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ABSTRACT

Motivation: Currently there are no curative anticancer drugs, and drug

resistance is often acquired after drug treatment. One of the reasons is

that cancers are complex diseases, regulated by multiple signaling

pathways and cross talks among the pathways. It is expected that

drug combinations can reduce drug resistance and improve patients’

outcomes. In clinical practice, the ideal and feasible drug combin-

ations are combinations of existing Food and Drug Administration-

approved drugs or bioactive compounds that are already used on

patients or have entered clinical trials and passed safety tests.

These drug combinations could directly be used on patients with

less concern of toxic effects. However, there is so far no effective

computational approach to search effective drug combinations from

the enormous number of possibilities.

Results: In this study, we propose a novel systematic computational

tool DrugComboRanker to prioritize synergistic drug combinations

and uncover their mechanisms of action. We first build a drug func-

tional network based on their genomic profiles, and partition the net-

work into numerous drug network communities by using a Bayesian

non-negative matrix factorization approach. As drugs within overlap-

ping community share common mechanisms of action, we next un-

cover potential targets of drugs by applying a recommendation

system on drug communities. We meanwhile build disease-specific

signaling networks based on patients’ genomic profiles and interac-

tome data. We then identify drug combinations by searching drugs

whose targets are enriched in the complementary signaling modules

of the disease signaling network. The novel method was evaluated on

lung adenocarcinoma and endocrine receptor positive breast cancer,

and compared with other drug combination approaches. These case

studies discovered a set of effective drug combinations top ranked in

our prediction list, and mapped the drug targets on the disease sig-

naling network to highlight the mechanisms of action of the drug

combinations.

Availability and implementation: The program is available on

request.

Contact: stwong@tmhs.org

1 INTRODUCTION

Cancers are complex diseases regulated by interactions of mul-

tiple signaling pathways interacting with each other. Though

there are some anticancer drugs, they are often not curative

and associated with acquired drug resistance. It is believed that

a single drug can target only one disease signaling module,

whereas alternative signaling pathways will be activated to main-

tain tumor development. For example, in melanoma, the select-

ive BRAF inhibitor, PLX4032, can induce tumor responses in

the majority of patients with BRAF V600E mutant melanoma,

but the duration of this response is limited owing to the devel-

opment of acquired resistance, which may be due to alternative

pathways parallel to the ‘BRAF-MEK-ERK’ signaling pathway

(Johannsen et al., 2013; Nazarian et al., 2010). To reduce the

drug resistance effect, and improve cancer treatment outcomes,

drug combinations are considered as an optimal option.
The ideal drug combinations expected by clinicians are com-

binations of Food and Drug Administration (FDA)-approved

drugs or existing bioactive compounds that have entered clinical

trials and passed safety tests. These drug combinations could be

used by patients without toxic side effects. Drug combination

prediction has been a challenging task in computational biology,

despite a few studies in the area. The genetic algorithm was, for

example, proposed to find the optimal combinations of a small

number of drugs based on the experimental results (Zinner et al.,

2009). The method, however, is not able to identify optimal drug

combinations from a large set of drugs, as it requires

experimental validations in the prediction process. The machine
learning-based approach was proposed to classify drugs into

combinations based on molecular and pharmacological features

of drugs (Zhao et al., 2011). However, the features of drugs are

too general to be informative, and the method does not integrate

the rich genomic profiles of drugs and disease into consideration.

Combinatorial Drug Assembler (CDA) was developed to iden-

tify drug combinations based on enrichment analysis of

genomic profile data. However, the enrichment analysis imple-

mented in the method is based on differentially expressed genes,

disease driver genes are not clearly defined, so that drugs target-

ing the causal dysfunctional signaling modules of disease

maybe missed out (Lee et al., 2012). To overcome the afore-

mentioned problems, we propose a novel computational tool,

DrugComboRanker, for predicting drug combinations targeting

multiple signaling modules of cancer-specific networks through

integrative analysis of genomic profiles of both drugs and

cancers.
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2 MATERIALS AND METHODS

2.1 Overview of DrugComboRanker

This study seeks to answer a clinical question that which drugs can be

combined with existing therapy to reduce drug resistance and im-

prove patients’ outcomes. We have thus developed a novel tool,

DrugComboRanker, to prioritize drug combinations and uncover the

underlying mechanisms of action. The approach is designed based on

the following two observations. First, dysfunctional signaling networks

of diseases are complex and stable, and effective drug combinations can

inhibit major modules of the networks simultaneously. Second, drugs

often have multiple active target genes or proteins. Grouping targets of

drugs with similar transcriptional responses profiles allows better recov-

ery of their targeted signaling modules in disease than based on indi-

vidual targets alone. Figure 1 is an overview of the proposed

DrugComboRanker. The drug functional network is firstly reconstructed

based on genomic profiling data of drugs that are available in the

Connectivity Map (CMAP) database. The Bayesian non-negative

matrix factorization with the �-divergence (BNMF�D; Tan and

Fevotte, 2013) approach is conducted to partition the drug functional

network into connected functional communities, whose targets indicate

the inhibited signaling modules of diseases. On the other hand, the dys-

functional signaling modules of diseases are reconstructed by integrating

disease genomics data and protein interactome data. Drug combinations

are then ranked from different drug functional communities, which in-

hibit disease signaling network modules.

2.2 Drug functional network reconstruction

The aim of drug function network reconstruction is to identify drug

communities that share common transcriptional responses to drug treat-

ment. We reconstruct, the drug functional network based on the data of

the CMAP (CMap, build 02; Lamb et al., 2006), which consists of 6100

gene expression profiles of four cancer cell lines (MCF7, PC3, HL60 and

SKMEL5) treated by 1309 drugs at different doses. We first combine the

similarity metric proposed in (Iorio et al., 2010) with the metric defined in

the STITCH database (Kuhn et al., 2012) as a new drug similarity metric

as follows. First, for each individual drug at each dose, genes are ranked

based on their fold changes (drug treatment versus control). Then, gene

rank lists at different doses are merged into one gene rank list by using a

hierarchical majority voting scheme (Iorio et al., 2010). The merging

procedure first compares gene rank lists using the Spearman’s Footrule

similarity metric (Diaconis and Graham, 1977), and then the two most

similar lists are merged repeatedly by using the Borda Merging strategy

(Lin, 2010). Consequently, gene signatures for individual drugs are cre-

ated by optimally selecting the top- and bottom-ranked 250 genes, re-

spectively. This size of these signatures is heuristically determined as

described in (Iorio et al., 2010). Finally, the gene set enrichment analysis

(Subramanian et al., 2005) score, SG i; jð Þ, is used as the dissimilarity

metric between drug i and drug j. A threshold T=0.7848 (the third

quantile of the empirical probability distribution of the drug dissimilarity

metric) is given to remove the non-significant dissimilarities as follows:

S
0

G i; jð Þ=
SG i; jð Þ; if SG i; jð Þ � T

C; else

(

Then we convert the dissimilarity into the normalized similarity score, S
00

G

i; jð Þ as S
00

G i; jð Þ=1�NORM S
0

G i; jð Þ
� �

and NORMðS
0

G i; jð ÞÞ=ðS
0

G i; jð Þ

�minðS
0

G i; :ð ÞÞÞ=ðmaxðS
0

G i; :ð ÞÞ �minðS
0

G i; :ð Þ where S
0

G i; :ð Þ=fS
0

G i; 1ð Þ; S
0

G

i; 2ð Þ; . . . ;S
0

G i; nð Þg denotes all the connection scores linking to the i-th

node. Here, we empirically set C=10. In addition to the similarity of

transcriptional responses, a different similarity metric, Ssði; jÞ, was defined

in STITCH database (Kuhn et al., 2012) by integrating a combined score

of structure similarity, experimental similarity and text mining similarity

score. The structure similarity is defined by the Tanimoto 2D chemical

similarity scores (Martin et al., 2002). The experimental similarity is cal-

culated by the Pearson correlation of the activity patterns of the com-

pounds based on NCI60 screens. The text mining similarity is computed

by mining the curated database, such as OMIM and MEDLINE, using a

co-occurrence scheme and a natural language processing approach

(Jensen et al., 2006; �Sarić et al., 2006). In this study, we combine the

two similarity metrics as S i; jð Þ=Ss i; jð Þ+S
00

Gði; jÞ. The rational to use

the combined similarity is to generate better drug community structure

when applying the clustering algorithm on the drug functional network.

Finally, a drug functional network is reconstructed with 1308 nodes and

51 164 edges. Figure 2 shows an example of the reconstructed drug func-

tional network community.

2.3 Drug community discovery by using Bayesian non-

negative matrix factorization with �-divergence

Next, we partition the reconstructed drug functional network into com-

munities (modules) within which drugs share common mechanisms of

action (targeting the same or related signaling modules), as illustrated

in Figure 2. We use the BNMF�D (Tan and Fevotte, 2013) for the net-

work partition. The algorithm has shown good partition results on vari-

ous classes of real-world signals such as audio and images (Tan and

Fevotte, 2013), Specifically, the algorithm can (i) enable soft partitioning

(one drug can be partitioned into multiple communities with different

membership scores); (ii) reduce noise influence (suppresses noise in the

high dimensional space); and (iii) allow multi-scale partition. To the best

of our knowledge, the algorithm is for the first time used in drug func-

tional network partition.

Specifically, given a weighted undirected network with N nodes, let

V 2 R
N�N
+ denote its adjacent matrix. BNMF�D factorizes the matrix V

into two low-rank matrices:

V � V̂=WH ð1Þ

where W and H are non-negative matrices with dimensions N� K and

K�N, and the elements of V, V̂, W andH are denoted by vij, v̂ij,wik and

hkj, respectively. The k-th column ofW is denoted by wk 2 R
N�K
+ and the

k-th row ofH is denoted by hk 2 R
K�N
+ . TheW is normalized toWN, that

Fig. 1. Overview of the DrugComboRanker for prioritizing disease-

specific drug combinations

i229

DrugComboRanker: a tool for drug combination prediction

 at Peking U
niversity on January 8, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

Connectivity Map
)
.
3rd
:
,
-
:
employ 
Bayesian non-negative matrix factorization with &beta;-divergence (
1
2
3
-
http://bioinformatics.oxfordjournals.org/


is, each row of WN is subject to

XK
j=1

wnij=1 ð2Þ

where wnij is the element ofWN and it quantifies the membership of node

i with respect to community j. To infer the appropriate model order K,

we use a Bayesian paradigm for non-negative matrix factorization

by placing automatic relevance determination priors with scale hyper-

parameters k=f�kg
K
k=1 on the variables wik and hkj. In this model, the

distribution of �k is parameterized by fixed parameters a and b, and the

fixed parameter � decides the distance measure between the observed

interactions V and the expected interactions V̂. Under these assumptions,

the posterior density function can be obtained as

p W;H; k jVð Þ=
p V jW;Hð Þp W jkð Þp H jkð ÞpðkÞ

pðVÞ
ð3Þ

Maximizing the posterior density is equivalent to minimizing the negative

log posterior, which can be regarded as a loss function CMAPðW;H; kÞ as

CMAP W;H; kð ÞX� log pðW;H; k jVÞ ð4Þ

=� log p V jW;Hð Þ � log pðWjkÞ � logðHjkÞ � log pðkÞ ð5Þ

where log pðVjW;HÞ is the log-likelihood.

The generalized �-divergence is defined by

D�ðxjyÞX

x�

�ð�� 1Þ
+

x�

�
�
xy��1

�� 1
; � 2 R n f0; 1g

x log
x

y
� x+y; �=1

x

y
� log

x

y
� 1; �=0

8>>>>>>><
>>>>>>>:

ð6Þ

The �-divergence can be regarded as a minus log-likelihood for the

Tweedie distribution and its probability density function is given by

f x; �; �; �ð Þ=h x; �ð Þexp
1

�
ð

1

�� 1
x���1 �

1

�
��Þ

� �
ð7Þ

where h x; �ð Þ is the base measure function, � is the mean, � is the dis-

persion parameter and � is the shape parameter. Assuming that vij is

generated from the Tweedie distribution, the log-likelihood function

can be given by

�log pðV jW;HÞ=
1

�
D� V jWHð Þ+C ð8Þ

To insure W and H are non-negative, the Half-Normal priors are as-

signed on them,

p wik j�kð Þ=HNðwikj�kÞ ð9Þ

p hkj j�k
� �

=HNðhkjj�kÞ ð10Þ

where HN x j�ð ÞX
2

��

� �1
2

exp �
x2

2�

� �
; x � 0 ð11Þ

and place an inverse Gamma priors on each �k,

p �k; a; bð Þ=
ba

�ðaÞ
��ða+1Þ
k expð�

b

�k
Þ ð12Þ

Then, according to Equation (5), the objective function CMAP W;H; kð Þ

can be given as

CMAP W;H;ð Þ=
1

�
D� V jWHð Þ+

XK
k=1

1

�k

1

2
w2
k+

1

2
h2k+b

� �

+ N+a+1ð Þ log �k+C

ð13Þ

To minimize CMAP W;H; kð Þ with respect to W, H and k, we adopt the

strategy in (Tan and Fevotte, 2013) by introducing a local majorization–

minimization algorithm with efficient multiplicative updates. Finally, we

give the overlapping community detection algorithm as follows:

Step 1: Initialize wk 2 R
N�K
+ and hk 2 R

K�N
+ to random non-negative

values.

Step 2: Update W, H and �k by

H=H �
WTð WHð Þ

� ��2ð Þ
� VÞ

WT WHð Þ
� ��1ð Þ+�=repmatðk; 1;NÞ

 !��ð�Þ

W=W �
ð WHð Þ

� ��2ð Þ
� VÞHT

WHð Þ
� ��1ð ÞHT+�=repmatðk; 1;NÞ

 !��ð�Þ

Fig. 2. Snapshots of the drug functional network (top) and an example of

the reconstructed drug network community (bottom)
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�k=
1

2

X
i

w2
ik+

1

2

X
j

h2kj+b

 !
= N+a+1ð Þ

� �ð Þ=
1= 3� �ð Þ; � � 2

1= �� 1ð Þ; �42

(

Step 3: Repeat Step 2 until max k=1;2;...;Kj �
new
k � �

old
k

� �
=�oldk j � "

Step 4: Normalize W to WN, then the number of non-zero columns

k� of WN is the number of clusters. Assign each node to the k�

clusters according to WN. In the above algorithm, X � Y denotes

element-by-element multiplication of X and Y; X
Y denotes element-

by-element division of X and Y; andX�� denotes raising each element

of X to the �th power. In addition, repmatðk; 1;NÞ denotes the K�N

matrix with each column being the vectork. Using the BNMF�D

approach, we partition the drug functional network into a set of

connected network modules (Fig. 2), within which drugs share

common targets or related signaling mechanisms.

2.4 Drug combination discovery based on target network

analysis

The novel drug combination approach consists of the following three

major components.

(a) Disease specific signaling network reconstruction

Several approaches (Barren€as et al., 2012; Chuang et al., 2007; Ideker

et al., 2002) have been proposed to reconstruct signaling networks of

diseases based on transcritpome and interactome data. In this study,

the approach proposed in (Barren€as et al., 2012) is used. The integrated

protein–protein interactions from BioGRID (Stark et al., 2006) and the

manually curated human cancer signaling from (Awan et al., 2007; Cui

et al., 2007; Li et al., 2012; Newman et al., 2013) (available at http://www.

bri.nrc.ca/wang/) are clustered into functional protein–protein modules,

and each module is tested for enrichment (Fisher’s exact test, P50:01) of

the differentially expressed genes of the gene expression profile of a dis-

ease. The enriched modules are then considered as disease susceptibility

modules, from which the highly interconnected genes are identified as the

disease-specific signaling network. Figure 3 shows the reconstructed sig-

naling network of lung adenocarcinoma.

(b) Functional drug target prediction using network-based

recommendation

Drugs often have multiple targets and affect distinct signaling modules,

but only parts of them are known for given drugs. The drug communities

embed targeting signaling modules (functional targets instead of physical

targets) of drugs. To uncover the targeting signaling modules of drugs,

we propose a network-based recommendation approach as follows. Let

D= d1; d2; . . . ; dmf g denote drugs in a given community, and T=

t1; t2; . . . ; tnf g be the known drug targets. The drug–target interaction

network can be described as a bipartite graph G D;T;Eð Þ. The E indicates

the known drug and target associations. This drug–target network can be

represented by an adjacent matrix A= aji
� 	

n�m
, where aji is the weight

that quantifies the association between di and tj. Then the novel network-

based algorithm is designed based on a bipartite network projection tech-

nique (Zhou et al., 2010) as follows.

R=F � A ð14Þ

where R= rij
� 	

n�m
is the recommendation score (the functional associ-

ation possibility between drug i and target j). The F= fij
� 	

n�m
indicates

the transition matrix from drug i to drug j and is defined as:

fij=
1

� i; jð Þ

Xm
l=1

ailajl
k xlð Þ

ð15Þ

where � i; jð Þ=k tið Þ
1��k tj

� ��
and k xð Þ is the degree of the x node in the

bipartite network. Targets with recommendation scores greater than

given threshold, 0.1, are kept as the active functional targets of given

drugs.

(c) Disease-specific drug combination discovery

With the constructed disease signaling network and the predicted

drug targets, drug combinations are then prioritized by combining the

following synergistic scores. Given two candidate drugs, di and dj,

from different clusters, suppose di 2 Ck and dj 2 Ch, and Tk=

tk1; tk2; . . . ; tkmf g denote the targets of di in Ck, and Th=

th1; th2; . . . ; thnf g denote the targets of dj in Ch. The first synergistic

score is defined as follows.

S1 i; jð Þ=

X
i
CSðtkiÞexp �D tki;Th

� 	
=n2

� �
X

i
CSðtkiÞ

+

X
j
CSðthjÞexp �D thj;Tk

� 	
=m2

� �
X

j
CSðthjÞ

ð16Þ

where CS tkið Þ is the centrality score of target tki in the reconstructed

disease signaling network, and it is an additive of betweenness ðBnÞ,

closeness Cnð Þ (Brandes and Fleischer, 2005) and PageRank (Pr) score

(Page et al., 1999) of protein tki, that is

CS tkið Þ=Bn tkið Þ+Cn tkið Þ+PrðtkiÞ ð17Þ

These are three different but correlated centrality measurements, and the

reason of combing them is to get a robust centrality score. The min D

tki;Th

� 	
is the minimum shortest path from tki to Th. The first synergistic

score, S1 i; jð Þ, prefers drug combinations, whose targets are in the center

(hubs) of disease signaling network and closely connected.

The second synergistic score is defined as

S2 i; jð Þ=

X
i;j
Sim tki;thj

� �
m+nð Þ m+n� 1ð Þ

ð18Þ

Fig. 3. The reconstructed signaling network of lung adenocarcinoma.

Different node colors indicate different modules, and the node size indi-

cates the degree of nodes
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where Sim tki;thj
� �

is the semantic similarity of gene ontology (GO) anno-

tations of tki and thj (Couto et al., 2007), which is computed based on

the overlap of the GO terms that are associated with tki and thj, and is

defined as

Sim tki;thj
� �

=
2 log2max p Að Þ

� 	
log2p GOkið Þ+log2p GOhj

� �� � ð19Þ

Where GOki is the GO term that associated with tki, and A is a GO term

that is an ancestor of both GOki and GOhj, and

p GOkið Þ=
FreqðGOkiÞ

MaxFreq
ð20Þ

FreqðGOkiÞ is the frequency of GO term GOki occurring in GO annota-

tions, which are taken from GO database. MaxFreq is the maximum

occurrences frequency of GO terms that are associated with all the targets

and the predicted drug targets in the GO annotations. The second syn-

ergistic score, S2 i; jð Þ, prefers drug combinations that block genes with

similar functions, e.g. cell proliferation.

Finally, the synergistic score of drug di and dj is given by

Sy i; jð Þ= S1 i; jð Þ+S2 i; jð Þð Þ � dEði; jÞ ð21Þ

where

dEði; jÞ=max SG i; jð Þ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SG i; jð Þ � Ss i; jð Þ

p
;SG i; jð Þ+Ss i; jð Þ

n o
ð22Þ

where SGði; jÞ reflects the distance of their expression pattern. In sum-

mary, drug combinations targeting on the disease-specific signaling

network, with similar functions, through alternative targets are

prioritized.

3 RESULTS

We have applied the BNMF�D algorithm to cluster the drug–

drug network into overlapping drug communities. Table 1 lists

the parameters in the analysis. We set a as one of

{10,50,100,150,200,250,300,350,400,450}, and b to be equal to

a. When a and b are set to be 450, the BNMF�D algorithm

will converge more quickly. Under this setting of a and b, we

test the drug network community reconstruction results with dif-

ferent K and �, as K={100,110,120,130,140,150,160,170} and

�=f1; 2g. When K is 150 and � is 1, we get better drug commu-

nity structures in terms of the following defined community qual-

ity measurements. We assign the number from 1 to 150 to each

drug community, and obtain the drug–target networks by con-

necting the drugs in the same community through their targets.

The connected drug–target networks provide us a useful way to

drug discovery.

3.1 Quality evaluation of predicted drug community

To evaluate the proposed approach, we compared it with three

widely used network partition approaches: Markov cluster

(MCL; Enright et al., 2002), affinity propagation (AP; Frey

and Dueck, 2007) and CluterONE (Nepusz et al., 2012). To

evaluate the quality of the predicted drug community, the fol-

lowing three metrics are defined. The average enrichment score,

SN, is defined as SN=

XN

i=1
siNiXN

i=1
Ni

;where si=
Pi

Ni
, Pi is the number of

drug pairs sharing targets in the i-th drug community, Ni is the

number of drugs of that drug community andN is the number of

drug community. Higher SN value indicates more drugs in the

same community sharing common targets. The metric, SR, is

defined as the relative number of well-connected drug commu-

nities SR=
j si jsi4df gj

N , where j.j is the number of elements, and d is

a given threshold. The geometric accuracy metric, SGA, is defined

as the balance of the two metrics: SGA=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN � SR

p
. The compari-

son result shown in Figure 4 shows that the proposed method

outperforms the other three methods in terms of all three metrics

with d=0:6.

3.2 Drug combination prediction evaluation

To evaluate the prediction capacity of DrugComboRanker,

we apply it on the lung adenocarcinoma and endocrine

receptor (ER) positive breast cancer. The 107 lung

adenocarcinoma patient samples (58 lung tumor tissues and 49

normal lung tissues, GDS3257) were collected to reconstruct

the lung adenocarcinoma-specific signaling network, as

shown in Figure 3. This signaling network consists of

905 genes and 11282 interactions. Based on the signaling

network, we predict effective drugs that have synergistic effects

combined with three drugs (Gefitinib, Paclitaxel and LY-294002)

given by our clinicians. Level 3 gene expression data

of 222 ER positive breast invasive carcinoma (BRCA)

samples and 61 normal breast samples were collected

from TCGA. The synergistic drug combination with two

FDA-approved drugs, Tamoxifen and Letrozole, are further

Table 1. The values of parameters in BNMF�D algorithm

Parameters Values

K 150

� 1

a = b 450

" 10�5
Fig. 4. The comparison results of the proposed method (referred to as

BNMF �D) with AP, ClusterONE and MCL according to the quality of

the predicted drug communities in terms of SN, SR and SGA
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predicted for ER-positive BRCA based on the reconstructed ER-

positive breast cancer signaling network.

To validate the prediction results, we searched the literature

evidence of the top 50 ranked combinations. Tables 2–4 show the

literature evidence of the effective drug combinations in our top

50 lists for lung adenocarcinoma. Surprisingly, 19 different drug

combinations have been reported to be synergistic combining

with Gefitinib, Paclitaxel and LY-294002 in non–small-cell

lung cancer. Tables 5 and 6 show the literature evidence of ef-

fective drug combinations in the top 50 lists for ER-positive

breast cancer. Also 14 different drug combinations have been

reported to be synergistic combining with Tamoxifen and

Letrozole. These results show the strong drug combination pre-

diction capacity of DrugComboRanker.

To make the evaluation fair and sound, we further compared

the predicted results with CDA, and a random combination

method (RCM), which randomly picks up 50 drugs from the

available drug lists to combine with the designated drugs. As

for CDA, we picked the top 50 drug combinations with the

designated drugs. Figures 5 and 6 show the comparison results

on the lung adenocarcinoma and ER-positive breast cancer in

terms of literature supports of those top-ranked 50 drug com-

binations, respectively (The numbers on the bars of RCM are

standard deviations). For RCM, we repeated the random selec-

tion 100 times; for each simulation, we checked the literature

evidence (In total, we checked all the 5000 random combin-

ations). As can be seen, the proposed approach outperforms

the CDA and random selection significantly.
The predicted drug targets in the disease-specific network

could indicate the molecular mechanism of synergistic drug com-

binations. Here, we map the responsive genes of Gefitinib,

Paclitaxel, Vorinostat, LY-294002 and Quercetin to the lung

adenocarcinoma-specific signaling network to capture the dis-

tinct synergistic responses induced by three agent combinations,

Gefitinib and Paclitaxel, LY-294002 and Quercetin, Gefitinib

and Vorinostat. As shown in Figure 7, Gefitinib and Paclitaxel

combinations can affect the EGFR signaling pathway (endothe-

lial cell proliferation), TP53 signaling pathways, as well as

Table 2. Synergistic alternative drugs combining with Gefitinib

Drug combination

(Community number)

Synergistic

score

Rank Literature

evidence

Gefitinib/Paclitaxel (63/55) 2.905 2 PMID:19596955

PMID:14990633

Gefitinib/Celecoxib (63/48) 2.804 3 PMID:18379355

PMID:16914589

Gefitinib/Genistein (63/102) 2.765 4 PMID:22160570

Gefitinib/Fulvestrant (63/55) 2.529 9 PMID:24268810

Gefitinib/Irinotecan (63/66) 2.468 11 PMID:21915126

PMID:16713012

Gefitinib/Vorinostat (63/102) 2.464 12 PMID:21271222

Gefitinib/Lovastatin (63/34) 2.102 27 PMID:19760159

Gefitinib/Rosiglitazome (63/13) 2.023 32 PMID:168386327

Gefitinib/MS-275(63/102) 2.007 34 PMID:16424029

Table 3. Synergistic alternative drugs combining with LY-294002

Drug combination

(Community number)

Synergistic

score

Rank Literature

evidence

LY-294002/Quercetin (55/140) 2.987 2 PMID:14688022

LY-294002/SB-202190(55/5) 2.936 3 PMID:16115952

LY-294002/Rapamycin(55/54) 2.448 33 PMID:22355375

Table 4. Synergistic alternative drugs combining with Paclitaxel

Drug combination (Community

number)

Synergistic

score

Rank Literature

evidence

Paclitaxel/Irinotecan(55/66) 3.096 2 PMID:16251879

Paclitaxel/Gefitinib(55/63) 2.905 8 PMID:19596955

PMID:14990633

Paclitaxel/Vorinostat(55/102) 2.901 9 PMID:19621389

Paclitaxel/Rapamycin(55/54) 2.888 11 PMID:22896668

Paclitaxel/Vinblastine(55/137) 2.681 17 PMID:16193638

Paclitaxel/Ifosfamide(55/90) 2.377 25 PMID:8740798

Paclitaxel/SuraminSodium (55/3) 2.189 37 PMID:11507065

Paclitaxel/Resveratrol(55/48) 2.060 49 PMID:14666716

Table 5. Synergistic alternative drugs combining with Tamoxifen

Drug combination

(Community number)

Synergistic

score

Rank Literature

evidence

Tamoxifen/Tretinoin(49/55) 2.913 8 PMID:9533531

Tamoxifen/Genistein(49/102) 2.910 9 PMID:17295235

Tamoxifen/Quercetin(49/140) 2.831 12 PMID:20804812

Tamoxifen/Verapamil(49/66) 2.776 19 PMID:8185686

Tamoxifen/Mifepristone(49/66) 2.721 21 PMID:9879777

Tamoxifen/Celecoxib(49/48) 2.437 29 PMID:23731702

Tamoxifen/Resveratrol(49/48) 2.416 31 PMID:23896596

Tamoxifen/Letrozole(49/92) 2.299 36 PMID:15026471

Tamoxifen/Exemestane(49/51) 2.136 42 PMID:21247627

Tamoxifen/LY-294002(49/55) 2.035 46 PMID:12479367

Table 6. Synergistic alternative drugs combining with Letrozole

Drug combination

(Community number)

Synergistic

score

Rank Literature

evidence

Letrozole/Fulvestrant(92/55) 2.457 8 PMID:15958593

Letrozole/Tamoxifen(92/49) 2.300 10 PMID:15026471

Letrozole/Metformin(92/56) 2.148 15 NCT01589367

Letrozole/Celecoxib(92/48) 2.128 16 PMID:19254941

Letrozole/Imatinib(92/55) 1.765 40 NCT00338728
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Fig. 5. The comparison results of DrugComboRanker, CDA and RCM

in terms of the number of literature supports of the top-ranked 50 drug

combinations of lung adenocarcinoma with designated drugs, Gefitinib,

Paclitaxel and LY-294002
Fig. 6. The comparison results of DrugComboRanker, CDA and RCM

in terms of the number of literature supports of the top-ranked 50 drug

combinations of ER-positive breast cancer with designated drugs,

Tamoxifen and Letrozole

Fig. 7. Drug targets mapped on the disease signaling network. Red and green are the drug targets of Gefitinib and Paclitaxel, respectively
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Fig. 8. Drug targets mapped on the disease signaling network. Red and green are the drug targets of LY-294002 and Quercetin, respectively; blue nodes

are the weak effected targets of both drugs

Fig. 9. Drug targets mapped on the disease signaling network. Red and green are the drug targets of Gefitinib and Vorinostat, respectively
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biological processes, such as cell cycle, apoptosis and the hub
genes, i.e. EGFR, TP53, SRC, FOS, JUN. Distinctly the LY-
294002 and Quercetin combination affects the alternative
EGFR, PI3K-AKT and JAK-STAT3 pathways, as can be seen

in Figure 8. In addition, the drug combination, Gefitinib and
Celecoxib, targets the EGFR and COX-2 signaling pathways,
respectively. The Gefitinib and Celecoxib have distinct transcrip-

tional responses that indicate EGFR and COX-2 signaling path-
ways are complementary, and have cross talks. Another example
is Gefitinib and Vorinostat combination. Vorinostat is a Histone

deacetylases inhibitor, as shown in Figure 9, which interacts with
CTNNB1, and CTNNB1 interacts with E-cadherin, ERBB2 and
EGFR, whereas Gefitinib targets on EGFR. Thus, this combin-

ation forms a double inhibition on growth factors.

4 DISCUSSION AND CONCLUSION

Drug combinations can provide an optimal cancer therapeutic

treatment by overcoming acquired drug resistance. Clinicians
usually choose drug combinations manually based on their ex-
perience and expertise. However, this expert-picking-based
method cannot be scaled up for discovering drug combinations

from a large set of drugs. The availability of genomic profiles of
drugs and patients are informative for uncovering the regulatory
signaling networks of cancers and the mechanisms of action of

drugs. However, the computational tools are the bottleneck to
interpret and convert the big genomics data into discovery of
drug combinations. In this study, we propose a novel computa-

tional tool, DrugComboRanker, to prioritize drug combin-
ations for specific cancers by selecting combinations targeting
the alternative and complementary signaling modules of disease.
We first predict the functional targets of drugs via the network

community analysis of drug functional networks based on their
genomic profiles. We then define the synergistic score of drug
combinations that block key disease genes and their potential

cross talks. The new method can also provide insights into mech-
anism of actions of drug combinations by mapping the pre-
dicted drug targets on the disease signaling network. In our

case studies on lung adenocarcinoma and ER-positive breast
cancer cases, a set of top-ranked drug combinations, with similar
and distinct mechanisms of action, top-ranked in our predic-

tion list have been reported to be effective in anticancer treat-
ment. Moreover, a set of novel drug combinations are also
identified with a better anticancer treatment outcome. In conclu-
sion, the DrugComboRanker has the potential to be a widely

used software package for predicting new disease-specific drug
combinations.
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