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Abstract

Understanding neural models is a major topic of interest in the deep learning community. In this
paper, we propose to interpret a general neural model comparatively. Specifically, we study the
sequence-to-sequence (Seq2Seq) model in the contexts of two mainstream NLP tasks–machine
translation and dialogue response generation–as they both use the seq2seq model. We investigate
how the two tasks are different and how their task difference results in major differences in
the behaviors of the resulting translation and dialogue generation systems. This study allows
us to make several interesting observations and gain valuable insights, which can be used to
help develop better translation and dialogue generation models. To our knowledge, no such
comparative study has been done so far.

1 Introduction

The sequence-to-sequence model (seq2seq), especially its enhanced variants of Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Units (GRU) (Bahdanau et al.,
2014), have been demonstrated to be highly effective for a variety of NLP tasks, e.g., machine translation
(MT) (Sutskever et al., 2014), dialogue response generation (DRG) (Li et al., 2016b), and many others.
A seq2seq model takes in a source sentence (a sequence) and generates a target sentence (another se-
quence). This model was first proposed for MT by translating a source language into a target language.
It is now also widely used for DRG to “translate” an input utterance from the user to an output response.

Traditional feature-engineering solutions to MT and DRG require a large number of handcrafted fea-
tures. In end-to-end learning, seq2seq models require almost no manual features for MT or DRG. The
model is purely driven by data: when trained on the translation data, the model learns to translate; when
trained on the conversational data, the model learns to converse. However, this approach also makes
the neural model hard to understand or interpret. To this end, researchers have proposed to understand
and visualize recurrent neural networks (Karpathy et al., 2015) and neural machine translation (MT)
models (Ding et al., 2017).

As we know, MT and DRG are two very different tasks. But the same seq2seq modeling works for
both, which is counter-intuitive. However, recent studies for understanding neural models have primarily
focused on a single task. This paper proposes to study the seq2seq model comparatively in the contexts
of two tasks, MT and DRG. Since the two very different tasks use the same model, the internal network
behaviors of the model must be very different for the tasks. Our comparative study shows the contrast,
which enables us to see a clearer picture of the model for each task and its issues, which cannot be
easily observed from the model behaviors of only a single task. This paper aims to answer the following
research questions:

1. What are the differences in the network internals and why are they different for the tasks?
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2. Which task is harder and why?
3. What network internals have a major impact on the performance of each task?
4. What do we need to do in order to improve the performance of each task?

We answer these important questions starting from analyzing the difference in data for MT and DRG
as end-to-end models are data-driven. The objectives of the tasks are embedded in the training data
only. We will then study how the different task data lead to different model behaviors in embedding,
attention, hidden states, and decoding alignments. These analyses will allow us to answer the above
research questions.

2 Background and Related Work

Sequence-to-Sequence model1: Given a sequence of inputs x = x1, x2, ..., xn, and a target sequence
y = y1, y2, ..., ym, a seq2seq model defines a distribution over outputs (y) and sequentially predicts
tokens using a softmax function:

p(y|x; θ) =
m∏
t=1

P (yt|x,y<t; θ) =

m∏
t=1

softmax(f(ht, ct, yt−1)) (1)

where f(·) is a non-linear function, yt−1 is the generated previous word/token obtained from a word
look-up table, ht = LSTM(yt−1,ht−1) is the hidden state variable of the LSTM network at time step
t, ht−1 is the previous hidden state of the LSTM network, ct =

∑n
i=1 ai,tbi is the attention-based

encoding (Bahdanau et al., 2014) of x at decoding time step t, bi is the decoder hidden state at time step
t and it has the same computational formulation (but different parameters) as ht, and ai,t is an attention
weight calculated by Eq. (2).

The seq2seq model has been shown to have excellent performance for both MT (Koehn, 2017) and
DRG (Serban et al., 2017). However, to understand how and why it is effective on different tasks remains
to be a challenge.
Understanding Neural Models: Visualization techniques have been explored in computer vision to
understand neural networks (Simonyan et al., 2013; Nguyen et al., 2015; Vondrick et al., 2013; Szegedy
et al., 2013; Mahendran and Vedaldi, 2015; Zeiler and Fergus, 2014). For visualization methods in NLP,
a few ablation studies have analyzed the effects on performance of several internal neural units in specific
NLP tasks (Ding et al., 2017; Li et al., 2016a; Shi et al., 2016). The earliest visualized neural unit was the
word embedding, which projects the word embedding space into a 2-dimensional space and observes that
words with similar meaning tend to cluster together (Ji and Eisenstein, 2014). Li et al. (2016a) described
strategies for visualizing compositionality in neural models (mainly focused on some specific NLP tasks
such as sentence classification), including the first-order derivatives and the variances. Ding et al. (2017)
focused on MT and proposed to use layer-wise relevance propagation to compute the contribution of
each contextual word to arbitrary hidden states in the attention-based encoder-decoder framework.

Unlike previous works, this paper performs a comparative study of the seq2seq model for MT and
DRG. To our knowledge, this has not been done so far. It analyzes and visualizes different behaviors of
the seq2seq model for MT and DRG to answer the proposed research questions.

3 Datasets Analysis

We start our investigation from the most direct source of difference: the characteristics of the data for
MT and DRG. The following datasets are used in our analysis.

MT Dataset: For MT, our training dataset consists of 2.08M sentence translation pairs in different
languages, extracted from the LDC corpus. We use NIST 2003 Chinese-English dataset as the validation
set, and NIST 2004-2006 datasets as test sets. Each NIST dataset has 4 different reference translations
for each sentence, and we also call it the Multi-Reference Dataset (MRD).

1The LSTM and GRU units usually have similar performance (Greff et al., 2017). Without loss of generality, we illustrate
using the LSTM-based seq2seq model.
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Dialogue Dataset: We use the twitter dataset (Ritter et al., 2011) for English and a question and
answer dataset about movies (Wu et al., 2016) for Chinese which has 1.61M sentence pairs. We randomly
selected 2k sentence pairs from the corpus for testing and another 2k sentence pairs for development. To
analyze the diversity in replies, we asked 4 Ph.D. students to reply 300 queries in any way they see fit
and use their replies as the multi-references for dialogues.

3.1 Diversity Analysis

Diversity is a common phenomenon in both MT and DRG. One can always reply to or translate a given
sentence in different ways. Here, we analyze the diversity phenomenon and its influence on the auto-
matic evaluation metrics like BLEU (Papineni et al., 2002), METEOR (Denkowski and Lavie, 2014),
ROUGE-L (Lin, 2004), and Diversity (diversity of a set) (Zhang and Hurley, 2008). In the experi-
ment, we alternately choose one standard answer from the multi-references (the test dataset has several
ground-truth target translations or replies for each source sentence) as the test sample and the rest of
the standard answers as its references (similar to K-fold cross validation). We average the scores from
all references.

METEOR ROUGE BLEU Diversity

Translation 0.32 0.54 42.63 0.66

Dialogue 0.08 0.31 8.59 1.07

Table 1: Evaluation results using the ground-
truth data of translation and dialogue.

From Table 1, we can see that the dialogue data
scores much lower (column 2-4) than the translation
data. Since all standard answers are written by hu-
mans, we can conclude that the diversity of dialogues
is much higher than that of translation, which is also re-
flected by the much higher diversity score of dialogue
than translation. It is interesting to see that even the ground truth results do not get high scores in au-
tomatic evaluations. This indicates that the diversity phenomenon has a great influence on automatic
evaluation metrics.

Apart from high diversity of dialogue responses, a related data difference for MT and for DRGs is that
there is a high correlation between input length and output length for translations (please see Appendix
A.1), but this is not the case for dialogue responses, which again indicates high diversity of dialogues.
With these data differences in mind, we next study the model differences.

4 Ability of Training Embedding

Word embedding plays a vital role in seq2seq models. Considering the decoding process, it is hard for
the decoder to predict the correct words if word embeddings are unable to cluster similar words together.
Here, we compare the word embedding quality of MT and DRG dased on similarity and analogy.

Training Details: For a fair comparison, we employ the same open-source seq2seq platform2 (Klein
et al., 2017) to train both the MT and DRG models. The hyper-parameters in our system are described
as follows. We limit the vocabulary to 30k in our experiments. The size of hidden units is 600 and
the word embedding dimension is 300. We set the number of layers of LSTM to 2 in both encoder
(bi-directional encoder is adopted) and decoder. The network parameters are updated using the Adam
algorithm (Kingma and Ba, 2014) with learning rate of 0.0001. For the final decoding at test time, we
adopt the beam search with beam size b=10 for MT and b=3 for DRG. A large beam size for dialogues
tends to generate trivial or universal responses like “I don’t know”. The evaluation results of the seq2seq
model applied in the dialogue experiment achieves 9.75, 1.06, 0.14, 0.043 for BLEU 1 to 4 respectively,
which are better than the results reported in (Wu et al., 2017).

4.1 Word Similarity Analysis

Word similarity reflects the semantic performance of word embeddings (Mikolov et al., 2013a). We use
the WordSim-353 dataset (Finkelstein et al., 2001) to evaluate the word embeddings generated by the
seq2seq model for the two different tasks. WordSim-353 is a standard dataset for evaluating English
word embeddings, which contains manually compiled sets of similar/synonymous words. We hired three

2https://github.com/OpenMT/OpenMT-py
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Ph.D. students to collaboratively translate the WordSim-353 dataset into Chinese as the Chinese word
similarity evaluation dataset.

Table 2 shows MT word embeddings achieve better similarity results. We believe the main reason is
that multiple references (responses) for a source sentence in dialogue are clustered together but words in
these references are not necessarily similar due to the high diversity in the DRG data.

4.2 Word Analogy Analysis
Encoder Decoder

Chinese English Chinese English

DRG 20.36 39.10 13.42 30.75
MT 37.45 49.43 38.98 46.57

Table 2: Experimental results on the
WordSim-353 dataset. The num-
bers in the table are Spearmans cor-
relation recorded as ρ × 100 be-
tween the embedding similarity and
human judgments.

The word analogy is a word game, e.g., using the calculated
embedding of “Queen - King + Man” to infer “Woman”, in-
troduced by (Mikolov et al., 2013a) for evaluating word em-
beddings’ grammatical performance. We employ the word2vec
toolkit (which also include datasets) provided by Mikolov et al.
(2013b) to calculate the analogy score. For the Chinese datasets,
we adopt the same processing method as in the word similarity
task, i.e., translating the English datasets into Chinese.

Table 3 shows the word analogy evaluation results which give
the same conclusion as the word similarity evaluation. Another
interesting phenomenon that can be observed from both the word similarity and analogy evaluations
is that the word embedding quality is related to the direction of the translation in MT. For instance,
the word embedding trained by English-to-Chinese translation has a higher quality than that trained by
Chinese-to-English translation. For monolingual dialogues, there is no such observation.

5 Analyzing Attention and Hidden States

In addition to embeddings, attention is also an important mechanism for seq2seq models.

5.1 Analyzing Attention Distributions Encoder Decoder
Chinese English Chinese English

DRG 9.31 14.67 10.09 20.88
MT 11.96 27.29 13.02 24.52

Table 3: Experimental results of the
word analogy task measured in ac-
curacy (shown as percentage).

The attention mechanism (Bahdanau et al., 2014) is an approach
to dynamically determine the relevant source context for each
target word. The attention weight ai,t used in Eq. (1) indicates
how well the source word xi and the target word yt are matched
and it is computed by:

ai,t =
exp(ei,t)∑m
i=1 exp(ei,t)

(2)
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Figure 1: Heat map of the attention weight matrices for MT
1(a) and for DRG 1(b). The sentence displayed along the hori-
zontal axis is the source language sentence in MT or the query
in DRG. The sentence displayed along the vertical axis is its
corresponding translation or response.

ei,t = htWabi scores the match for
ht and bi.

Fig. 1 gives the heat map of the at-
tention matrices. We can observe that
each target word in MT can be soft-
aligned very well with a source word
that has similar meaning to it. That
is, there is a clear approximately one-
to-one correspondence relation. How-
ever, all the target words in DRG tend
to be soft-aligned with about the same
subset of the words in the source sen-
tence, and the alignments are much
weaker. This implies that the gen-
erated responses only focus on only
a few words in the source sentence
through the attention mechanism. To
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measure this phenomenon, we adopt the KL-Divergence (KL) to gauge how spread the attentions are on
the source words:

Diva =
1

N

N∑
j=1

1

mj

mj∑
t=1

KL(pj,t||p̃j) (3)

where p̃j = 1
mj

∑mj

t=1 pj,t; j indicates the j-th instance in the test dataset (which contains 2k (N )

sentence pairs); pj,t = (aj1,t, a
j
2,t, ..., a

j
nj ,t

), nj is the source sentence length and mj is the generated

sentence length, and aji,t is the attention weights calculated by Eq. (2).
DRG MT

Diva 0.036 1.202

Table 4: Statistical results
on the spread of attentions
on the source.

Table 4 shows a large difference between DRG and MT in terms of the
spread of attentions over all source words. Clearly, in DRG, all words of a
reply focus on roughly the same subset of words in the source. Intuitively,
it means different replies respond to the same aspects (i.e. the attention-
concentrated words) of the input utterance.

5.2 Analyzing Hidden States

Due to the high-diversity of DRG, each response attends to a portion of input utterance. We hypothesize
that the encoded information (hidden states) of dialogues may be lack of diversity. As for translation, all
words are attended to and the encoded information is richer.

Figure 2: Scatter plot of decoder
hidden states

To verify this hypothesis, we first select one sentence randomly as
the test sentence (in translation and also in dialogue) to extract the
hidden states of MT and DRG. Then we employ the PCA to project
these hidden states into two dimensions and show them in Fig. 2.

From Fig. 2, we can see that the hidden states of dialogues tend
to be clustered together which means they have small differences.
We also give the statistical results on 2k sentence pairs to avoid the
impact of outliers. The statistical results (see Table 5) reach the
same conclusion.

It is interesting to see that when all attentions are concentrated,
encoded states are also concentrated. When attentions are spread,
hidden states are dissimilar. Dialogues concentrate on certain words while translations pay attention to
the whole source sentence.

6 Analyzing the Final Prediction

In seq2seq models, the attention-based encoding and the decoder hidden states are two impor-
tant constituent parts for making the final prediction. Exploring their contributions to the fi-
nal decision can help NLP researchers to design better models. We propose a new combi-
national disturbance approach to measuring how much each input unit contributes to the final
decision. First, we need to introduce the first-derivative salience method (Li et al., 2016a).

DRG MT DRG MT
Var 5.73 9.13 Sim 0.730 0.496

Table 5: Statistical results for decoder hidden
states. ‘Var’ is the average variance for each
dimension in the states. ‘Sim’ is the average
of the similarities among the states.

First-order Derivatives (FD): The final decision of
a seq2seq model is determined by the decoder output
distribution ϕ(u), which is computed using the soft-
max function over all the words in the vocabulary V .
Let u be an internal neural unit and it can be seen as an
input unit for the final decision making.

We denote the probability of each possible output
word v (∈ V ) as ϕv(u). ϕv(u) can be approximated with a linear function of u:

ϕv(u) ≈ wv(u)
Tu+ b (4)
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where wv(u) = ∂(ϕv)
∂u |u. |wv(u)| indicates the sensitivity of the final decision to any change in each

dimension, which tells us how much each dimension of the input neural unit contributes to the final
decision.

Fig. 3 shows the results. We can see that attention contributes more than hidden states to the final
predictions, especially for DRG. On the other hand, the first-order derivatives for MT are much smaller
than those for DRG which may indicate that MT has a better anti-interference ability. To evaluate the
total contributions of the input neural unit, we compute the norm of these derivatives and the results are
given in Fig. 4.
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Figure 3: Salience heat map of the attention and hidden
state, 3(a) for MT and 3(b) for DRG.

Combinational Disturbance (CD): The
first-derivative salience approach measures
how much each dimension of the input neural
unit contributes to the final decision. How-
ever, it is limited when employing it to mea-
sure the whole contribution of an input neu-
ral unit to the final decision. This problem
will not be alleviated even using the norm
of first-derivative vector. That is because we
can only get the derivative from one direction
but not others. To tackle this problem, we
propose to use the degree of change to the fi-
nal output distribution brought by adding tiny random disturbances δ to the input unit as its contributions:

wv(u) =
1

N

N∑
i=1

|ϕv(u+ δi)− ϕv(u)| (5)

δi is the tiny random disturbance randomly produced from [−10−4, 10−4] in the experiment.
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Figure 4: (a) (c): Total contributions of attention and hidden state calculated by First-order Derivatives;
(b) (d): Total contributions of attention and hidden state calculated by Combinational Disturbance.

The figure (b) and (d) in Fig. 4 shows the results obtained by our method. Compared to the results
of using FD, the contribution of hidden states has increased in DRG, while it remains unchanged for
MT. We believe that this is because in MT, the source input provides a “strong supervision” to align the
target with references, e.g., co-occurrence frequency, while for DRG, there is no strong supervision from
references (given responses). Therefore, the effect of language models is emphasized.

7 Decoding Confidence

The entropy of decoder output distribution ϕ (described in Section 6) can be regarded as a representation
of how confident the model is at the current decoding time step t. It can be calculated by S(ϕt) =∑

l−ϕt,v ln(ϕt,v). v denotes the v-th word in the vocabulary. In this case, smaller entropy means more
confidence in decoding.
Case comparison. We first explore the decoding confidence at each decoding position for both MT and
DRG systems. Fig. 5 shows the entropy heat map for six cases randomly sampled from the test sets,
from where, we can make the following observations:
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MT Dialogue

Figure 5: Entropy of each de-
coding step (one block for one
step/word) for 6 cases sampled
from test sets.

• The entropy of MT is generally lower than that of DRG . That is,
the decoder is more confident in MT due to the strong supervision
from the inputs and the nature of the task. Due to the high diversity
of DRG without strong supervision, the decoder in DRG is not
very confident in decoding.
• Both systems seem rather confused at the first decoding step
(with high entropy values). One possible reason for this is that the
decoder has several possible ways to translate or to respond the
sentence encoded by the encoder (the internal vector representa-
tion). It is difficult to decide what to decode to at the first decoding
step for both tasks.
• MT has a higher confidence in deciding when to terminate the
decoding process. It is intuitive to finish decoding when the length
of the target sentence is comparable to that of the source sentence. Besides, translations are strongly
supervised: when the sentence is completely translated, the decoding process should end. DRG has little
guidance. The decoder has difficulty to decide when to stop.

��

Figure 6: Average entropy of
each decoding step for test set.

Overall comparison: We now use 2k test sentences to give the
statistics about the above observations. We compute the average
entropy S̃t at each word position with the following formula:

S̃t =
1

Nt

Nt∑
i=1

S(ϕi
t) (6)

whereNt denotes the number of words at the t-th decoding position.
Fig. 6 visualizes the distribution of the average entropy for each po-
sition. Detailed confidences are given for the first 30 decoding steps
as only a small fraction of samples will not stop decoding (the de-
coding length over 30, 24.9% for the MT system, 0.7% for the DRG
system). We can see that both systems are uncertain about what to generate at the beginning. The entropy
reduces sharply as the decoding process moves forward, and then remains stable. We also see that MT
has more confidence in the entire decoding process.

To further verify the observations, we select sentences with fixed lengths to decode, and
compute average entropy at each position. The same phenomenons are observed in Fig. 7.

MT Dialogue

Figure 7: Average entropy of each de-
coding step for sequences with a fixed
length. L-9/L-10/L-11 denote length of
9, 10, 11, respectively.

‘EOS’ Generation. Here we focus on only the ‘EOS’ to-
ken and study how confident the two systems are when they
decide to end the decoding process. Fig. 8 shows that com-
pared the entropy values in Fig. 6, the gap of end decoding
confidence between the two systems is further widened. For
DRG, it is hard for the model to decide whether to end the
decoding process at every position, with the entropy as large
as 8. For MT, although the entropy of ‘EOS’ token is large
for short sentences (shorter sentences are usually harder to
translate), it lows down as the length increases. MT can
make more confident decisions at the positions ranged from 13 to 30.

8 Error Analysis

This section investigates the conditions that a correct prediction is likely to be made by the model. We
use negative log-likelihood (NLL) as the metric to measure the correctness of the model’s prediction.
NLL is a negative log function of the prediction probability of ground-truth and it can be calculated
by si = − log(pi). In our case, pi is the prediction probability for the i-th correct word in the given
replies (or translations) predicted by the seq2seq model. To alleviate the influence of the high diversity
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problem discussed before, we use teacher-forcing (Williams and Zipser, 1989) in this experiment. A
good prediction has a small NLL. As for the sentence level measurement s, we average all the si in the
sentence, that is, s = 1

L

∑L
i=1 si, where L is the sentence length.

��

Figure 8: Average entropy in deciding
‘EOS’ and frequency of ’EOS’ gener-
ation at each decoding position. Sharp
fluctuations appear when the sentence
length is small.

Extensive experiments have been conducted to investigate
many possible factors that may cause the model to make mis-
takes (or higher NLL), including: the position of the decod-
ing word, the average of hidden state change volume over
the whole prediction, word frequency, attention distribution
(introduced in Section 5), and the length of generation. We
found that word frequency and attention distribution have
clear correlation with the correctness of prediction (NLL).
The rest of the factors show little correlation.

Fig. 9 shows the correlation between the word frequency
and NLL of the DRG system and MT system. We can see that
both MT and DRG systems have a tendency to make mistakes
on low frequency words and perform well on high frequency
words. This phenomenon indicates that words with higher
frequency are trained better by the model, yielding better per-
formances. This phenomenon can also be regard as an imbal-
anced prediction problem in DRG and MT. Thus, balancing or increasing word frequency can help the
model get better results.

Figure 9: Correlation between word frequency
and NLL. Each point denotes a word. (MT is
on the left and DRG is on the right).

Pearson coefficient and Spearman coefficient are
calculated to measure the degree of correlation be-
tween word frequency and NLL. Their results are
given at the top of Fig. 9. We can see a higher cor-
relation between word frequency and NLL scores in
DRG. That is because the high diversity phenomenon
of DRGs such that it is harder for the seq2seq model
to capture the correspondence between the source
and target when the word frequency is low. As a re-
sult, DRG is more sensitive to word frequency than
MT.

In Section 5, we analyzed the attention distribu-
tion. Here we found that attention distribution can
clearly indicate the accuracy of the predicted words
or sentences in MT. Similar to but also different from
Section 5, here we use entropy to measure the atten-
tion dispersion of each word/step over the source lan-
guage inputs. Intuitively, a larger entropy corresponds to a more dispersed attention. We use the average
of the entropy values at all decoding steps as the measure of the degree of attention concentration of the
whole sentence.

Fig. 10 shows the correlation between the entropy (degree of attention concentration) and NLL (which
reflects the quality of the generated target sentence). It can be easily observed that the performance of
MT is closely related to the degree of attention concentration. The Pearson coefficient and Spearman co-
efficient shown in the figure are much higher than those coefficients for DRG. We can see that when the
attention is focused (i.e., the weight gathers on a few tokens) the model has less tendency to make mis-
takes. Errors are more likely to occur when the attention mechanism cannot generate a focused weight
distribution. While for DRG, the performance is not closely related to the degree of attention concen-
tration for both Pearson and Spearman coefficients, smaller than 0.03. The reason for the difference of
the two systems or applications is that there is a clear word alignment relationship in MT, which is not
the case for DRG. The word alignment relationship provides a strong supervision for the decoding step
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in translation. A dispersed attention indicates that the current prediction has a high-level of uncertainty
and thus tends to make mistakes. Due to the high data diversity problem, DRG lacks a clear alignment
relationship between source and target, and thus the degree of attention concentration cannot reflect the
quality of the generated target sentence.

9 Summary of the Comparative Study

We now summarize the study by answering the four proposed research questions.

��������

Figure 10: Correlation between the degree of at-
tention concentration and NLL. Each point de-
notes a sentence. MT is on the left and DRG is
on the right.

1. What are the differences in the network inter-
nals and why are they different for the tasks? The
answer is that for all the analyzed items, the network
internals behavior differently for different tasks. The
reason is due to the data difference of the two tasks,
which reflects the nature of the two tasks. The pos-
sible responses for an input query in DRG can be
highly diverse, much more than possible translations
of a sentence in MT.

2. Which task is harder and why? Due to high di-
versity in DRG, DRG appears to be a harder problem
because its decoder is less confident on what word
to generate, and when to stop because of the uncer-
tainty in attention and no length guidance from the
source sentence. DRG’s attention is more smeared
rather than focused like MT (which has a high degree
of attention concentration). MT does much better on
these, which enables a MT system to more confidently generate a translation.

3. What network internals have a major impact on the performance of each task? For different tasks,
we have different answers. For MT, attention has a great impact on the final results. More focused
attention means better translations. But for DRG, the answer is unclear. Its attention distribution does
not have a strong correlation with the correct output. For both tasks, word frequency is a major factor
that influences the performance.

4. What do we need to do in order to improve the performance of each task? For translation, since the
degree of attention concentration has a clear correlation with the translation quality, it may be used as
a translation quality measure. In designing new MT algorithms, we should try to improve the attention
mechanism to enable it to have a higher degree of attention concentration. Furthermore, as more frequent
words are more likely to be translated well, in data collection, one should focus on collecting more data
containing those less frequent words. This is also the case for DRG. But overall, DRG appears to be a
less well understood problem. The seq2seq model and attention may not be sufficient for the task.

10 Conclusions

This paper proposed to interpret the seq2seq model by comparing its behaviors in the contexts of ma-
chine translation (MT) and dialogue response generation (DRG). We analyzed the model from multiple
perspectives and showed several model differences for the two tasks. Our work included comparisons
of data distribution, word embedding, attention mechanism, state prediction, decoding confidence, and
when and where errors tend to occur. The analysis led to some interesting observations and valuable
insights. We believe more such analyses should be conducted in the future to other models and tasks to
guide researchers in designing better algorithms.
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A Data Analysis

A.1 Data Length Analysis
Target sequence length is an important piece of information for the decoder in the seq2seq model to
generate translations (in MT) or responses (in DRG). This section, discusses the correlation analysis of
the sequence length between the source and target for MT and DRG. We use NIST 03-06 as our MT
experimental set. For DRG, we employ the human utterances as the experimental set. Since there are
multiple responses for each test sequence, we use the average length as the target sequence length.

Figure 11: The joint frequency for sequence length between source and target. The horizontal ordi-
nate represents source sequence length. ‘r’ denotes Pearson correlation coefficient; ‘spr’ denotes the
Spearman correlation coefficient.

Fig. 11 shows the results. We can observe that the target sequence length in the MT corpus is highly
correlated with the source sequence length (indicated by high correlation coefficient and diagonal distri-
bution of length). However correlations for DRG are scattered, which affects the network’s control over
the decoding end time (see Section 7 for more details).


