;

2) robust to the off-manifold noise. Hence it is natural to

formulate a loss function [1, 11] for SSL as,

Lssl := Lsupervised +Rmanifold +Rnoise, (1)

where the first term in Eq. (1) is the supervised learning loss,

the second term penalize the manifold smoothness of the

classifier, and the third term smooths the classifier so that it

is robust to noise, respectively. While the supervised learn-

ing loss Lsupervised concerning the labeled data is standard,

the key ingredient lies on how to designRmanifold andRnoise

smartly to 1) be effective for inducing the desired smooth-

ness on the classifier, 2) be efficient for optimization, and 3)

make full use of the unlabeled data.

Existing works constructRmanifold based on the Jacobian,

for instance, tangent propagation [26, 11]

Rmanifold = Ex∼p(x)

∑

v∈TxM

∥

∥(Jxf) · v
∥

∥ , (2)
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Figure 1. Illustration for tangent-normal adversarial regularization.

x = x0 + n is the observed data, where x0 is exactly supported

on the underlying manifold M and n is the noise independent of

x0. r‖ is the adversarial perturbation along the tangent space to in-

duce invariance of the classifier on manifold; r⊥ is the adversarial

perturbation along the normal space to impose robustness on the

classifier against noise n.

and manifold Laplacian norm [1, 13, 22]

Rmanifold =

∫

x∈M

∥

∥∇Mf(x)
∥

∥ dp(x)

≈ Ez∼p(z)

∥

∥∇Mf(g(z))
∥

∥

≈ Ez∼p(z)

∥

∥Jzf(g(z))
∥

∥ ,

(3)

where J is the Jacobian, f is the classifier, TxM is the tan-

gent space of the data manifold and x = g(z) is the man-

ifold representation of data. They regularize the manifold

smoothness of the classifier under the sense of the norm of

its Jacobian along the data manifold. The typical choice of

Rnoise is in a corresponding form asRmanifold except the Ja-

cobian to penalize is with respect to the observation space

other than the tangent space [1, 11].

On the other hand, inspired by adversarial training [8],

virtual adversarial training (VAT) [17, 16] was proposed

for SSL, not relying on the label information. Unlike the

smoothness induced by Lp-norm of the Jacobian, VAT leads

to the robustness of classifier by involving virtual adversar-

ial examples, thus inducing a new local smoothness of the

classifier. Empirical results [17, 21] show that VAT achieves

state-of-the-art performance for SSL tasks, demonstrating

the superiority of the smoothness imposed by virtual adver-

sarial training.

Encouraged by the effectiveness of VAT, we propose to

construct manifold regularizer based on VAT, instead of the

Lp-norm of the Jacobian. Concretely, we propose tangent

adversarial regularization (TAR) by performing VAT along

the tangent space of the data manifold, and normal adver-

sarial regularization (NAR) by applying VAT orthogonal

to the tangent space of the data manifold, which are intu-

itively demonstrated in Figure 1. TAR enforces the local

smoothness of the classifier along the underlying manifold,

while NAR imposes robustness on the classifier against the

noise carried in the observed data. The two terms, comple-

menting with each other, establish our proposed approach

tangent-normal adversarial regularization (TNAR).

To realize TNAR, we have two challenges to conquer:

1) how to estimate the underlying manifold and 2) how

to efficiently perform TNAR. For the first issue, we take

advantage of the generative models equipped with an ex-

tra encoder, to characterize the coordinate chart of mani-

fold [11, 13, 22]. More specifically, in this work we choose

variational autoendoer (VAE) [10] and localized GAN [22]

to estimate the underlying manifold from data. For the sec-

ond problem, we further extend the techniques introduced

in [17] with some sophisticatedly designed auxiliary func-

tions, implementing VAT restricted in tangent space (TAR)

and normal space (NAR) efficiently. The details are elabo-

rated in Section 3.

The remaining of the paper is organized as follows. In

Section 2 we introduce VAT and two generative models as

the background of TNAR. Based on that, we elaborate about

the technical details of TNAR in Section 3. In Section 4

we compare TNAR with other related approaches and ana-

lyze the advantages of TNAR over VAT and other manifold-

based regularization. Various experiments are conducted

for demonstrating the effectiveness of TNAR in Section 5.

And in Section 6 and Section 7, we discuss an existing prob-

lem about TNAR for future exploration and conclude the

paper.

2. Background

2.1. Notations

The labeled and unlabeled dataset are denoted as Dl =
{(xl, yl)} and Dul = {xul} respectively, thus D := Dl ∪
Dul is the full dataset. The output of classification model

is written as p(y|x, θ), with θ being the model parameters

to be trained. ℓ(·, ·) represents the supervised loss function.

For data example, the observed space R
D and the under-

lying manifold isM. The decoder (generator) and the en-

coder are denoted as g and h respectively, which form the

coordinate chart of manifold together. If not stated other-

wise, we always assume x and z correspond to the coordi-

nate of the same data point in observed space R
D and on

manifold M, i.e., g(z) = x and h(x) = z. The tangent

space of M at point x is TxM = Jzg(R
d) ∼= R

d, where

Jzg is the Jacobian of g at point z. TxM is also the span

of the columns of Jzg. We use J to represent the Jacobian

when there is no ambiguity.

The perturbation in the observed space R
D is denoted

as r ∈ R
D, while the perturbation on the manifold rep-

resentation is denoted as η ∈ R
d. Hence the perturba-

tion on manifold is g(z + η) − g(z). When the pertur-

bation η is small enough for the holding of the first or-

der Taylor’s expansion, the perturbation on manifold is ap-

proximately equal to the perturbation on its tangent space,

g(z + η) − g(z) ≈ J · η ∈ TxM. Therefore we say a

perturbation r ∈ R
D is actually on manifold, if there is a

perturbation η ∈ R
d, such that r = J · η.
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2.2. Virtual adversarial training

VAT [17] is an effective regularization method for SSL.

The virtual adversarial loss introduced in VAT is defined by

the robustness of the classifier against local perturbation in

the input space R
D. Hence VAT imposes a kind of smooth-

ness condition on the classifier. Mathematically, the virtual

adversarial loss in VAT for SSL is

L(Dl,Dul, θ) :=E(xl,yl)∈Dl
ℓ(yl, p(y|xl, θ))

+ αEx∈DRvat(x, θ).
(4)

The VAT regularizationRvat is defined as

Rvat(x; θ) := max
‖r‖

2
≤ǫ

dist(p(y|x, θ), p(y|x+ r, θ)), (5)

where dist(·, ·) is some distribution distance measure and

ǫ controls the magnitude of the adversarial example. For

simplicity, define

F (x, r, θ) := dist(p(y|x, θ), p(y|x+ r, θ)). (6)

Then Rvat = max‖r‖
2
≤ǫ F (x, r, θ). And the so called vir-

tual adversarial example is r∗ := argmax‖r‖≤ǫF (x, r, θ).
Once we have r∗, the VAT loss can be optimized with the

objective as L(Dl,Dul, θ) = E(xl,yl)∈Dl
ℓ(yl, p(y|xl, θ))

+ αEx∈DF (x, r∗, θ).
To obtain the virtual adversarial example r∗, [17]

suggested to apply second order Taylor’s expansion to

F (x, r, θ) around r = 0 as

F (x, r, θ) ≈
1

2
rTHr, (7)

where H := ∇2
rF (x, r, θ)|r=0 denotes the Hessian of F

with respect to r. The vanishing of the first two terms in

Taylor’s expansion occurs because that dist(·, ·) is a dis-

tance measure with minimum zero and r = 0 is the corre-

sponding optimal value, indicating that at r = 0, both the

value and the gradient of F (x, r, θ) are zero. Therefore for

small enough ǫ, r∗ ≈ argmax‖r‖
2
≤ǫ

1
2r

THr, which is an

eigenvalue problem and the direction of r∗ can be solved

by power iteration.

2.3. Generative models for data manifold

We take advantage of generative model with both en-

coder h and decoder g to estimate the underlying data man-

ifold M and its tangent space TxM. As assumed by pre-

vious works [11, 13], perfect generative models with both

decoder and encoder can describe the data manifold, where

the decoder g(z) and the encoder h(x) together serve as

the coordinate chart of manifoldM. Note that the encoder

is indispensable for it helps to identify the manifold coordi-

nate z = h(x) for point x ∈M. With the trained generative

model, the tangent space is given by TxM = Jzg(R
d), or

the span of the columns of J = Jzg.

In this work, we adopt VAE [10] and localized GAN [22]

to learn the targeted underlying data manifold M as sum-

marized below.

VAE VAE [10] is a well known generative model con-

sisting of both encoder and decoder. The training of VAE is

by optimizing the variational lower bound of log likelihood,

log p(x, θ) ≥Ez∼q(z|x,θ)

[

log p(x|z, θ)
]

−KL(q(z|x, θ)‖p(z)).
(8)

Here p(z) is the prior of hidden variable z, and q(z|x, θ),
p(x|z, θ) models the encoder and decoder in VAE, respec-

tively. The derivation of the lower bound with respect to θ
is well defined thanks to the reparameterization trick, thus

it could be optimized by gradient based method. The lower

bound could also be interpreted as a reconstruction term

plus a regularization term [10]. With a trained VAE, the

encoder and decoder are given as h(x) = argmaxzq(z|x)
and g(z) = argmaxxq(x|z) accordingly.

Localized GAN Localized GAN [22] suggests to use a

localized generator G(x, z) to replace the global generator

g(z) in vanilla GAN [7]. The key difference between lo-

calized GAN and previous generative model for manifold

is that, localized GAN learns a distinguishing local coordi-

nate chart for each point x ∈M, which is given by G(x, z),
rather than one global coordinate chart. To model the local

coordinate chart in data manifold, localized GAN requires

the localized generator to satisfy two more regularity con-

ditions:

locality G(x, 0) = x, so that G(x, z) is localized around

x;

orthogonmality
(

∂G(x,z)
∂z

)T
∂G(x,z)

∂z
= I , to ensure

G(x, z) is non-degenerated.

The two conditions are achieved by the following penalty

during training of localized GAN:

Rlocalized GAN := µ1

∥

∥G(x, 0)− x
∥

∥

2
+

µ2

∥

∥

∥

∥

∥

(

∂G(x, z)

∂z

)T
∂G(x, z)

∂z
− I

∥

∥

∥

∥

∥

2

.
(9)

Since G(x, z) defines a local coordinate chart for each x
separately, in which the latent encode of x is z = 0, there

is no need for the extra encoder to provide the manifold

representation of x.

3. Method

In this section we elaborate our proposed tangent-normal

adversarial regularization (TNAR) strategy. The TNAR
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loss to be minimized for SSL is

L(Dl, Dul, θ) :=E(xl,yl)∈Dl
ℓ
(

yl, p(y|xl, θ)
)

+ α1Ex∈DRtangent(x, θ)

+ α2Ex∈DRnormal(x, θ).

(10)

The first term in Eq. (10) is a common used supervised loss,

e.g., negative cross entropy. Rtangent and Rnormal is the so

called tangent adversarial regularization (TAR) and nor-

mal adversarial regularization (NAR) accordingly, jointly

forming the proposed TNAR. In the following section, we

assume that we already have a well trained generative model

for the underlying data manifoldM, with encoder h and de-

coder g, which can be obtained as described in Section 2.3.

3.1. Tangent adversarial regularization

Vanilla VAT penalizes the variety of the classifier against

local perturbation in the input space R
D [17], which might

overly regularize the classifier, since the semi-supervised

learning assumption only indicates that the true conditional

distribution varies smoothly along the underlying manifold

M, but not the whole input space R
D [1, 24, 19]. To avoid

this shortcoming of vanilla VAT, we propose the tangent ad-

versarial regularization (TAR), which restricts virtual adver-

sarial training to the tangent space of the underlying man-

ifold TxM, to enforce manifold invariance property of the

classifier.

Rtangent(x; θ) := max
‖r‖

2
≤ǫ,r∈TxM=Jzg(Rd)

F (x, r, θ), (11)

where F (x, r, θ) is defined as in Eq. (6). To optimize

Eq. (11), we first apply Taylor’s expansion to F (x, r, θ) so

that

Rtangent(x; θ) ≈ max
‖r‖

2
≤ǫ,r∈TxM=Jzg(Rd)

1

2
rTHr, (12)

where the notations and the derivation are as in Eq. (7). We

further reformulateRtangent as

maximize
r∈RD

1

2
rTHr,

s.t. ‖r‖2 ≤ ǫ, r = Jη, η ∈ R
d.

(J := Jzg ∈ R
D×d, H ∈ R

D×D)

(13)

Or equivalently,

maximize
η∈Rd

1

2
ηTJTHJη, s.t. ηTJTJη ≤ ǫ2. (14)

This is a classic generalized eigenvalue problem, the opti-

mal solution η∗ of which could be obtained by power it-

eration and conjugate gradient (and scaling). The iteration

framework is as
v ← JTHJη;

µ← (JTJ)−1v;

η ←
µ

‖µ‖2
.

(15)

Now we elaborate the detailed implementation of each step

in Eq. (15).

Computing JTHJη. Note that z = h(x), x = g(z).
Define

r(η) := g(z + η)− g(z). (16)

For

F
(

x, r(η), θ
)

= dist(p(y|x, θ)‖p(y|x+ r(η), θ)), (17)

we have

∇2
ηF (x, r(η), θ) = (Jz+ηg)

T∇2
rF (x, r(η), θ)(Jz+ηg)

+∇2
ηg(z + η) · ∇rF (x, r(η), θ).

(18)

While on the other hand, since dist(·, ·) is some distance

measure with minimum zero and r(0) = 0 is the corre-

sponding optimal value, we have

F (x, r(0), θ) = 0, ∇rF (x, r(0), θ) = 0. (19)

Therefore,

∇2
ηF (x, r(0), θ) = (Jzg)

T∇2
rF (x, r(0), θ)Jzg = JTHJ.

(20)

Thus the targeted matrix vector product could be efficiently

computed as

JTHJη = ∇2
ηF (x, r(0), θ)·η = ∇η

(

∇ηF (x, r(0), θ) · η
)

.
(21)

Note that∇ηF (x, r(0), θ) · η is a scalar, hence the gradient

of which could be obtained by back propagating the net-

work for once. And it only costs twice back propagating for

the computation of JTHJη.

Solving JTJµ = v. Similarly, define

K(η) :=
(

g(z + η)− g(z)
)T (

g(z + η)− g(z)
)

. (22)

We have

∇2
ηK(η) = (Jz+ηg)

TJz+ηg +∇
2
ηg(z + η) ·K(η). (23)

Since K(0) = 0, we have

∇2
ηK(0) = (Jzg)

TJzg = JTJ. (24)

Thus the matrix vector product JTJµ could be evaluated

similarly as

JTJµ = ∇η

(

∇ηK(0) · µ
)

. (25)
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The extra cost for evaluating JTJµ is still back propagating

the network for twice. Due to JTJ being positive definite

(g is non-degenerated), we can apply several steps of con-

jugate gradient to solve JTJµ = v efficiently.

By iterating Eq. (15), we obtain the optimal solution η‖
of Eq. (14). The desired optimal solution is then r‖ =
ǫJη‖/‖Jη‖‖, hence Rtangent(x; θ) = F (x, r‖, θ), which

could be optimized by popular gradient optimizers.

3.2. Normal adversarial regularization

Motivated by the noisy observation assumption indicat-

ing that the observed data contains noise driving them off

the underlying manifold, we further come up with the nor-

mal adversarial regularization (NAR) to enforce the robust-

ness of the classifier against such noise, by performing vir-

tual adversarial training in the normal space. The mathe-

matical description is

Rnormal(x; θ) := max
‖r‖

2
≤ǫ,r⊥TxM

F (x, r, θ)

≈ max
‖r‖

2
≤ǫ,r⊥TxM

1

2
rTHr.

(26)

Note that TxM is spanned by the columns of J = Jzg,

thus r⊥TxM⇔ JT · r = 0. Therefore we could reformu-

late Eq. (26) as

maximize
r∈RD

1

2
rTHr,

s.t. ‖r‖2 ≤ ǫ, JT · r = 0.

(27)

However, Eq. (27) is not easy to optimize since JT · r can-

not be efficiently computed. To overcome this, instead of

requiring r being orthogonal to the whole tangent space

TxM, we take a step back to demand r being orthogonal

to only one specific tangent direction, i.e., the tangent space

adversarial perturbation r‖. Thus the constraint JT · r = 0
is relaxed to (r‖)

T · r = 0. And we further replace the

constraint by a regularization term,

maximize
r∈RD

1

2
rTHr − λrT (r‖r

T
‖ )r,

s.t. ‖r‖2 ≤ ǫ,

(28)

where λ is a hyperparameter introduced to control the or-

thogonality of r.

Since Eq. (28) is again an eigenvalue problem, and we

can apply power iteration to solve it. Note that a small

identity matrix λ‖r‖‖I is needed to be added to keep
1
2H − λr‖r

T
‖ + λ‖r‖‖I semi-positive definite, which does

not change the optimal solution of the eigenvalue problem.

The power iteration is as

r ←
1

2
Hr − λ(r‖)

T r‖r + λ‖r‖‖r. (29)

And the evaluation of Hr is by

Hr = ∇r

(

∇rF (x, 0, θ) · r
)

, (30)

which could be computed efficiently. After finding the

optimal solution of Eq. (28) as r⊥, the NAR becomes

Rnormal(x, θ) = F (x, r⊥, θ).
Finally, as suggested in [17], we add entropy regulariza-

tion to our loss function. It ensures neural networks to out-

put more determinate predictions and has implicit benefits

for performing virtual adversarial training.

Rentropy(x, θ) := −
∑

y

p(y|x, θ) log p(y|x, θ). (31)

Our final loss for SSL is

L(Dl, Dul, θ) :=E(xl,yl)∈Dl
ℓ
(

yl, p(y|xl, θ)
)

+ α1Ex∈DRtangent(x, θ)

+ α2Ex∈DRnormal(x, θ)

+ α3Ex∈DRentropy(x, θ).

(32)

4. Comparison to other methods

Virtual adversarial training Our proposed TNAR serves

as an extension of VAT, by taking the information of data

manifold into consideration. VAT equally penalizes the

smoothness along each dimension of the whole observation

space, not discriminating different directions. In contrast,

TNAR enforces the smoothness of the classifier along the

manifold and orthogonal to the manifold separately. This

separate treatment along the two directions allows TNAR

to impose different scales of smoothness along the tangent

space and the normal space of the data manifold, which

is particularly crucial for inducing desired regularization

effect. To illustrate this, considering an image sample,

its Euclidean neighborhood in the input space could con-

tain many inter-class samples, besides intra-class ones, as

demonstrated in Figure 2. Thus the output of the ideal clas-

sifier must vary significantly inside such Euclidean neigh-

borhood to correctly classify the contained samples, which

makes it essentially improper for VAT to enforce that the

classifier does not change much inside this Euclidean ball.

A more reasonable treatment is to adopt the manifold as-

sumption and impose different scales of smoothness of the

classifier along the manifold and its orthogonal direction, as

TNAR has done.

Jacobian based manifold regularization As explained

in Eq. (2) and Eq. (3), tangent propagation [26, 11] and

manifold Laplacian norm [1, 13, 22] are also popular meth-

ods for realizing manifold regularization for SSL. However,

our TNAR is the first to use VAT constructing manifold reg-

ularization. The difference between TNAR and Jacobian

norm based manifold regularization is two folds.
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Figure 2. Left: the smallest intra-class distance vs. the smallest

inter-class distance for CIFAR-10 dataset. X-axis: the smallest

Euclidean distance to the other examples of the same class. Y-

axis: the smallest Euclidean distance to the other examples of the

different class. We only plot such coordinate for 500 examples.

Right: the ratio of intra-class example among its K-nearest neigh-

borhood for CIFAR-10 dataset. The ratio is averaged over 500

examples. From the figures we clearly see that for most examples,

1) the smallest inter-class distance is shorter or at least about the

same scale as the least intra-class distance, and 2) its K-nearest

neighborhood contains more inter-class examples than intra-class

examples.

Firstly, they lead to different manifold smoothness con-

ditions on the classifier. Tangent propagation and mani-

fold Laplacian norm smooth the classifier by regularizing its

norm of the manifold Jacobian. TNAR, on the other hand,

smooths the classifier through penalizing the virtual adver-

sarial loss defined by the distance of an example with its tan-

gent directional virtual adversarial example. This involves

the second order information of the virtual adversarial loss

along the manifold. Theoretically, it is not easy to say that

one smoothness is superior to the other. Nonetheless, em-

pirical experiments on multiple datasets (Section 5) suggest

that our proposed TNAR achieves better performance on

SSL. We leave the theoretical analysis as future work.

Secondly, as shown in Eq. (2) and Eq. (3), all the exist-

ing Jacobian based manifold regularization requires evalu-

ating the Jacobian of either the classifier, or the generator

as manifold coordinate chart, which is prohibitively feasi-

ble for modern high-dimensional datasets given large neural

networks. Alternatively, some works suggested stochasti-

cally evaluating these Jacobian based regularization terms.

Kumar at.el. [11] proposed to randomly preserve several

columns of Jzg as the approximation of the tangent space

TxM, and Lecouat at.el. [13] applied the norm of several

directional gradients to approximate the norm of the Ja-

cobian. However, such stochastic strategies, unfortunately

with high variance, could cause implicit side affects on the

manifold smoothness of the classifier. Compared with them,

the computational cost of our proposed TNAR does not

rely on the dimensionality of the datasets, since performing

VAT only requires several times of power iteration (typi-

cally once), and TNAR adds constant extra times of back or

forward propagation to VAT. This advantage makes TNAR a

potentially better manifold regularization method for mod-

ern semi-supervised learning tasks.

Other approaches for SSL There is also a wide class of

SSL framework based on GAN [25, 20, 6, 5]. Most of them

modify the discriminator to include a classifier, by splitting

the real class of original discriminator into K subclasses,

where K is the number of classes of labeled data. The fea-

tures extracted for distinguishing the example being real or

fake, which can be viewed as a kind of coarse label, have

implicit benefits for supervised classification task. Though

in TNAR, GAN with encoder could be adopted as a method

to identify the underlying manifold, these two kinds of ap-

proaches are motivated from different perspectives. TNAR

focuses on the manifold regularization other than the feature

sharing as in the GAN frameworks for SSL.

Besides above, there are also other strategies for SSL,

e.g., Tripple GAN [14], Mean Teacher [27], Π model [12],

CCLP [9] etc. We leave the comparison of the performance

with TNAR in Section 5.

5. Experiments

To demonstrate the advantages of our proposed TNAR

for SSL, we conduct a series of experiments on both ar-

tificial and real datasets. The tested TNAR based meth-

ods for SSL include: (1) TNAR-VAE: TNAR with the un-

derlying manifold estimated by VAE; (2) TNAR-LGAN:

TNAR with the underlying manifold estimated by localized

GAN; (3) TNAR-Manifold: TNAR with oracle underly-

ing manifold for the observed data, only used for artificial

dataset; (4) TNAR-AE: TNAR with the underlying man-

ifold estimated roughly by autoendoer, only used for arti-

ficial dataset; (5) TAR: tangent adversarial regularization

for ablation study; (6) NAR: normal adversarial regulariza-

tion for ablation study. If not stated otherwise, all the above

methods contain entropy regularization term.

5.1. Two­rings artificial dataset

We first introduce experiments on a two-rings artificial

dataset to show the effectiveness of TNAR intuitively. In

this experiments, there is 3, 000 unlabeled data (gray dots)

and 6 labeled data (blue dots), 3 for each class. The detailed

construction could be found in Supplementary Materials.

The performance of each compared methods is shown

in Table 1, and the corresponding classification boundary is

demonstrated in Figure 3. The TNAR under true underly-

ing manifold (TNAR-Manifold) perfectly classifies the two-

rings dataset with merely 6 labeled data, while the other

methods fail to predict the correct decision boundary. The

failure of VAT supports our claims of its shortcut in Sec-

tion 4. Even with the underlying manifold roughly approxi-
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Figure 3. The decision boundaries of compared methods on two-

rings artificial dataset. Gray dots distributed on two rings: the un-

labeled data. Blue dots (3 in each ring): the labeled data. Colored

curves: the decision boundaries found by compared methods.

Table 1. Classification errors (%) of compared methods on two-

ring artificial dataset. We test with and without entropy regulariza-

tion in each method and report the best one. In VAT and TNAR-

AE, without entropy regularization is better; For TNAR-Manifold,

adding entropy regularization is better.

Model Error (%)

Labeled data only 32.95

VAT 23.80

TNAR-AE 12.45

TNAR-Manifold 9.90

TNAR-Manifold (ent) 0

mated by an autoendoer, our approach (TNAR-AE) outper-

forms VAT in this artificial dataset. However, the perfor-

mance of TNAR-AE is worse than TNAR-Manifold, indi-

cating that the effectiveness of TNAR relies on the quality

of estimating the underlying manifold.

5.2. FashionMNIST

We also conduct experiments on FashionMNIST

dataset1. There are three sets of experiments with the num-

ber of labeled data being 100, 200 and 1, 000, respectively.

The details about the networks are in Supplementary Mate-

rials.

The corresponding results are shown in Table 2, from

which we observe at least two phenomena. The first is that

our proposed TNAR methods (TNAR-VAE, TNAR-LGAN)

achieve lower classification errors than VAT in all circum-

stances with different number of labeled data. The second

is that the performance of our method depends on the es-

timation of the underlying manifold of the observed data.

In this case, TNAR-VAE brings larger improvement than

TNAR-LGAN, since VAE produces better diverse examples

1https://github.com/zalandoresearch/

fashion-mnist

according to our observation.

5.3. CIFAR­10 and SVHN

There are two classes of experiments for demonstrating

the effectiveness of TNAR in SSL, SVHN with 1, 000 la-

beled data, and CIFAR-10 with 4, 000 labeled data. The ex-

periment setups are identical with [17]. We test two kinds

of convolutional neural networks as classifier (denoted as

”small” and ”large”) as in [17]. We test both VAE and

Localized GAN as the underlying data manifold. More

detailed experimental settings are included in Supplemen-

tary Materials. We test the performance of TNAR with or

without data augmentation, with the identical augmentation

strategy used in [17]. Note that when perform TNAR with

data augmentation, the corresponding data manifold should

also be trained with data augmentation. It is worth to re-

mark that VAT [17] and VAT + SNTG [15] adopts ZCA as

pre-processing on CIFAR-10 experiments, while we do not

use this trick implementing TNAR experiments.

In Table 3 we report the experiments results on SVHN

and CIFAR-10, without data augmentation. And in Ta-

ble 4 the results on SVHN and CIFAR-10 with data aug-

mentation are presented. The comparison demonstrates that

our proposed TNAR outperforms all the other state-of-the-

art SSL methods as far as we known on both SVHN and

CIFAR-10, with or without data augmentation. Especially,

compared with VAT or manifold regularization like Im-

proved GAN + JacobRegu + tagent [11] or Improved GAN

+ ManiReg [13], TNAR brings an evident improvements to

them, as our analysis in Section 4 has suggested. Similar

to experiments on FashionMNIST datasets, we observe that

for TNAR, the underlying manifold identified by VAE ben-

efits more than the manifold identified by Localized GAN.

We attribute this phenomenon to the relatively lacking of

diversity of the images generated by Localized GAN.

5.4. Ablation study

We conduct ablation study on FashionMNIST, SVHN

and CIFAR-10 datasets to demonstrate that both of the two

regularization terms in TNAR are crucial for SSL. The re-

sults are reported in Table 2 and the last two lines in Ta-

ble 3. Removing either tangent adversarial regularization or

normal adversarial regularization will harm the final perfor-

mance, since they fail to enforce the manifold invariance or

the robustness against the off-manifold noise. In together,

the proposed TNAR achieves the best performance.

Furthermore, the adversarial perturbations and adver-

sarial examples from FashionMNIST and CIFAR-10 are

shown in Figure 4. We can easily observe that the tangent

adversarial perturbation focuses on the edges of foreground

objects, while the normal space perturbation mostly appears

as certain noise over the whole image. This is consistent

with our understanding on the role of perturbation along the
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Table 2. Classification errors (%) of compared methods on FashionMNIST dataset.

Method 100 labels 200 labels 1000 labels

VAT 27.69 20.85 14.51

TNAR/TAR/NAR-LGAN 23.65/24.87/28.73 18.32/19.16/24.49 13.52/14.09/15.94

TNAR/TAR/NAR-VAE 23.35/26.45/27.83 17.23/20.53/24.81 12.86/14.02/15.44

Table 3. Classification errors (%) of compared methods on SVHN

and CIFAR-10 datasets without data augmentation.

Method
SVHN

1,000 labels

CIFAR-10

4,000 labels

VAT (small) [17] 6.83± 0.24 14.87± 0.13

VAT (large) [17] 4.28± 0.10 13.15± 0.21

VAT + SNTG [15] 4.02± 0.20 12.49± 0.36

Π model [12] 5.43± 0.25 16.55± 0.29

Mean Teacher [27] 5.21± 0.21 17.74± 0.30

CCLP [9] 5.69± 0.28 18.57± 0.41

ALI [6] 7.41± 0.65 17.99± 1.62

Improved GAN [25] 8.11± 1.3 18.63± 2.32

Tripple GAN [14] 5.77± 0.17 16.99± 0.36

Bad GAN [5] 4.25± 0.03 14.41± 0.30

LGAN [22] 4.73± 0.16 14.23± 0.27

Improved GAN +

JacobRegu + tangent [11]
4.39± 1.20 16.20± 1.60

Improved GAN +

ManiReg [13]
4.51± 0.22 14.45± 0.21

TNAR-LGAN (small) 4.25± 0.09 12.97± 0.31

TNAR-LGAN (large) 4.03± 0.13 12.76± 0.04

TNAR-VAE (small) 3.99± 0.08 12.39± 0.11

TNAR-VAE (large) 3.80± 0.12 12.06± 0.35

TAR-VAE (large) 5.62± 0.19 13.87± 0.32

NAR-VAE (large) 4.05± 0.04 15.91± 0.09

Table 4. Classification errors (%) of compared methods on SVHN

and CIFAR-10 datasets with data augmentation.

Method
SVHN

1,000 labels

CIFAR-10

4,000 labels

VAT (large) [17] 3.86± 0.11 10.55± 0.05

VAT + SNTG [15] 3.83± 0.22 9.89± 0.34

Π model [12] 4.82± 0.17 12.36± 0.31

Temporal ensembling [12] 4.42± 0.16 12.16± 0.24

Mean Teacher [27] 3.95± 0.19 12.31± 0.28

LGAN [22] - 9.77± 0.13

TNAR-VAE (large) 3.74± 0.04 8.85± 0.03

two directions that capture the different aspects of smooth-

ness.

6. Discussion

As shown in our experiments, the data manifold is cru-

cial for the improvement of our proposed TNAR. Though

TNAR seems to work with a wide range of manifold coor-

dinate chart, e.g., VAE and Localized GAN, it is still not

clear which kind of manifold benefits most for TNAR. Dai

Figure 4. The perturbations and adversarial examples in the tan-

gent space and the normal space. Note that the perturbations is

actually too small to distinguish easily, thus we show the scaled

perturbations. First row: FashionMNIST dataset; Second row:

CIFAR-10 dataset. From left to right: original example, tangent

adversarial perturbation, normal adversarial perturbation, tangent

adversarial example, normal adversarial example.

at.el [5] suggested that a bad generator works better for

GAN based framework for semi-supervised learning. Our

experiments agree with this argument to some extent. Lo-

calized GAN could produce detailed images than VAE, but

the latter cooperates better with TNAR in all our experi-

ments. At current stage, we conjecture that a more diverse

generator helps more for TNAR, since diversity on gen-

erator enables TNAR to explore more different directions

along the data manifold. The throughout analysis is left for

future work.

7. Conclusion

We present the tangent-normal adversarial regularization

for semi-supervised learning, a novel regularization strategy

based on virtual adversarial training and manifold regular-

ization. TNAR is composed of regularization on the tan-

gent and normal space separately. The tangent adversar-

ial regularization enforces manifold invariance of the clas-

sifier, while the normal adversarial regularization imposes

robustness of the classifier against the noise contained in the

observed data. Experiments on synthetic and real datasets

demonstrate that our approach outperforms other state-of-

the-art methods for semi-supervised learning.
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