The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Continual Learning by Using Information of Each Class Holistically

Wenpeng Hu'"", Qi Qin>*, Mengyu Wang®, Jinwen Ma', and Bing Liu*{
! Department of Information Science, School of Mathematical Sciences, Peking University
2 Center for Data Science, AAIS, Peking University
3 Wangxuan Institute of Computer Technology, Peking University
{wenpeng.hu, qinqi, wangmengyu, jwma, dcsliub} @pku.edu.cn

Abstract

Continual learning (CL) incrementally learns a sequence of
tasks while solving the catastrophic forgetting (CF) problem.
Existing methods mainly try to deal with CF directly. In this
paper, we propose to avoid CF by considering the features
of each class holistically rather than only the discriminative
information for classifying the classes seen so far. This latter
approach is prone to CF because the discriminative informa-
tion for old classes may not be sufficiently discriminative for
the new class to be learned. Consequently, in learning each
new task, the network parameters for previous tasks have to be
revised, which causes CF. With the holistic consideration, after
adding new tasks, the system can still do well for previous
tasks. The proposed technique is called Per-class Continual
Learning (PCL). PCL has two key novelties. (1) It proposes a
one-class learning based technique for CL, which considers
features of each class holistically and represents a new ap-
proach to solving the CL problem. (2) It proposes a method
to extract discriminative information after training to further
improve the accuracy. Empirical evaluation shows that PCL
markedly outperforms the state-of-the-art baselines for one or
more classes per task. More tasks also result in more gains.

1 Introduction

Continual learning (CL) of a sequence of tasks in a neural
network often suffers from catastrophic forgetting (CF) (Mc-
Closkey and Cohen 1989). CF means that in learning a new
task, the network parameters learned for old tasks have to
be modified, which can cause accuracy degrading for the
old tasks. There are two main CL scenarios: class continual
learning (CCL) and task continual learning (TCL), which are
also called class incremental learning and task incremental
leaning respectively. In both scenarios, each task consists of
a number of classes. Once a task is learned, its training data
(as least the bulk of it) is discarded or forgotten. In CCL, only
a single classifier is built for all classes seen so far, which is
used to classify each test case of any class without the task-id
provided. In TCL, each task builds a separate classifier. In
testing, each test case and its task-id are given so that the test

*Equal contribution

fCorresponding author. The work was done when Bing Liu was
at Peking University on leave of absence from University of Illinois
at Chicago, liub@uic.edu.
Copyright (© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

7797

case is classified only by the model of that task. This paper
works in the CCL scenario and also assumes after learning a
task, its training data is forgotten or no longer accessible in
subsequent learning. The inaccessibility of the old task data
could be due to many reasons, e.g., unrecorded legacy data,
proprietary data, and privacy concerns such as in federated
learning where the model can be shared from one party to
another but the data must be kept private (Zhang et al. 2020).

There are three main approaches to dealing with CF (Chen
and Liu 2018; Parisi et al. 2019). The first approach tries to
avoid modifying those important parameters learned for old
tasks in learning the new task (Kirkpatrick et al. 2017; Zenke,
Poole, and Ganguli 2017; Li and Hoiem 2017). The second
approach memorizes a small set of training data of each old
task and use them in learning the new task (replaying) (Lopez-
Paz and Ranzato 2017; Rusu et al. 2016; Rebuffi, Kolesnikov,
and Lampert 2017). The third approach builds data generators
to generate pseudo-examples for old tasks to be used used in
learning the new task (Shin et al. 2017; Kamra, Gupta, and
Liu 2017; Seff et al. 2017; Hu et al. 2019).

Before proposing our new approach, we first discuss a
major cause for CF. Existing CL techniques mainly take the
traditional approach of learning the discriminative informa-
tion among classes during training to classify the classes.
This approach is prone to CF because the discriminative
information learned for old classes (from old tasks) may
not be discriminative between the new classes and between
old classes and the new classes. Thus, in learning the new
classes, the network parameters for old classes have to be
revised, which causes CF. The first approach for dealing with
CF above tries to avoid revising those important parameters
learned for old tasks (although it should), which leads to sub-
optimal solutions. The second and third approaches both try
to revise the old parameters using a small amount of saved
old training examples or generated pseudo-examples.

Unlike the existing approaches, which deal with CF di-
rectly due to the above problem, this work proposes an en-
tirely different approach, called Per-class Continual Learning
(PCL), based on one-class learning, which aims to avoid CF
altogether. PCL makes two main contributions. First, it
proposes to use one-class learning for CCL. PCL learns one
class at a time (one class per task) considering the features of
the class holistically without overly biasing any specific fea-
tures. This is crucial because the system does not know what

new classes may come in the future. Any commitment is pre-
mature and subject to change later, which causes CF. With the
holistic consideration, each class can be identified naturally
without resorting to any information from other classes for
discrimination. This is achieved with the one-class loss in (Hu
et al. 2020), which has a novel regularization called H-reg
(holistic regularization). H-reg enables the learning algorithm
to fully consider the features of each class, i.e., not to overly
bias or favor any specific features. Sec. 3.4 extends PCL to
make it learn with multiple classes per task.

It is important to note that learning one class at a time is
probably the hardest case for CCL as it has the maximum
number of tasks. As the number of tasks increases, the accu-
racy often drops quickly. It is perhaps also the most common
case in practice because once a new class is encountered, we
want to learn it immediately rather than wait for a few new
classes to occur and learn them together. Thus, every CCL
system should be able to learn one class per task well.

Second, it proposes a method to extract discriminative
information after training for classification in testing by re-
ducing the shared knowledge among classes as the shared
knowledge blurs the decision boundary. This is useful be-
cause training each class separately is not ideal for classi-
fication, for which discriminative information is still more
effective. This operation is enabled by parameter transfer
from old classes to the new class in initialization, and it does
not change the trained models and thus does not cause CF as
the extraction is done after learning the new class.

PCL architecture consists of a pre-trained model or fea-
ture extractor (although it is not required) as the base and
classification heads for the classes learned so far, one head
per class. Due to the rich representation in the pre-trained
model, in learning a new class, the base stays unchanged
and only a new head is added and trained with the data of
the class. Using a pre-trained feature extractor has been very
popular in natural language processing (NLP). For example,
in the past two years, the NLP field has been transformed by
pre-trained models such as BERT (Devlin et al. 2019), and
ALBERT (Lan et al. 2020). With the success in NLP, pre-
trained features have also become very popular recently in
computer vision (Studer et al. 2019; Misra and Maaten 2020;
He et al. 2020). Note that PCL also outperforms baselines
without pre-trained feature extractors (see Sec. 4).

Experimental evaluation using 4 image classification and 2
text classification datasets show that PCL outperforms state-
of-the-art baselines with or without pre-trained feature ex-
tractor being used by PCL and the baselines with one or more
classes per task.

2 Related Work

Due to the need to revise the old discriminative informa-
tion when a new task/class is learned, existing approaches
deal with CF directly. Our PCL avoids CF by exploiting the
information in each class holistically using one-class learn-
ing. Although Progressive Networks also tries to avoid CF
by building independent models and then making connec-
tions among them (Rusu et al. 2016). Its network size scales
quadratically in the number of tasks. It cannot learn with one
class per task. Some methods also transfer knowledge to new

7798

tasks (e.g., (Schwarz et al. 2018; Fernando et al. 2017; Rusu
et al. 2016)) when the tasks similar, which is not the focus of
this paper. Below, we review the other existing approaches
(also see the surveys (Chen and Liu 2018; Parisi et al. 2019)).

Most techniques deal with CF by keeping the important
parameters for old tasks minimally changed to maintain the
old knowledge. For example, EWC (Kirkpatrick et al. 2017)
quantifies the importance of weights (parameters) to old tasks,
and selectively alters the learning rates of weights to protect
the important weights. Many papers dealing with CF use a
similar idea (Zenke, Poole, and Ganguli 2017; Fernando et al.
2017; Aljundi et al. 2017; Ritter, Botev, and Barber 2018; Xu
and Zhu 2018; Kemker and Kanan 2018; Parisi et al. 2018;
Dhar et al. 2019; Adel, Zhao, and Turner 2020).

Zeng et al. (2019) proposed to find orthogonal projections
of weight updates that do not disturb the weights of old tasks.
Knowledge distillation was used by LwF (Li and Hoiem
2017) and others (Wu et al. 2019; Castro et al. 2018; Be-
louadah and Popescu 2019; Liu et al. 2020; Lee et al. 2019;
Tao et al. 2020). PCL avoids CF and achieves better results.

Another body of work memorizes a small sample of the
training data of each old task. This is called experience replay.
Representative work includes GEM (Lopez-Paz and Ranzato
2017), A-GEM (Chaudhry et al. 2019), and many others
(Rusu et al. 2016; Rebuffi, Kolesnikov, and Lampert 2017;
Wu et al. 2019; Rolnick et al. 2019; de Masson d’ Autume
et al. 2019; Hou et al. 2019). Some methods also learn to
generate pseudo old data and use them to jointly train with
the new task data (Shin et al. 2017; Wu et al. 2018; Kamra,
Gupta, and Liu 2017; Seff et al. 2017; Hu et al. 2019; Lesort
et al. 2018; Ostapenko et al. 2019; Hayes et al. 2019) (also
known as rehearsal (von Oswald et al. 2020)). Our work does
not save any old data or build any data generators.

There is a body of work called class incremental learning
(CIL), which is basically another name for CCL. Like CCL,
most methods under CIL also learn multiple classes per task.
One typical approach is to memorize some exemplars of old
tasks to perform knowledge distillation (Wu et al. 2019; Cas-
tro et al. 2018; Liu et al. 2020; Lee et al. 2019; Belouadah
and Popescu 2019, 2020) to deal with CF. Another typical ap-
proach, which learns one class per task like PCL, memorizes
some random or selected exemplars or the mean of each class
to represent the class. In testing, a distance function over
nearest exemplar/class mean is used for classification (Re-
buffi, Kolesnikov, and Lampert 2017; Lee et al. 2018; Javed
and Shafait 2018; Bendale and Boult 2015). PCL does not
use any of the approaches or memorize any exemplars.

Some methods dynamically expand the network in learning
each new task (Li and Hoiem 2017; Yoon et al. 2018; Li et al.
2019; Ostapenko et al. 2019), which PCL also does, but our
addition is very small. Although many papers do not mention
network expansion, since they protect old parameters, as the
number of tasks increases the network has to be expanded.

This paper focuses on CCL. There are also many TCL
techniques (Fernando et al. 2017), e.g., GEM (Lopez-Paz and
Ranzato 2017), A-GEM (Chaudhry et al. 2019), HAT (Serra
et al. 2018), UCL (Ahn et al. 2019) and CAT (Ke, Liu, and
Huang 2020). CAT is able to perform knowledge transfer.
Some applications in sentiment analysis have been reported

Incrementally
adding tasks

Extracted Head 1
Features & fo(xy)
Feature Extractor: JOES
WRN for Cifar10; :
Bert for DBPedia > Head n
T ﬁ fo,(xf) P
Jo,\Xf arameter
% > Transfer
Xf ﬁ Head n+1
Ty (xp)

Figure 1: PCL architecture. Each class has a separate head.

in (Ke et al. 2020; Qin, Hu, and Liu 2020), which focus on
knowledge transfer. There is also a less frequently used CL
setting (Lv et al. 2019; van de Ven and Tolias 2019), which
is like TCL but the task-id is not provided during testing.

Since PCL learns one class at a time, it is related to one-
class learning (Scholkopf et al. 2001; Tax and Duin 2004;
Hu et al. 2020; Perera, Nallapati, and Xiang 2019; Ruff et al.
2018). PCL mainly uses the one-class classification method
in (Hu et al. 2020). However, one-class learning does not
learn a sequence of tasks or deal with CF. For CL, significant
changes need to be made to one-class learning.

Traditional lifelong learning methods are also related (Ru-
volo and Eaton 2013; Chen and Liu 2014; Benavides-Prado,
Koh, and Riddle 2020). However, they do not deal with CF.

3 Proposed PCL Model

The proposed PCL architecture is shown in Fig. 1, which
consists of a pre-trained Feature Extractor shared by all tasks
or classes, and Class Heads following it, one head for each
class learned so far. In our experiments, the same pre-trained
feature extractors are used for all baselines, and PCL also
outperforms baselines without pre-trained feature extractors.
Below, we first present learning with one class per task and
then extends it to learning with multiple classes per task.
Formally, we denote the head for each class C; as f¢, ().
Each head is an independent network with a simple structure
(a two-layer MLP with a single output unit following (Zeng
et al. 2019; Hu et al. 2019) and a small number of parameters
which ensures that adding new tasks will not lead to a huge
model. In testing, given a test instance x, we choose the head
that gets the highest f¢, (+) output value as the class of x, i.e.,

y = argmax(fe, (xr),-.., fon (x1)]- €]

where N is the total number of classes learned so far; x; de-
notes the feature obtained by the pre-trained feature extractor:
xy = F(x). x denotes the input data.

PCL has three key advantages: (1) it is easy to expand the
network capacity. As the number of classes (or tasks) increase,
we can simply add a separate head for each new class, which
is very small in size as we will see later; (2) as PCL exploits
features holistically based on one-class learning, it enables
the system to avoid CF as no modification or change to the
shared feature extractor or the old models (heads) is needed
when learning a new class; (3) PCL outperforms baselines
with or without pre-trained feature extractors. To make the
architecture work effectively, we use a novel loss function
called one-class loss, which has been used in (Hu et al. 2020)
for one-class learning. We discuss it next.

7799

3.1 One-class Loss
In learning each class C}, the one-class loss is:

L= E_[-log(S(fe,(x)NI+A- E_ [[Vxfe,(x)]z

x~Py?

(@5

x~ Pyt

NLL H-reg

where P$ denotes the data distribution of class C;. The input
data can be the extracted features x ; using pre-trained feature
extractor or the original data x. To simplify the notation, we
use x to denote both. x is also normalized, x := x/||x||2, in
our experiments. Exponent n and A are hyper-parameters
controlling the strength of the penalty and balancing the
regularization respectively. S(-) is the Sigmoid function,
and S(fc;(x)) € (0, 1) can be seen as the probability of x
belonging to C;. We now explain the two terms in Eq. (2).

NLL (Negative Log Likelihood for one-class). Minimiz-
ing NLL means to train the model f¢,(-) to output high
values for the training data of the class, which, according to
PCL’s decision rule in Eq. (1), helps recognize instances from
class C; in testing. However, since we have only one class of
data, only optimizing NLL leads to two major problems.

Problem-1 (incomparable outputs for fc,(x)). The magni-
tudes of the parameter values cannot be controlled, which are
sensitive to the input data. This can cause the final outputs
fe, (x) to be arbitrary and uncontrollable for different classes
and make fc, (x) values for different classes not comparable,
but comparability is very important for classification decision
making of PCL (see Eq. (1)). This leads to poor accuracy
results as we will see in Sec. 4.5.

Problem-11 (feature bias). Features (or dimensions) of the
input data with high values are very likely to be emphasized
by the classification head and their related parameters are
likely to have very high values. But those features with high
values may not be important features for recognizing the
correct class of the input instance, which can lead to low
accuracy. This problem is due to the fact that we don’t have
other classes to compare with in order to identify the impor-
tant or discriminative features.

Holistic regularization (H-reg).' H-reg aims to solve the
above two problems. For Problem-1, assume the head C; is a
two-layer MLP with a single output unit (which is the case in
PCL) and o (-) is the activation function. Then, we can show
fe,(x) = wa-o(wix), where wy and wo are the parameters
of the first and second layer respectively. Thus, we have:

E IVxfe,(x)|z = E. [W2 - Ve xo(wix) - wi)3.

x~Py?
(3)
The exact expression depends on the activation function. For
ReLU (used in PCL), the elements in Vy,, xo(W1x) are either
1 (ReLU(w1x) > 0) or 0 (ReLU(w;x) < 0). Let us first
consider Vy, xo(w1x) = 1 for all elements. We have:

x~ Pyt

E_NVxfe;(x)lz = [[w2 - w3

x~ Pyt

@

Clearly, H-reg can constrain the arbitrary growth of w; and
wo parameter values and consequently the arbitrary growth

"H-reg has some resemblance to L2 regularization. We will see
L2 is significant poorer in Sec. 4.

and magnitudes of f¢, () for different classes because the
arbitrary growth of the parameter values will lead to high
penalties on H-reg and thus high losses, i.e., a trade-off be-
tween NLL and H-reg. Specifically, a high parameter value
leads to a high fc, (+) and thus a low NLL, but a high value for
H-reg. Therefore, the training goal of the one-class loss is to
find a point where f¢, (-) outputs a value as high as possible
under the condition of having parameters with values as small
as possible. Equivalently, it is to achieve Sigmoid(fc;(-))
close to 1 while f¢,(-) as small as possible. This is achiev-
able as Sigmoid(fc,(-)) flattens out after f¢,(-) reaches a
certain value. Since we do this in learning every class and
also due to the input normalization x := x/||x||2, H-reg can
bring fc, (+) values for different classes to a comparable level
(a kind of calibration), which solves Problem-1 above.

When V., x0(wix) = 1 for all elements is not true, the
0 valued elements in it simply block some neurons/units,
which we can ignore because the blocked neurons have no
contributions to the final f¢,(-) output. Note that we suggest
using piecewise linear function as the activation function,
e.g., ReLU and Leaky-ReLU, as both Sigmoid and Tanh are
too flat for high input values. Take Sigmoid as an example,
Vwix0(W1x) = o(w1x)(1 — o(wix)). If wy is already bi-
ased (with high values), the regularization tends to be blocked
as we are likely to get O for the right-hand-side.

For Problem-11, as we know, the derivative Vy f¢,(x)
shows the importance of each feature of x. The features
with large derivatives contribute more to the final output as
small changes in them can lead to large changes in the fc, (x)
outputs and they also give large values for H-reg, which is
undesirable for loss minimization. In this case, minimizing
H-reg can ease the problem that the output is dominated
by some specific features of the input x. We can reach this
conclusion using Eq. (4), the dimensions in wy - W corre-
sponding to the contributions of the same feature dimensions
of the input. In this case, the output will not be saturated
by a few features of the input due to the H-reg expressed as
the right-hand-side of Eq. (4). In addition to this, since the
L2-norm in Eq. (4) gives more penalties to the features with
high values and little penalty to the features with low values,
the parameter values will be more balanced.

3.2 Parameter Transfer in Initialization

Although H-reg has the effect of not biasing any input fea-
tures in learning each class, for classification, using discrim-
inative features is still more effective. We discuss how to
obtain such discriminative information for classification in
testing in Sec. 3.3. To achieve that goal, in training each new
class C};, the network parameters 6; of its model/head cannot
be initialized randomly without control because that will re-
sult in the parameters of different networks not in the same
parameter space and thus are not comparable.

We borrow a transfer learning technique, and make the
assumption of Gaussian distribution for neural networks pa-
rameters (Lee et al. 2017) to ease this problem. Specifically,
when learning a new class C;, we use the mean of the model
parameters from class 1 to ¢ — 1, i.e., u.;_;, to initialize 6;,
and L2-transfer in (Evgeniou and Pontil 2004; Kienzle and

7800

Chellapilla 2006) is also added to Eq. 2,
L= E_[-log(S(fe, ()] +X- E_

x~ Pyt x~ Py

Ve, (13

i

NLL H-reg

)
+1- |16: = piaall
where 7 is a hyper-parameter.

3.3 Discriminative Information Extraction (DIE)
for Classification in Testing

Since in training each class, we do not see the data of other
classes, models for different classes may learn some similar
knowledge as data of different classes may have some com-
monalities. Such commonalities blur the boundary between
different classes and make the classification challenging. For
classification in testing, we should reduce such commonal-
ities to obtain more discriminative information among the
classes learned so far for classification.

Inspired by (Lee et al. 2017, 2020), we propose a post-
processing step to eliminate the Shared Knowledge to reduce
their negative effects on classification in testing (no change
to training). Specifically, we assume that the posterior distri-
bution of the parameters is Gaussian ¢; = q(0;|u;, 2;) for
each class C;. We minimize the following local KL-distance
or the weighted sum of KL-divergence between each ¢; and
q1:~N (N is the total number of classes learned so far):2

N

,LL){:Na ETN = argmin Zal) KL(q7-||q1N) (6)
B1K-E1LN
where «; is the mixing ratio with Ef\;l o; = 1 (we use

1/N in our experiment). The optimal solution of the local
KL-distance is pif,y = Y., cij;. We take pif,y as the
shared knowledge among all the classes and use it to adjust
the original parameters of each model:
0; =0i — v pin ©)
where + is a small value, we set it to 0.1 in our experiments.
In testing, we use 0 as the parameters of the i'"
model/class rather than the original 6; in the network. How-
ever, 0; is not physically changed to 6}, but computed using
Eq. (7) when needed in testing. Note that 7. 5y can be easily
incrementally computed and maintained.

3.4 Learning with Multiple Classes Per Task

We now extend PCL to also learn with multiple classes per
task, i.e., task T = {Cy, - -+ , Cy1y, } with k; classes in the

task, t = 1+Zi;i k.. is the beginning of task j. For each task
T}, we first learn each class Cy 1), € T} as above, fc,,, (x),
and then use supervised learning with the cross-entropy as
the loss function to learn a model S;(-) € R¥i for all classes
in T}. In testing, for each test instance x, we first find the
class C7 with the highest probability from each task model
S;(x). Assume M tasks have been learned so far, the class y
for the test instance x is computed as follows,

y = argmax{on (), et (%) ®)

2Given a sequence of N classes, 1.y denotes an approximation
of the true posterior distribution p(6|C1, - - - , Cv) for the classes.

Training
Dataset Classes Test
Total Per class

MNIST 10 60,000 | 5,421-6,742 | 10,000
EMNIST-47 47 112,800 2,400 18,800
CIFARI10 10 50,000 5,000 10,000
CIFAR100 100 50,000 500 10,000
20news 20 11,314 377-600 7,532
DBPedia 14 560,000 40,000 70,000

Table 1: Datasets details

3.5 Number of Parameters

For the model of each class, a simple 2-layer MLP can al-
ready achieve good results. Each new class only expands the
network by the small MLP (see Sec. 4.1), i.e., about 0.0641M
parameters for each class for CIFAR10/CIFAR100 dataset.
For the case of learning with multiple classes per task, the
number of parameters is doubled, which is still very small.

4 Experiments

We now evaluate the proposed PCL technique (the code can
be found here®) and compare it with both classic and the
latest baselines with or without pre-trained feature extractors
in learning with one or more classes per task. To make the
comparison more complete, we also compare with the tradi-
tional nearest-mean approach that learns one class at a time
incrementally.

Experimental Datasets: We use four benchmark image
classification datasets and two text classification datasets
in our experiments: MNIST (LeCun, Cortes, and Burges
1998), EMNIST-47 (Cohen et al. 2017), CIFAR10 and CI-
FAR100 (Krizhevsky and Hinton 2009) for images; 20news
and DBPedia for text. Details of the datasets are given in
Table 1. For the setting of multiple classes per task, we form
tasks with k (k > 1) classes in each task. If the number of
remaining classes is less than k, we use them to form a task.

Compared Baselines: We use the following classic and
the latest state-of-the-art class continual learning (CCL) base-
lines. (1) EWC (Kirkpatrick et al. 2017) is a commonly
used baseline in most CL papers. (2) LwF (Li and Hoiem
2017) uses knowledge distillation to overcome forgetting. (3)
IMM (Lee et al. 2017) combines the sequentially trained
independent models for different tasks to perform all the
tasks in the sequence. (4) PGMA (Hu et al. 2019) adapts
the model to fit different data by parameter generation. (5)
RPSnet (Rajasegaran et al. 2019) progressively chooses op-
timal paths for each new task while encouraging parameter
sharing. This is the latest replay method that saves some
training examples from previous tasks. (6) OWM (Zeng et al.
2019) is based on the idea of orthogonal data projection and
has been shown to perform very well for a large number of
tasks. (7) HNET (von Oswald et al. 2020) is a latest method
that can work in the continual/incremental learning (CCL)
setting without memorizing/generating old data but only the
embeddings of old tasks. (8) PCL-L2 is PCL with its H-
reg replaced by the popular L2 regularization. See two more

3https://github.com/morning-dews/PCL

7801

baselines in Sec. 4.4 when we compare with the traditional
nearest-mean approach.

It is important to note that most CCL methods can work
with one or more classes per task because when new classes
(one or more) are added, training uses the same cross entropy
loss considering all classes without using the data of old
classes. For our baselines, LWF cannot as it incrementally
adds a new head for a new task with its own cross entropy
loss, which does not work for one class. We changed it to one
cross entropy for all classes like other baselines assuming
the system knows the total number of classes to learn. For
all baselines, we use the open source code released by their
authors except EWC as the original code was not released,
for which we use a popular third party code.*

Evaluation protocol: Following the existing CL evalua-
tion method, for each dataset, after all tasks are learned, we
test using the test sets of all tasks and report the average
accuracy over 5 runs.

4.1 Training Details

For a fair comparison, our PCL uses the same classification
model as the baselines. Specifically, following (Zeng et al.
2019; Hu et al. 2019), we use a MLP with two layers and a
single output unit as the classification model after the shared
feature extractor. As PCL and LwF grow the network with
the increase of the arriving tasks, given a sequence of N
tasks, assuming the size of the hidden layer for non-growth
methods is m, we set the hidden size of our method and LwF
for each task as m/N. The parameter size of all the methods
will be of the same magnitude after learning all tasks. We
fix m/N to 100.% For training, we use SGD with moment as
the optimizer (learning_rate = 0.1). We run each experiment
five times. For each run of PCL or a baseline, we execute
500 epochs and use the maximum accuracy as the final result
of the run. We report the average result of the five runs. For
text data, we use the TF-IDF vector of the top 2000 most
frequent words to represent a document. We discuss the use
of pre-training features later. Additionally, for 20news, we
removed the headers, footers and quotes as those parts have
explicit class label information.

Hyper-parameter Tuning: PCL has 3 parameters that
need tuning: A and n in H-reg (Sec. 3.1) and 7 for transfer
(Sec. 3.2). We randomly select 10% of the examples from
the training set of each dataset as the validation set to tune
the hyper-parameters. After that, we use the tuned hyper-
parameters to train the system over the whole training set.
Grid search is used in tuning. The tuning range for A is from
0 to 1 with step 0.1; n is from 1 to 20 with step 1; n is from 0
to 0.02 with step 0.0005. After tuning, we get the best hyper-
parameters of A = 0.5 and n = 12. For 7, different data have
different values, 0.001 for MNIST and EMNIST-47, 0.005
for CIFAR10 and DBPedia, 0.01 for CIFAR100 and 20news.

*https://github.com/moskomule/ewc.pytorch

>The model size for each class in PCL is [InputSize-100]-[100-
1], which is very small, e.g., 0.0641M for CIFAR10 and CIFAR100.
For OWM, the model size is [InputSize-100* N]-[100* N-N]. The
network sizes of PGMA and OWM are significantly larger than ours
as they also have additional peripheral modules. Note that reducing
the number m /N leads to worse results for both PCL and baselines.

Dataset w/o PTF | EWC | LwF | IMM | PGMA | RPSnet | OWM | PCL-L2 | PCL
MNIST (10 tasks) no 9.91 19.96 | 29.16 | 71.36 40.29 94.46 83.85 97.00
EMNIST-47 (47 tasks) no 2.13 459 | 18.69 | 10.13 10.08 77.45 51.38 80.05
CIFARI10 (10 tasks) yes 10.21 | 19.39 | 51.22 | 56.22 55.54 83.03 77.95 84.93
CIFAR100 (100 tasks) yes 2.93 6.25 | 1258 | 12.37 4.13 63.26 54.83 63.61
20news (20 tasks) no 4.98 5.61 5.00 11.37 8.32 52.02 49.01 54.37
DBPedia (14 tasks) yes 7.14 7.14 7.14 66.40 50.58 95.37 68.12 96.23
CIFARI10 (10 tasks) no 10.01 | 10.05 | 10.25 | 20.08 16.31 19.63 10.00 31.58
CIFAR100 (100 tasks) no 1.03 2.13 1.21 1.86 1.96 3.67 1.87 5.58
DBPedia (14 tasks) no 7.14 7.14 7.14 9.58 36.70 92.23 64.96 93.51

Table 2: Accuracy results for 1 class per task for PCL and all baselines except HNET as it does not work with one class per task.
Note that column “w/o PTF” denotes with/without using the shared pre-trained feature extractor for PCL and baselines.

4.2 Results for One Class Per Task

Pre-trained feature extractors: Pre-trained feature extrac-
tors have been frequently used in computer vision (Studer
et al. 2019; Misra and Maaten 2020) and natural language
processing (NLP) (Devlin et al. 2019). We now apply pre-
trained feature extractors to PCL and all baselines.

For CIFAR10 and CIFAR100, we pre-train a WRN model
to extract features with size 640 (Zagoruyko and Komodakis
2016) using ImageNet after manually removing classes from
ImageNet that are similar to those classes in CIFARIO or
CIFARI00. After removal, we are left with 771 ImageNet
classes. No pre-trained feature extractors for MNIST and
EMNIST-47 as a simple model already generates very good
results. For the DBPedia text, we use the BERT (Devlin et al.
2019) feature extractor (the feature size is 768). BERT was
not effective for 20news as it has too many symbols that have
no embeddings in BERT and the dataset also has very long
texts (maximum being over 15000). ‘w/o PTF’ in the table
means with or without using a pre-trained feature extractor.

The first block of results in Table 2 are the accuracy values
for learning with one class per task in the above setting. Each
experiment is done 5 times and the average accuracy of the 5
runs is reported for each dataset and each model. Note again
that when pre-trained feature extractor is used, it is used in
PCL and also in all baselines. From the first block of the
results in the table, we can make the following observations:

(1). Learning a large number of classes one by one is very
challenging for most methods, i.e., EWC, LwF, IMM, PGMA
and RPSnet. Results in this setting are not reported in their
papers, but about all class continual/incremental learning
methods can naturally learn with one class per task.

(2). OWM is the strongest baseline, but PCL significantly
outperforms it on all datasets with p-value < 0.01 on paired
t-test. PCL gets a 2.54 points improvement on MNIST, 2.60
points on EMNIST-47, 1.89 points on CIFAR10, 2.35 points
on 20news, and 1.28 points on DBPedia.

(3). PCL-L2 (PCL’s H-reg is replaced with L2 regulariza-
tion) does not do well for this setting (and nor for 2-class
per task below). One reason is that there is still a very high
E,.pc: [Vxfe, (x)||2, .., up to 5.11 on MNIST, but only
0.736 when optimizing H-reg, which shows that the output
of fe,(+) is sensitive to the input x. For example, Ax = 0.2
will lead to an output change of up to 1.02 which is much
higher than 0.147 for H-reg.

Without using a pre-trained feature extractor for CI-

7802

FAR10, CIFAR100 or DBPedia: The second block of of re-
sults in Table 2 gives the accuracy values of the three datasets.
We can observe that PCL again did much better, but all the
results (baselines and PCL) are very low except for DBPedia
of PCL. This shows that pre-trained feature extractors are
very useful. Without them, the accuracy is too low to be of
practical use. With pre-trained feature extractor, the perfor-
mances of PCL and the baselines are all greatly improved.
For PCL, the average accuracy improves from 31.58 to 84.93
on CIFAR10, and from 5.58 to 63.61 on CIFAR100. For
baselines, we can also see clear improvements.

4.3 Results for More Classes Per Task

We now report the accuracy results for more than one class
per task. Our main goal is to test every system’s performance
when the number of tasks is large, which is probably the
most important criterion for evaluating CL methods. PCL
uses the method in Sec. 3.4. As above, for MNIST, EMNIST-
47 and 20news, we still use the original data. Pre-trained
feature extractors are used by PCL and baselines only for
CIFAR10, CIFAR100, and DBPedia as using pre-trained
feature extractors produce better results for the systems.
Two classes per task. The results for two classes per task
are given in Table 3 except HNET. HNET achieves 95.30 on
MNIST which we could reproduce and is already poorer than
our PCL (97.20) but better than most baselines. However, its
accuracy drops quickly with more tasks. It gets only 25.42
on EMNIST-47, much worse than PCL (80.97) with 24 tasks.
Its CIFAR10 (51.02) and CIFAR100 (3.22, 50 tasks) are also
very poor, so are the two text data. We did a lot of tuning
on the authors’ code, but could not get better results. From
Table 3, we can see that on the datasets with a smaller number
of tasks, i.e., MNIST, CIFAR10 and DBPedia, RPSnet is the
strongest baseline, but for datasets with a large number of
tasks, RPSnet does poorly although it is a replay method.
OWM is still the strongest baseline overall. PCL consistently
outperforms all baselines. Note that learning multi-classes
per task can always be replaced by learning 1 class at a time.
Comparing the results of PCL in the 1 class setting (the first
block in Table 2) and baselines in 2 classes setting (Table 3),
we see that PCL’s 1 class results are already better than those
of the baselines’ 2 classes results except RPSnet on CIFAR10,
but RPSnet on a large number of tasks is quite weak.
Comparing the performance in this setting with the 1 class
per task setting of PCL, we see that PCL works better in

Model | MNIST | EMNIST-47 | CIFARI0 | CIFARI00 | 20news | DBPedia

(Number of tasks) | (5 tasks) | (24 tasks) | (5 tasks) | (50 tasks) | (10 tasks) | (7 tasks)
EWC (Kirkpatrick et al. 2017) 18.78 4.17 31.82 3.67 6.88 14.11
LwF (Li and Hoiem 2017) 52.35 17.19 57.61 23.33 26.25 69.82
IMM (Lee et al. 2017) 67.25 20.51 77.29 26.52 24.60 73.79
PGMA (Hu et al. 2019) 81.70 21.85 74.31 17.47 13.10 83.06
RPSnet (Rajasegaran et al. 2019) 96.16 32.97 85.37 25.27 44.99 96.21
OWM (Zeng et al. 2019) 91.62 71.68 83.36 57.70 49.92 94.79
PCL-L2 85.35 53.02 79.35 55.21 50.52 68.23
PCL 97.20 80.97 85.78 63.72 54.72 96.91

Table 3: Accuracy for 2 classes per task using pre-trained features for PCL and baselines except HNET (see the reason in text)

Model | EMNIST-47 | CIFAR100
(Number of tasks) | (10 tasks) | (20 tasks)
PGMA 17.80 29.63
RPSnet 74.82 51.44
OWM 58.00 49.16
PCL 81.21 63.90

Table 4: Accuracy for 5 classes per task using pre-trained
features for PCL and 3 top baselines using EMNIST-47 and
CIFAR100 as they have a large number of classes

this 2 classes per task setting. All baselines have improved
(including PCL-L2) too. This is because with 2 classes tradi-
tional supervised learning can be performed and the number
of tasks is halved. PCL does not improve as much because
its 1 class per task setting is already quite strong.

Five classes per task: We use EMNIST-47 and CIFAR100
to test 5 classes per task as they have a large number of
classes to form many tasks. We observe from Table 4 that
PCL outperforms all 3 top-performing baselines.

4.4 Comparing with the Nearest-Mean Approach

To be more complete, we also compare with two traditional
methods of class incremental learning based on nearest-
mean: iCaRL (Rebuffi, Kolesnikov, and Lampert 2017) and
the system in (Lee et al. 2018). Both save some examples or
the means of old classes. PCL and the baselines above save
no information of old classes. PCL outperforms them both.
iCaRL (Rebuffi, Kolesnikov, and Lampert 2017) finds the
nearest prototype over the mean of the saved exemplars per
class for classification. With pre-trained features, it achieves
82.56/69.23/40.35/43.29 and 92.70/74.87/68.28/45.75 in ac-
curacy for 1 class per task learning and 2 classes per task
learning on MNIST/EMNIST-47/CIFAR10/CIFAR100 re-
spectively, but the results of PCL are 97.0/80.5/84.93/63.61
and 97.20/80.97/85.78/63.72 respectively. iCaRL did very
poorly on the text data as it was not designed for text.

Lee et al. (2018) proposed a Mahalanobis distance-based
score using the saved means and a shared covariance for clas-
sification. Its continual learning code was not released. The
setup of this technique is very different. For comparison, we
follow its setup. For CIFAR100, it takes the first 50 classes
to do pre-training and then starts continual learning for the
rest of the 50 classes one by one. After each new class is

7803

Components MNIST EMNIST-47 | CIFARI0 CIFAR100
NLL 11.35 2.73 9.10 1.22
NLL + H-reg 89.58 68.72 82.80 59.10
NLL + H-reg + x-N 96.31 79.12 84.11 61.57
NLL + H-reg + x-N 97.00 80.05 84.93 63.61

+ DIE (PCL)

Table 5: Accuracy results of ablation study of PCL using MNIST,
EMNIST-47, CIFAR10 and CIFAR100. x-N: normalization of x,
and DIE: discriminative information extraction (Sec. 3.2 and 3.3)

learned, it computes the AUC (Area under the ROC Curve)
of the new class and draws a curve as the system learns the
51th class through the 100th class. Specifically, the AUCs of
their system go from 0.79 (51th task) to about 0.40 (100th
task), which are much lower than PCL’s results that go from
0.80 (51th task) to 0.75 (100th task). For CIFAR10, their sys-
tem used CIFAR100 for pre-training. After all 10 CIFAR10
classes are learned, it reported the average AUC score of
0.477, but PCL’s average AUC score is 0.627.

4.5 Ablation Study

We use MNIST, EMNIST-47, CIFAR10 and CIFAR100 (pre-
trained features are used for CIFAR10 and CIFAR100) with
one class per task for ablation study. Table 5 shows the results
of adding different components of PCL. We can see that all of
them are useful. H-reg is highly effective. It helps improve the
accuracy of PCL drastically, e.g., by 78.23 points for MNIST
and 73.70 points for CIFAR10. Data normalization also made
a big difference. Adding DIE (Discriminative Information
Extraction) enabled by parameter transfer (Sec. 3.2 and 3.3)
and improved the results further. More detailed analysis and
insights about the effect of H-reg, normalization and DIE as
well as error analysis are given in Appendix A.

5 Conclusion

This paper proposed a novel method, called PCL, for class
continual learning (CCL). It has two key novelties: using an
one-class learning for CCL, which can force the learning
algorithm to fully or holistically consider the features of
each class, i.e., not to bias/favor any specific features, and
(2) discriminative information extraction after training. PCL
learns with any number of classes per task, and it outperforms
the latest baselines using both image and text datasets. In our
future work, we plan to further improve the accuracy.

Acknowledgments

This work was supported in part by the National Key R&D
Program of China under grant 2018AAA0100205.

References

Adel, T.; Zhao, H.; and Turner, R. E. 2020. Continual Learn-
ing with Adaptive Weights (CLAW). ICLR .

Ahn, H.; Cha, S.; Lee, D.; and Moon, T. 2019. Uncertainty-
based Continual Learning with Adaptive Regularization. In
NeurIPS.

Aljundi, R.; Babiloni, F.; Elhoseiny, M.; Rohrbach, M.; and
Tuytelaars, T. 2017. Memory Aware Synapses: Learning
what (not) to forget. arXiv preprint arXiv:1711.09601 .

Belouadah, E.; and Popescu, A. 2019. IL2M: Class Incre-
mental Learning With Dual Memory. In ICCV.

Belouadah, E.; and Popescu, A. 2020. ScalL: Classifier
Weights Scaling for Class Incremental Learning. In The IEEE
Winter Conference on Applications of Computer Vision.

Benavides-Prado, D.; Koh, Y. S.; and Riddle, P. 2020. To-
wards Knowledgeable Supervised Lifelong Learning Sys-
tems. Journal of Artificial Intelligence Research 68.

Bendale, A.; and Boult, T. 2015. Towards open world recog-
nition. In CVPR, 1893-1902.

Castro, F. M.; Marin-Jiménez, M. J.; Guil, N.; Schmid, C.;

and Alahari, K. 2018. End-to-end incremental learning. In
ECCV, 233-248.

Chaudhry, A.; Ranzato, M.; Rohrbach, M.; and Elhoseiny, M.
2019. Efficient Lifelong Learning with A-GEM. In ICLR.

Chen, Z.; and Liu, B. 2014. Topic modeling using topics
from many domains, lifelong learning and big data. In /ICML.

Chen, Z.; and Liu, B. 2018. Lifelong Machine Learning.
Morgan & Claypool Publishers.

Cohen, G.; Afshar, S.; Tapson, J.; and van Schaik, A. 2017.
EMNIST: an extension of MNIST to handwritten letters.
http://arxiv.org/abs/1702.05373 .

de Masson d’ Autume, C.; Ruder, S.; Kong, L.; and Yogatama,
D. 2019. Episodic Memory in Lifelong Language Learning.
In NeurIPS.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of deep bidirectional transformers for
language understanding. In NAACL.

Dhar, P.; Singh, R. V.; Peng, K.; Wu, Z.; and Chellappa, R.
2019. Learning without Memorizing. In CVPR.

Evgeniou, T.; and Pontil, M. 2004. Regularized multi—task
learning. In KDD, 109-117.

Fernando, C.; Banarse, D.; Blundell, C.; Zwols, Y.; Ha, D.;
Rusu, A. A.; Pritzel, A.; and Wierstra, D. 2017. Pathnet:
Evolution channels gradient descent in super neural networks.
arXiv preprint arXiv:1701.08734 .

Hayes, T. L.; Kafle, K.; Shrestha, R.; Acharya, M.; and Kanan,
C. 2019. REMIND Your Neural Network to Prevent Catas-
trophic Forgetting. arXiv preprint arXiv:1910.02509 .

7804

He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. 2020.
Momentum Contrast for Unsupervised Visual Representation
Learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Hou, S.; Pan, X.; Loy, C. C.; Wang, Z.; and Lin, D. 2019.
Learning a unified classifier incrementally via rebalancing.
In CVPR, 831-839.

Hu, W.; Lin, Z.; Liu, B.; Tao, C.; Tao, Z.; Ma, J.; Zhao, D.;
and Yan, R. 2019. Overcoming Catastrophic Forgetting for
Continual Learning via Model Adaptation. In ICLR.

Hu, W.; Wang, M.; Qin, Q.; Ma, J.; and Liu, B. 2020. HRN:
A Holistic Approach to One Class Learning. Advances in
Neural Information Processing Systems (NeurIPS) 33.

Javed, K.; and Shafait, F. 2018. Revisiting distillation and
incremental classifier learning. In ACCV, 3—17. Springer.

Kamra, N.; Gupta, U.; and Liu, Y. 2017. Deep Genera-
tive Dual Memory Network for Continual Learning. arXiv
preprint arXiv:1710.10368 .

Ke, Z.; Liu, B.; and Huang, X. 2020. Continual Learning
of a Mixed Sequence of Similar and Dissimilar Tasks. In
NeurlPS.

Ke, Z.; Liu, B.; Wang, H.; and Shu, L. 2020. Continual Learn-
ing with Knowledge Transfer for Sentiment Classification.
In ECML-PKDD.

Kemker, R.; and Kanan, C. 2018. FearNet: Brain-Inspired
Model for Incremental Learning. In ICLR.

Kienzle, W.; and Chellapilla, K. 2006. Personalized handwrit-
ing recognition via biased regularization. In ICML, 457-464.

Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Des-
jardins, G.; Rusu, A. A.; and Others. 2017. Overcoming
catastrophic forgetting in neural networks. volume 114, 3521-
3526. National Acad Sciences.

Krizhevsky, A.; and Hinton, G. 2009. Learning multiple
layers of features from tiny images. Technical Report TR-
2009, University of Toronto, Toronto. .

Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; and
Soricut, R. 2020. ALBERT: A Lite BERT for Self-Supervised
Learning of Language Representations. In /CLR.

LeCun, Y.; Cortes, C.; and Burges, C. .
The MNIST database of handwritten
http://yann.lecun.com/exdb/mnist/ .

Lee, J.; Joo, D.; Hong, H. G.; and Kim, J. 2020. Residual
Continual Learning. arXiv preprint arXiv:2002.06774 .

Lee, K.; Lee, K.; Lee, H.; and Shin, J. 2018. A simple
unified framework for detecting out-of-distribution samples
and adversarial attacks. In NIPS, 7167-7177.

Lee, K.; Lee, K.; Shin, J.; and Lee, H. 2019. Overcoming
Catastrophic Forgetting with Unlabeled Data in the Wild. In
ICCV.

Lee, S.-W.; Kim, J.-H.; Jun, J.; Ha, J.-W.; and Zhang, B.-T.
2017. Overcoming catastrophic forgetting by incremental
moment matching. In NIPS, 4655-4665.

1998.
digits.

Lesort, T.; Caselles-Dupré, H.; Garcia-Ortiz, M.; Stoian, A.;
and Filliat, D. 2018. Generative Models from the perspective
of Continual Learning. https://arxiv.org/abs/1812.09111 .
Li, X.; Zhou, Y.; Wu, T.; Socher, R.; and Xiong, C. 2019.
Learn to Grow: A Continual Structure Learning Framework
for Overcoming Catastrophic Forgetting. In ICML.

Li, Z.; and Hoiem, D. 2017. Learning Without Forgetting.
PAMI 40(12): 2935-2947.

Liu, Y.; Liu, A.-A.; Su, Y.; Schiele, B.; and Sun, Q. 2020.
Mnemonics Training: Multi-Class Incremental Learning
without Forgetting. arXiv preprint arXiv:2002.10211 .
Lopez-Paz, D.; and Ranzato, M. 2017. Gradient Episodic
Memory for Continual Learning. In NIPS, 6470-6479.

Lv, G.; Wang, S.; Liu, B.; Chen, E.; and Zhang, K. 2019. Sen-
timent Classification by Leveraging the Shared Knowledge
from a Sequence of Domains. In DASFAA, 795-811.
McCloskey, M.; and Cohen, N. J. 1989. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In Psychology of learning & motiv., volume 24.
Misra, I.; and Maaten, L. v. d. 2020. Self-Supervised Learn-
ing of Pretext-Invariant Representations. In CVPR.
Ostapenko, O.; Puscas, M.; Klein, T.; Jahnichen, P.; and Nabi,
M. 2019. Learning to remember: A synaptic plasticity driven
framework for continual learning. In CVPR, 11321-11329.

Parisi, G. I.; Kemker, R.; Part, J. L.; Kanan, C.; and Wermter,
S. 2019. Continual lifelong learning with neural networks: A
review. Neural Networks .

Parisi, G. I.; Tani, J.; Weber, C.; and Wermter, S. 2018. Life-
long Learning of Spatiotemporal Representations with Dual-
Memory Recurrent Self-Organization. arXiv preprint .

Perera, P.; Nallapati, R.; and Xiang, B. 2019. OCGAN: One-

class Novelty Detection Using GANs with Constrained La-
tent Representations. In CVPR.

Qin, Q.; Hu, W.; and Liu, B. 2020. Using the Past Knowledge
to Improve Sentiment Classification. In EMNLP-findings.

Rajasegaran, J.; Hayat, M.; Khan, S.; Shahbaz, F.; and Shao,
K. L.2019. Random Path Selection for Incremental Learning.
In NeurIPS.

Rebuffi, S.-A.; Kolesnikov, A.; and Lampert, C. H. 2017.
iCaRL: Incremental classifier and representation learning. In
CVPR, 5533-5542.

Ritter, H.; Botev, A.; and Barber, D. 2018. Online struc-
tured laplace approximations for overcoming catastrophic
forgetting. In NIPS, 3738-3748.

Rolnick, D.; Ahuja, A.; Schwarz, J.; Lillicrap, T. P.; and
Wayne, G. 2019. Experience Replay for Continual Learning.
In NeurIPS.

Ruff, L.; Vandermeulen, R.; Goernitz, N.; Deecke, L.; Sid-
diqui, S. A.; Binder, A.; Miiller, E.; and Kloft, M. 2018. Deep
One-Class Classification. In ICML.

Rusu, A. A.; Rabinowitz, N. C.; Desjardins, G.; Soyer, H.;
Kirkpatrick, J.; Kavukcuoglu, K.; Pascanu, R.; and Had-

sell, R. 2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671 .

7805

Ruvolo, P,; and Eaton, E. 2013. ELLA: An efficient lifelong
learning algorithm. In ICML.

Schwarz, J.; Luketina, J.; Czarnecki, W. M.; Grabska-
Barwinska, A.; Teh, Y. W.; Pascanu, R.; and Hadsell, R. 2018.
Progress & Compress: A scalable framework for continual
learning. arXiv preprint arXiv:1805.06370 .

Scholkopf, B.; Platt, J. C.; Shawe-Taylor, J. C.; Smola, A. J.;
and Williamson, R. C. 2001. Estimating the support of a
high-dimensional distribution. In Neural Computation.
Seff, A.; Beatson, A.; Suo, D.; and Liu, H. 2017. Contin-
ual learning in generative adversarial nets. arXiv preprint
arXiv:1705.08395 .

Serra, J.; Suris, D.; Miron, M.; and Karatzoglou, A. 2018.
Overcoming catastrophic forgetting with hard attention to the
task. In ICML.

Shin, H.; Lee, J. K.; Kim, J.; and Kim, J. 2017. Continual
learning with deep generative replay. In NIPS, 2994-3003.

Studer, L.; Alberti, M.; Pondenkandath, V.; Goktepe, P.;
Kolonko, T.; Fischer, A.; Liwicki, M.; and Ingold, R. 2019.
A Comprehensive Study of ImageNet Pre-Training for His-
torical Document Image Analysis. arXiv:1905.09113 .

Tao, X.; Hong, X.; Chang, X.; and Gong, Y. 2020. Bi-
Objective Continual Learning: Learning’New’While Con-
solidating’Known’. In AAAI, 5989-5996.

Tax, D. M.; and Duin, R. P. 2004. Support vector data de-
scription. Machine Learning 54(1): 45-66.

van de Ven, G. M.; and Tolias, A. S. 2019. Three scenarios
for continual learning. https://arxiv.org/pdf/1904.07734.pdf .

von Oswald, J.; Henning, C.; Sacramento, J.; and Grewe, B. F.
2020. Continual learning with hypernetworks. /CLR .

Wu, C.; Herranz, L.; Liu, X.; van de Weijer, J.; Raducanu,
B.; et al. 2018. Memory replay GANs: Learning to generate
new categories without forgetting. In NIPS, 5962-5972.
Wu, Y.; Chen, Y.; Wang, L.; Ye, Y.; Liu, Z.; Guo, Y.; and Fu,
Y. 2019. Large Scale Incremental Learning. In CVPR.

Xu, J.; and Zhu, Z. 2018. Reinforced continual learning. In
NIPS, 899-908.

Yoon, J.; Yang, E.; Lee, J.; and Hwang, S. J. 2018. Lifelong
Learning with Dynamically Expandable Networks. In ICLR.
Zagoruyko, S.; and Komodakis, N. 2016. Wide residual
networks. arXiv preprint arXiv:1605.07146 .

Zeng, G.; Chen, Y.; Cui, B.; and Yu, S. 2019. Continuous
Learning of Context-dependent Processing in Neural Net-
works. Nature Machine Intelligence .

Zenke, F.; Poole, B.; and Ganguli, S. 2017. Continual learn-
ing through synaptic intelligence. In ICML, 3987-3995.

Zhang, J.; Zhang, J.; Ghosh, S.; Li, D.; Tasci, S.; Heck, L.;
Zhang, H.; and Kuo, C.-C. J. 2020. Class-incremental Learn-
ing via Deep Model Consolidation. In CVPR.

