
Pattern Recognition Letters 161 (2022) 130–136 

Contents lists available at ScienceDirect 

Pattern Recognition Letters 

journal homepage: www.elsevier.com/locate/patrec 

Attention Mechanism Based Mixture of Gaussian Processes 

Tao Li, Jinwen Ma 

∗

Department of Information Science, School of Mathematical Sciences and LMAM, Peking University, Beijing, 100871, China 

a r t i c l e i n f o 

Article history: 

Received 17 December 2021 

Revised 23 March 2022 

Accepted 8 August 2022 

Available online 10 August 2022 

Edited by: Jiwen Lu 

Keywords: 

Gaussian processes 

Attention 

Mixture model 

a b s t r a c t 

The mixture of Gaussian processes (MGP) is a powerful model, which is able to characterize data gen- 

erated by a general stochastic process. However, conventional MGPs assume the input variable obeys 

certain probabilistic distribution, thus cannot effectively handle the case where the input variable lies on 

a general manifold or a graph. In this paper, we first clarify the relationship between the MGP prediction 

strategy and the attention mechanism. Based on the attention mechanism, we further design two novel 

mixture models of Gaussian processes, which do not rely on probabilistic assumptions on the input do- 

main, thus overcoming the difficulty of extending MGP models to manifold or graph. Experimental results 

on real-world datasets demonstrate the effectiveness of the proposed methods. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Gaussian process (GP) [1] is the dominant non-parametric 

ayesian model to learn and infer over temporal data or uncertain 

unctions, which has been widely used in many fields. In the ma- 

hine learning community, a trained Gaussian process with zero 

ean function and commonly used covariance function is always 

tationary, thus a single Gaussian process cannot effectively model 

ultimodal data generated by a non-stationary source. To tackle 

his problem, the mixture of Gaussian processes (MGP) [2,3] has 

een proposed to enhance the model flexibility. Specifically, the 

enerative mixture of Gaussian processes has been thoroughly 

tudied in recent years [4–7] . We refer to these models as the con-

entional mixture of Gaussian processes. Usually, a conventional 

GP assumes the input variable obeys certain probabilistic distri- 

ution over the input domain. However, this assumption is only 

alid when the input variable lies in a Euclidean space because 

ost probabilistic distributions are defined on a Euclidean space 

or its subset). Although some probabilistic distributions on spe- 

ific manifolds have been investigated (such as the von-Mises dis- 

ribution on a circle), they are fairly complicated and highly de- 

end on the concrete definition of the underlying manifold. When 

he input variable lies on a general manifold or a graph, it would 

e difficult to assume that the input variable obeys certain proba- 

ilistic distribution. 

Attention mechanism [8] is one of the most popular research 

opics in machine learning and pattern recognition, which attempts 

o implement the action of selectively concentrating on a few rel- 
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vant things while ignoring others. As a flexible module, it has 

een widely used in natural language processing [9] , computer vi- 

ion [10] , graph neural networks [11] and so on. The basic idea of 

he attention mechanism is to concentrate on related information 

ased on similarity, which can be understood as a “soft” hash ta- 

le. Most recent research works embed the attention module into 

 large neural network structure, or develop novel attention mod- 

les based on traditional statistical learning methods. 

In this paper, we first propose to rethink MGP from the per- 

pective of attention mechanism, and we find that the prediction 

trategy of MGP can be regarded as an attention mechanism. This 

bservation inspires us to extend MGP to a general (Riemannian) 

anifold and graph as long as there is a well-defined similarity or 

istance function. We propose two novel mixture of Gaussian pro- 

esses models as show in Fig. 1 . The first one is the local mixture

f Gaussian processes (LMGP), which trains many Gaussian pro- 

esses locally and weight their predictions via the attention mech- 

nism. The second one is a clustering based mixture of Gaussian 

rocesses, which divides training samples into groups by cluster- 

ng method, then training a Gaussian process model within each 

roup and combining their predictions via attention mechanism. 

. Related Works 

The connection between traditional statistical learning methods 

nd the attention mechanism has been an active research area in 

ecent years. Gaussian distributions and Gaussian mixture models 

ave been utilized to design novel attention modules for specific 

asks, such as neural machine translation [12,13] , speech enhance- 

ent [14] , speech recognition [15] , image clustering [16] , scene 

ext recognition [17] and computer vision [18] . In these applica- 

https://doi.org/10.1016/j.patrec.2022.08.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2022.08.003&domain=pdf
mailto:li_tao@pku.edu.cn
mailto:jwma@math.pku.edu.cn
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Fig. 1. The illustration of LMGP and CMGP. 
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ions, domain knowledge can be effectively described by Gaus- 

ian distributions and Gaussian mixture models. Gaussian kernels 

lso play an important role in remodeling self-attention [19] . Gaus- 

ian process channel attention [20] models the correlations among 

he channels via GPs and further interprets the channel attention 

chemes in a probabilistic way. Most of these related works em- 

hasize on Gaussian distributions or Gaussian mixture models , while 

e emphasize on mixture of Gaussian processes . Besides, the main 

im of these related works is to develop more powerful attention 

odules or interpret the attention mechanism based on traditional 

tatistical learning methods, while we aim to understand MGPs 

rom the perspective of the attention mechanism and design novel 

GP models. 

. Preliminaries 

.1. Gaussian Processes and Mixture of Gaussian Processes 

In machine learning, a Gaussian process is defined by a mean 

unction μ(·) and a covariance function c(·, ·) . In practice, μ(·) is 

sually assumed to be 0, and c(·, ·; θ) is parameterized by θ. Given 

 dataset { (x i , y i ) } N i =1 
, Gaussian process regression assumes that

 = f (x ) , where f is a GP. The parameter θ is learned by maximiz-

ng the marginal likelihood log p({ y i } N i =1 
|{ x i } N i =1 

; θ) . When a new

nput x ∗ is given, the corresponding response y ∗ is predicted ac- 

ording to the conditional property of Gaussian distributions. The- 

retically, the learning procedure requires O(N 

3 ) complexity and 

he prediction procedure requires O(N 

2 ) complexity, which is pro- 

ibitively large for big data. 

In MGP, the data are assumed to be generated from K inde- 

endent GP components. First, latent indicators { z i } N i =1 
are gen- 

rated according to p(z i = k ) = πk . For those samples with z i =
 , the driven variables { x i | z i = k, i = 1 , · · · , N} are generated by a

aussian distribution N ( μk , �k ) , then the responses { y i | z i = k, i =
 , · · · , N} are generated by a Gaussian process with parameters θ . 
k 

131 
he learning procedure of MGP is challenging, and state-of-the- 

rt methods are based on the EM algorithm. Suppose the EM al- 

orithm iterates for T steps, the time complexity of learning an 

GP model using the hard-cut EM algorithm [4] is approximate 

(N 

3 T /K 

2 ) . 

The prediction strategy of MGP is more complicated than a sin- 

le Gaussian process. Given an input x ∗, we have 

p(y ∗| x ∗, { (x i , y i ) } N i =1 , { θl } K l=1 ) = 

K ∑ 

k =1 

p(z ∗ = k | x ∗, { (x i , y i ) } N i =1 , 

{ θl } K l=1 ) p(y ∗| x ∗, z ∗ = k, { (x i , y i ) } N i =1 , θk ) . (1) 

herefore, we need to predict the response in each GP component 

eparately, and weight the predictions with the posterior proba- 

ility that x ∗ belongs to the corresponding component. The time 

omplexity of prediction is approximate O(N 

2 /K) . 

.2. Attention Mechanism 

Consider a dictionary or a hash table { k 1 : v 1 , · · · , k K : v K }
here { k i } K i =1 

are keys while { v i } K i =1 
are corresponding values. 

iven a query q , we first determine whether q appears in the keys. 

f q ∈ { k 1 , · · · , k K } , say q = k i , then return the corresponding value

 i . Otherwise, the program raises an error. The attention mecha- 

ism can be considered as a “soft” hash table. When a query q 

s given, we first calculate the similarity sim (q, k i ) between q and 

ach k i , then return the weighted average of values: 

K 
 

i =1 

ω i v i where ω i = 

exp ( sim (q, k i )) ∑ K 
j=1 exp ( sim (q, k j )) 

. (2) 

ere, { ω i } K i =1 
are attention weights. The intuition behind this equa- 

ion is that if q and k i are similar, then ω i is relatively large, and

he importance of the corresponding value v i is high. 

The key of attention mechanism is the similarity function, 

hich directly determines attention weights. In deep learning, the 
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Fig. 2. The choice of K in LMGP influences the covered region. 
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1 See https://stats.stackexchange.com/questions/219655/k- nn- computational- 

complexity for a detailed discussion. 
imilarity between q and k i is usually defined as the cosine simi- 

arity after projecting them to a low-dimensional space by learn- 

ble linear transformations. If a distance function d(·, ·) is defined, 

e can also naturally define the similarity function by composing 

 decreasing function h with d, i.e. , sim (q, k i ) = h (d(q, k i )) . Specif-

cally, if sim (q, k i ) = βI (q = k i ) , then the attention mechanism de-

enerates to a dictionary as β → ∞ . 

The attention mechanism is similar to gating networks. How- 

ver, gating networks are usually learnable functions of inputs, and 

ating network based mixture of experts are learned by the EM al- 

orithm. The attention mechanism emphasizes more on the simi- 

arity between samples, and the pre-defined or learnable similarity 

unction encodes more prior knowledge. 

. Proposed Methods 

.1. Rethinking Mixture of Gaussian Processes From the Attention 

erspective 

We first point out that the prediction strategy of MGP can be 

egarded as an attention mechanism. Suppose the response pre- 

icted by the k -th Gaussian process component is y (k ) 
∗ , and the 

osterior probability that z ∗ = k is ω k , then Eq. (1) can be rewrit-

en as 
∑ K 

k =1 ω k y 
(k ) 
∗ , which has exactly the same form as Eq. (2) . In

act, in the prediction phase of MGP, we can consider a dictionary 

 Component 1 : y (1) 
∗ , · · · , Component K : y (K) 

∗ } , the final prediction

quals to the result of querying x ∗ in this dictionary with the at- 

ention mechanism. Here, the weight ω k is given by 

 k = 

πk | �k | −1 / 2 exp 

(
− 1 

2 
(x ∗ − μk ) T

 �−1 
k (x ∗ − μk ) 

)
∑ K 

l=1 πl | �l | −1 / 2 exp 

(
− 1 

2 
(x ∗ − μl ) T

 �−1 
l (x ∗ − μl ) 

) . (3) 

rom the attention perspective, Eq. (3) is equivalent to define the 

imilarity function as 

im (x ∗, Component k ) 

= log πk −
1 

2 

(x ∗ − μk ) T
 �−1 

k (x ∗ − μk ) −
1 

2 

log | �k | . (4) 

he key-point here is that Eq. (4) is totally determined by the 

robabilistic assumption on z → x . Since we assume that in the k -

h component inputs are subject to N ( μk , �k ) , the similarity be-

ween x ∗ and the k -th component is defined as the log probabil- 

ty that x ∗ comes from N ( μk , �k ) . There are some research works

21–24] that modify the probabilistic assumption on z → x , which 

oils down to change the definition of similarity function between 

 ∗ and components in the attention viewpoint. 

Furthermore, the attention perspective enables us to abandon 

robabilistic assumptions on z → x , as long as the similarity be- 

ween an input and a Gaussian process component is properly 

efined. Although imposing probabilistic assumptions on z → x 

akes the data generating process clear, it also has several draw- 

acks. First, learning parameters is challenging since the samples 

re correlated and there are exponentially many summations in 

he Q-function as indicated in [4,7] . Second, assuming z → x fol- 

ows certain distribution [4,22–24] is only valid for Euclidean data. 

f x lies on a manifold, we have to use distributions on manifolds, 

hich is fairly complicated. On the other hand, defining the simi- 

arity function between an input and a GP component is straight- 

orward and flexible. In the next subsections, we introduce two 

ovel mixtures of Gaussian processes based on the attention mech- 

nism. 

.2. Local Mixture of Gaussian Processes (LMGP) 

Conventional mixtures of Gaussian processes build the model 

n a top-down way: samples are divided into groups and in each 
132 
roup, the samples are generated by a Gaussian process. The lo- 

al mixture of Gaussian processes builds the model in a bottom-up 

ay, which is similar to locally weighted regression [25] . For each 

ample (x i , y i ) , we find its (K − 1) -nearest neighbors and train the

 -th GP on these K data points (including (x i , y i ) ). There are N such

ocal GPs in total. In the prediction phase, when a new input x ∗
s given, we naturally define the similarity between x ∗ and the i - 

h GP as sim (x ∗, Component i ) = −d 2 (x ∗, x i ) where d(·, ·) is a pre-

efined distance function. Suppose that the prediction of i -th GP is 

 

(i ) 
∗ , then the final prediction is 

N 
 

i =1 

ω i y 
(i ) 
∗ where ω i = 

exp ( sim (x ∗, Component i )) 
∑ N 

j=1 exp ( sim (x ∗, Component i )) 
. (5) 

ote that this model is applicable to non-Euclidean data ( i.e. , x lies

n a manifold or a graph) as long as the distance function d(·, ·) is
ell-defined, and we do not need to specify a probabilistic distri- 

ution on the input domain. 

The choice of K is important in practice. It is well-known that 

aussian processes quickly converge to the mean function in ex- 

rapolation. Suppose the inputs of the dataset used for training 

 -th GP is X i and conv (X i ) denotes the convex hull [26] of X i ,

t is possible that x ∗ / ∈ conv (X i ) for any i if K is too small. See

ig. 2 for example. As a criterion, we suggest to set K such that 

 

N 
i =1 

conv (X i ) = conv 
(
∪ 

N 
i =1 

X i 

)
. 

Suppose the time of calculating d(·, ·) for two inputs takes 

(P ) . For each sample, finding its (K − 1) -nearest neighbor re- 

uires O(N(P + K)) 1 , and training the GP takes O(K 

3 ) . Therefore,

he time complexity of learning an LMGP model is O(N 

2 (P + K) +
K 

3 ) , and the prediction complexity is O(N K 

2 + N P ) . Theoretically,

oth learning and prediction of LMGP are faster than GP and MGP. 

n practice, however, LMGP may be rather slow since iterating 

ver N samples training N Gaussian processes sequentially is time- 

onsuming due to implementation reasons, and the cost can be 

urther reduced by parallelization. 

If x ∗ is very far from x i , then the i -th GP is not important for

redicting y ∗. Approximately, we can first find L -nearest neighbors 

f x ∗ and replace the summation in Eq. (5) by these L -nearest 

eighbors. In this way, the prediction complexity is reduced to 

(LK 

2 + N(P + L )) . 

.3. Clustering Mixture of Gaussian Processes (CMGP) 

One drawback of LMGP is that we need to train far more GPs 

han conventional MGP. Although the training complexity of LMGP 

s theoretically less than conventional MGP, in practice it may take 

 longer time due to underlying implementation issues such as 

ectorization acceleration and caching. Besides, these GP compo- 

ents are heavily overlapped and thus redundant. Consider an ex- 

reme example, if K = N in LMGP, then we need to train GPs on 

he same data points for N times. 

https://stats.stackexchange.com/questions/219655/k-nn-computational-complexity
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Fig. 3. Detailed distributions of these datasets. 

a

t

T

s

f

a

i

i

5

b

t

s

m

 

a

p

G

s

b

c  

T

s

M

l

t

i

i

5

The clustering mixture of Gaussian processes is more similar to 

onventional MGP. The number of GP components K is pre-defined. 

e first cluster the samples into K groups using the k -medoids 

lgorithm, and the cluster label of i -th sample is denoted by z i .

hen in each cluster, we train a Gaussian process. Given a new in- 

ut x ∗, we define the similarity between x ∗ and the k -th GP as

im (x ∗, Component k ) = − min z i = k d 
2 (x ∗, x i ) where d(·, ·) is a pre-

efined distance function. The final prediction is given by the same 

ormula Eq. (5) as LMGP (with N replaced by K). 

Compared with conventional MGP models, one distinguishing 

eature of CMGP is we do not need to perform EM iterations until 

onvergence. The learning procedure is straightforward and easy: 

rst cluster the samples, then train GPs in each cluster separately. 

esides, CMGP is able to process non-Euclidean data provided that 

e can perform the clustering algorithm on the inputs. For the 

 -medoids clustering algorithm, this requirement is equivalent to 

e have a pre-defined distance function on the input domain. A 

ypical implementation of k -medoids clustering takes O(KN 

2 pT ) 

27,28] , where T is the number of iterations and calculating d(·, ·) 
s assumed to take O(p) . Training K Gaussian processes takes ap- 

roximately O(N 

3 /K 

2 ) , thus the total time complexity of train- 

ng a CMGP model is O(KN 

2 pT + N 

3 /K 

2 ) . As for prediction, cal-

ulating attention weights takes O(Np) , and obtaining predictions 

f K Gaussian process components needs O(N 

2 /K) , so the total 

ime complexity of prediction is O(N p + N 

2 /K) . Theoretically, the 

ime complexity of CMGP has no significant difference compared 

ith conventional MGP models. However, CMGP is usually faster 

n practice since it avoids tedious EM iterations. 

.4. Discussions and Remarks 

In the training process of LMGP and CMGP, GPs are inde- 

endently trained and they are not mixed together. However, in 

he prediction phase, separate predictions of GP components are 

ixed, thus we refer to them as mixture models. 

The proposed frameworks can be generalized in many aspects. 

or example, it is valid to consider other regression functions in- 

tead of GPs in each component. We choose to develop the the- 

ry with GPs because our initial motivation is to extend conven- 

ional MGP to the case that input variables lie on a general mani- 

old/graph. Compared with other regression techniques, covariance 

unctions of GPs can effectively utilize the structural information of 

he input domain (see Eq. (6) ), which is very suitable for the case

e considered. In addition, since GPs can be used for classification, 

MGP and CMGP can also be applied for classification too. 

. Experimental Results 

.1. Datasets and Experimental Settings 

We use the following datasets to evaluate the prediction perfor- 

ances of the proposed methods: 

• Berkeley Earth 2 [29] records monthly averaged temperature 

anomalies (unit: centigrade) from 1850 to recent at 1 ◦ × 1 ◦

latitude-longitude grid. In this experiment, we use the records 

of the first half-year of 2020, and we refer to these sub-datasets 

as 2020/1 to 2020/6, respectively. 
• Accessibility 3 [30] describes travel times (unit: hour) to major cities 

(cities of 50,0 0 0 or more people in year 20 0 0) with a resolution of

30 arc seconds. 
• Vegetation 4 records percent tree coverage rate at 30 arc seconds. 
2 http://berkeleyearth.org/data/ . 
3 https://forobs.jrc.ec.europa.eu/products/gam/index.php . 
4 https://globalmaps.github.io/ptc.html . Source: Geospatial Information Authority 

f Japan, Chiba University and collaborating organizations. 

m

M

(

a

m

133 
For Berkeley Earth datasets, we use the records at 10 ◦ × 10 ◦ grid 

s the training set, and for the Accessibility dataset and the Vege- 

ation dataset we use the records at 5 ◦ × 5 ◦ grid as the training set. 

he aim is to predict outputs at other 1 ◦ × 1 ◦ grids. This setting is 

imilar to statistical downscaling simulation in the geographic in- 

ormation system community. Invalid values are excluded. For ex- 

mple, travel times and percent tree coverage rates are only mean- 

ngful on dry land and islands. In summary, there are 648 train- 

ng samples and 64152 testing samples in Berkeley Earth datasets, 

99 training samples and 14480 testing samples in the Accessi- 

ility dataset, 301 training samples and 7388 testing samples in 

he Vegetation dataset. Detailed distributions of these datasets are 

hown in Fig. 3 . 

Besides LMGP and CMGP, we consider the following competing 

ethods in this experiment: 

(a) AVE: averaging the responses of all training samples. 

(b) 1-NN: 1-nearest neighbor regression. 

(c) SVR: support vector regression with Gaussian kernel. 

(d) NN: feedforward neural network with three hidden layers 

containing 10, 10, 5 units, respectively. 

(e) GP: a single Gaussian process. 

(f) MGP: a mixture of Gaussian processes. 

For MGP and CMGP, we set K = 2 . For LMGP, we set K = 128

s discussed in Section 4.2 . We postpone the sensitivity analysis of 

arameters until Section 5.3 . 

We use the squared exponential covariance function [1] in 

aussian processes. Specifically, given inputs x 1 and x 2 , the 

quared exponential covariance function calculates the covariance 

etween these two points by 

(x 1 , x 2 ; θ) = θ2 
1 exp (−θ2 

2 d X (x 1 , x 2 )) + θ2 
3 I (x 1 = x 2 ) . (6)

he equation above requires a pre-defined distance function d X . As 

tated in Section 4.3 and Section 4.2 , attention mechanism based 

GPs also require us to define the similarity function, or equiva- 

ently, the distance function. For geographic data, the spherical dis- 

ance (great-circle distance) is a natural choice for d X . For compar- 

son, we also consider d X to be the Euclidean distance for compar- 

son. 

.2. Performance Evaluation 

We report the results of these methods in Table 1 . The perfor- 

ances are evaluated by Rooted Mean Square Errors (RMSE) and 

ean Absolute Errors (MAE). We also record the running times 

including training and testing). For NN, MGP, CMGP, the results 

re affected by the randomness of initialization, so we run each 

ethod for 10 times and report the averaged results. 

http://berkeleyearth.org/data/
https://forobs.jrc.ec.europa.eu/products/gam/index.php
https://globalmaps.github.io/ptc.html
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Table 1 

Rooted Mean Squared Errors (RMSEs), Mean Absolute Errors (MAEs) and running times (in seconds) of proposed methods and competing methods on the Berkeley Earth 

2020/1-2020/6 datasets, the Accessibility dataset and the Vegetation dataset. 

Method d X Berkeley Earth 2020/1 Berkeley Earth 2020/2 Berkeley Earth 2020/3 Berkeley Earth 2020/4 

RMSE MAE time RMSE MAE time RMSE MAE time RMSE MAE time 

AVE - 1.3475 0.9285 0.07 2.0667 1.1952 0.00 2.3122 1.3928 0.00 1.8123 1.1310 0.00 

1-NN - 0.7771 0.4440 15.36 0.9753 0.5169 13.58 0.9601 0.5174 13.75 0.9340 0.4953 13.80 

SVR - 1.2421 0.8101 0.14 1.7934 1.0305 0.03 2.0354 1.1414 0.03 1.4696 0.9204 0.03 

NN - 0.9990 0.6764 0.96 1.3734 0.8583 0.51 1.3822 0.8897 0.63 1.1341 0.7314 0.69 

GP Euclidean 0.6785 0.4103 21.65 0.8327 0.4903 18.68 0.8168 0.4772 19.08 0.8077 0.4823 19.35 

Sphere 0.5906 0.3219 33.97 0.7350 0.3828 30.23 0.7680 0.4190 28.67 0.7483 0.4099 26.77 

MGP Euclidean 0.6865 0.4184 11.98 0.8440 0.4934 8.77 0.8846 0.4888 28.94 0.7963 0.4361 26.05 

Sphere 0.6036 0.3262 72.68 0.7669 0.4051 56.57 0.7801 0.4064 74.00 0.7506 0.4026 84.95 

CMGP Euclidean 0.6422 0.3774 11.18 0.8377 0.4931 4.80 0.7951 0.4500 6.81 0.7635 0.4352 7.24 

Sphere 0 . 5803 0 . 3082 40.31 0.7322 0.3795 37.46 0 . 7408 0 . 3767 38.21 0 . 7183 0 . 3698 39.33 

LMGP Euclidean 0.6333 0.3590 499.63 0.7772 0.4378 488.67 0.7808 0.4371 521.08 0.7723 0.4320 487.80 

Sphere 0.5883 0.3169 3424.55 0 . 7321 0 . 3790 3298.64 0.7409 0 . 3767 3242.84 0.7232 0.3756 3348.82 

Method d X Berkeley Earth 2020/5 Berkeley Earth 2020/6 Accessibility Vegetation 

RMSE MAE time RMSE MAE time RMSE MAE time RMSE MAE time 

AVE - 2.0251 1.5515 0.00 1.4950 1.0863 0.00 0.6595 0.4000 0.00 0.3463 0.3148 0.00 

1-NN - 0.9003 0.4921 13.84 0.6673 0.3935 13.64 0.2060 0.1339 3.38 0.3810 0.2592 1.21 

SVR - 1.4319 0.9319 10.56 1.1247 0.7468 0.02 0.4168 0.1847 0.09 0.3182 0.2510 0.04 

NN - 1.0127 0.6627 0.58 0.7148 0.4910 0.70 0.2579 0.1636 1.42 0.3144 0.2622 0.70 

GP Euclidean 0.8163 0.5584 13.70 0.5591 0.3825 18.22 0.2176 0.1341 13.83 0.3021 0.2536 1.30 

Sphere 0.6325 0.3427 22.57 0.5077 0.3003 22.34 0.2016 0.1200 16.62 0.2948 0.2487 3.20 

MGP Euclidean 0.7154 0.4486 8.84 0.5157 0.3149 6.09 0.2373 0.1379 14.47 0.3183 0.2751 3.18 

Sphere 0.6360 0.3474 73.02 0.4686 0.2765 68.33 0.2260 0.1288 22.17 0.2974 0.2505 23.74 

CMGP Euclidean 0.6988 0.4356 6.95 0.5386 0.3616 6.92 0.2039 0.1292 7.05 0.2952 0.2515 2.06 

Sphere 0 . 6243 0.3387 38.32 0 . 4568 0.2651 39.60 0.1928 0.1203 18.97 0 . 2937 0 . 2446 11.71 

LMGP Euclidean 0.6694 0.4054 525.27 0.5037 0.3065 500.11 0.1969 0.1262 708.07 0.3075 0.2649 124.59 

Sphere 0.6255 0 . 3357 3549.57 0.4569 0 . 2631 3312.25 0 . 1917 0 . 1194 1434.83 0.2950 0.2487 807.48 
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We have the following observations. First, the distance function 

ignificantly influences the performance. The squared exponential 

ovariance function with Euclidean distance wrongly describes the 

elationships between points. On the other hand, using spherical 

istance in the square exponential covariance function consistently 

elps to improve the performance, which demonstrates the impor- 

ance of choosing a proper distance function in Gaussian processes. 

econd, introducing a mixture structure does not necessarily im- 

rove the performance. On most datasets, we observe that MGP 

btains comparable results as GP. However, we cannot conclude 

hat mixture structure is useless since CMGP and LMGP outper- 

orm GP in most cases. Therefore, choosing a proper distance func- 

ion is important for mixture models, and the main reason that 

onventional MGP fails to gain performance improvement is that it 

gnores the non-Euclidean structure of the input domain. Third, we 

nd that the proposed methods consistently achieve the best per- 

ormance both in terms of RMSE and MAE, which demonstrates the 

ffectiveness of the proposed methods. The running times of LMGP 

re very long. The theoretical complexity of LMGP grows quadrati- 

ally with respect to the number of training points, it may be very 

low in practice due to implementation reasons. CMGP is usually 

aster than MGP because there is no iteration process in CMGP. Al- 

hough the structure of CMGP looks similar to MGP, CMGP often 

utperforms MGP even using the Euclidean distance function. The 

eason is that CMGP clusters the points merely based on the input, 

hile MGP determines the class labels in consideration of both in- 

ut and output. In practice, we find the boundary of clusters found 

y MGP has an irregular shape, while CMGP tends to divide all in- 

ut points according to the northern and southern hemispheres. 

We illustrate the prediction results of GP, MGP, LMGP and CMGP 

n 2020/6 in Fig. 4 . From Table 1 , we can see that LMGP and CMGP

chieve better performances than GP and MGP. Fig. 4 visualizes the 

ifferences among their prediction results and highlights some re- 

ions where the difference is significant. We observe that LMGP 

nd CMGP can obtain finer prediction results compared with GP 

nd MGP. 
i  
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.3. Sensitivity Analysis of Parameters 

For LMGP, we vary the parameter K in { 16 , 32 , 64 , 128 } and

lot the RMSE and MAE in Fig. 5 . The best performances are usu- 

lly achieved by K = 128 . When K = 64 , the results are compa-

able with the best results. The performances degenerate signifi- 

antly if we further decrease K. This observation is consistent with 

he discussion in Section 4.2 and Fig. 2 . However, if we further 

ncrease K, the overlap between two GP components may be too 

arge, and there may be too many redundant components. Besides, 

rom Table 1 we can see the time cost of LMGP with K = 128 is

igh. Therefore, we do not increase K and set K = 128 in our ex- 

eriments. 

For CMGP, we set the number of clusters K in { 2 , 3 , 5 , 7 } and

lot the RMSE and MAE in Fig. 6 . From Fig. 6 , we can see that

he performances of CMGP are not sensitive to the choice of K

hen K varies in a reasonable range. On Berkeley Earth datasets, 

he performances are comparable when K = 2 or 3, but tend to get 

lightly worse as we further increase K. However, on the Accessi- 

ility dataset and the Vegetation dataset, the results are marginally 

etter with larger K. The reason is the input regions do not cover 

he globe in these two datasets and exhibits a stronger clustering 

roperty as indicated in Fig. 7 . 

.4. Empirical Analysis on the Time Complexity of LMGP 

In this subsection, we empirically study the time complexity 

f LMGP. From the discussion in Section 4.2 , the training com- 

lexity of LMGP mainly depends on dataset size N and parame- 

er K, and the approximate testing complexity of LMGP mainly de- 

ends on parameters K, L . In Fig. 8 , we illustrate the relationship

etween time complexity of LMGP and these parameters. We use 

he non-linear function sin (x/ 20) + cos (x/ 10) + sin ( cos (x/ 30)) + 

os ( sin (x/ 40)) + exp (0 . 05 ∗ x/ 100) − x/ 200 to generate N ran-

om samples in [ −100 , 100] for training, where N varies 

n { 20 0 0 , 250 0 , 30 0 0 , 50 0 0 , 60 0 0 , 750 0 , 10 0 0 0 } . Then we vary
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Fig. 4. Prediction results of GP, MGP, LMGP and CMGP on 2020/6 

Fig. 5. Sensitivity analysis of LMGP with respect to K. 

Fig. 6. Sensitivity analysis of CMGP with respect to K. 

Fig. 7. Clustering results of the accessibility dataset and the Vegetation dataset. 
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Fig. 8. Time complexity of LMGP (in log scale). 
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in { 30 0 , 50 0 , 60 0 , 80 0 , 10 0 0 , 120 0 , 150 0 , 1750 , 20 0 0 } and L in

 1 , 3 , 5 , 10 , 30 , 50 , 20 0 0 } to investigate the running times of LMGP

nder various parameter settings. In the testing phase, we fix N = 

0 0 0 , so L = 20 0 0 means we use all Gaussian process components

o make prediction without approximation. 

For training, the theoretical complexity is O(N 

2 (p + K) + NK 

3 ) ,

hose dominating term grows quadratically with respect to N. 

owever, in practice, the coefficient of the linear term K 

3 is so 

arge that N 

2 (p + K) � NK 

3 , thus the dominating term is NK 

3 ,

hich grows linearly with respect to N and cubically with re- 

pect to K. In Fig. 8 (a), the slopes of these curves are approxi-

ately 1 in the log scale, which indicates that the practical train- 
135 
ng time of LMGP grows linearly with respect to N. In Fig. 8 (b),

he slopes of these curves are approximately 3 in the log scale, 

hich indicates that the practical training time of LMGP grows cu- 

ically with respect to K. The theoretical complexity for testing is 

(LK 

2 + N(p + L )) . Similarly, since K 

2 > N in our setting, the dom-

nating term is LK 

2 . From Fig. 8 (c) and 8 (d) we can also validate

he practical testing time of LMGP grows linearly with respect to 

 and quadratically with respect to K, especially when K and L are 

elatively large. 

.5. Shape Classification 

In this section, we conduct experiments on shape classification 

o show that CMGP and LMGP can also be applied for classifica- 

ion tasks. In shape classification, the input is the shape recorded 

y landmarks (pre-shapes), which can be transformed to complex 

ectors in the Kendall shape space [31] . Therefore, we use the met- 
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Table 2 

Classification accuracy and running time (in seconds) of the proposed methods and 

competing methods on the Apes dataset and the Mice dataset. 

MethodDataset Apes Mice 

Accuracy Time Accuracy Time 

k -NN ( k = 1 ) 74 . 47% 0.00 73 . 08% 0.00 

k -NN ( k = 3 ) 78 . 72% 0.00 73 . 08% 0.00 

k -NN ( k = 5 ) 78 . 72% 0.00 73 . 08% 0.00 

k -NN ( k = 10 ) 74 . 47% 0.00 69 . 23% 0.00 

SVM 70 . 21% 0.60 10 0 . 0 0% 0.04 

GP 78 . 72% 17.16 69 . 23% 6.68 

MGP ( K = 2 ) 23 . 40% 17.14 46 . 15% 8.50 

MGP ( K = 3 ) 19 . 15% 16.23 50 . 00% 11.43 

MGP ( K = 4 ) 21 . 28% 20.42 46 . 15% 12.59 

CMGP ( K = 2 ) 80 . 85% 19.57 76 . 92% 8.10 

CMGP ( K = 3 ) 78 . 72% 23.30 73 . 08% 11.24 

CMGP ( K = 4 ) 78 . 72% 26.36 73 . 08% 12.54 

LMGP ( K = 16 ) 74 . 47% 664.86 73 . 08% 168.75 

LMGP ( K = 32 ) 80 . 85% 840.93 76 . 92% 243.28 

LMGP ( K = 64 ) 82 . 98% 1269.32 - - 
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ic of the Kendall shape space to derive the distance function. We 

se the Apes dataset and the Mice dataset [31] . The Apes dataset 

ecords ape skull landmarks of 29 male and 30 female adult go- 

illas, 28 male and 26 female adult chimpanzees, and 30 male 

nd 24 female adult orangutans. We randomly choose 120 sam- 

les for training and the rest for testing. The Mice dataset records 

2 mouse vertebra landmarks, and the data have three categories: 

0 control, 23 large, 23 small. We randomly choose 50 samples for 

raining and the rest for testing. The results are reported in Table 2 .

e observe that the performances of MGP are very poor since it 

annot correctly describe the distribution of input variables in the 

endall shape space. However, CMGP and LMGP still achieve satis- 

ying results, and the performances are usually better than a single 

P. We do not claim the superiority of CMGP and LMGP over other 

ethods, since SVM obtains 100% accuracy on the Mice dataset. 

evertheless, CMGP and LMGP outperform a single GP by intro- 

ucing the mixture structure, and they are more flexible than con- 

entional MGPs. 

. Conclusion and Discussion 

In this paper, the attention mechanism offers a new perspec- 

ive to understand the mixture of Gaussian processes model. Fur- 

hermore, two novel mixture of Gaussian processes models (LMGP 

nd CMGP) have been proposed based on the attention mecha- 

ism. Unlike conventional MGP models, the proposed methods do 

ot require probabilistic assumptions on the inputs, thus it is ap- 

licable to non-Euclidean data. Experimental results on real-world 

atasets show that LMGP and CMGP are effective. In the future, 

t is interesting to explore the relationship between the attention 

echanism and other statistical learning methods. Besides, based 

n the attention mechanism, it is promising to design new types 

f MGP models according to specific application scenes. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

cknowledgement 

This work was supported by the National Key Research and De- 

elopment Program of China under grant 2018AAA0100205 . 
136 
eferences 

[1] C.K. Williams, C.E. Rasmussen, Gaussian processes for machine learning, vol- 

ume 2, MIT press Cambridge, MA, 2006 . 

[2] V. Tresp, Mixtures of gaussian processes, in: Advances in Neural Information 
Processing Systems, 2001, pp. 654–660 . 

[3] C.E. Rasmussen, Z. Ghahramani, Infinite mixtures of gaussian process experts, 
in: Advances in Neural Information Processing Systems, 2002, pp. 881–888 . 

[4] Z. Chen, J. Ma, Y. Zhou, A precise hard-cut em algorithm for mixtures of gaus-
sian processes, in: International Conference on Intelligent Computing, Springer, 

2014, pp. 68–75 . 

[5] T. Nguyen, E. Bonilla, Fast allocation of gaussian process experts, in: Interna- 
tional Conference on Machine Learning, 2014, pp. 145–153 . 

[6] C. Luo, S. Sun, Variational mixtures of gaussian processes for classification, in: 
International Joint Conference on Artificial Intelligence, 2017, pp. 4603–4609 . 

[7] D. Wu, J. Ma, An effective em algorithm for mixtures of gaussian processes via 
the mcmc sampling and approximation, Neurocomputing 331 (2019) 366–374 . 

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, 
I. Polosukhin, Attention is all you need, in: Advances in Neural Information 

Processing Systems, 2017, pp. 5998–6008 . 

[9] J.D.M.-W.C. Kenton, L.K. Toutanova, Bert: Pre-training of deep bidirectional 
transformers for language understanding, in: Proceedings of NAACL-HLT, 2019, 

pp. 4171–4186 . 
[10] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, 

M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image is worth 16x16
words: Transformers for image recognition at scale, in: International Confer- 

ence on Learning Representations, 2020 . 

[11] P. Veli ̌ckovi ́c, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio, Graph at-
tention networks, in: International Conference on Learning Representations, 

2018 . 
12] W. You, S. Sun, M. Iyyer, Hard-Coded Gaussian Attention for Neural Machine 

Translation, in: Proceedings of the 58th Annual Meeting of the Association for 
Computational Linguistics, 2020, pp. 7689–7700 . 

[13] S. Zhang, Y. Feng, Modeling Concentrated Cross-Attention for Neural Machine 

Translation with Gaussian Mixture Model, in: Findings of the Association for 
Computational Linguistics: EMNLP 2021, 2021, pp. 1401–1411 . 

[14] J. Kim, M. El-Khamy, J. Lee, T-gsa: Transformer with gaussian-weighted self- 
-attention for speech enhancement, in: ICASSP 2020-2020 IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2020, 
pp. 6649–6653 . 

[15] Y. Kashiwagi, E. Tsunoo, S. Watanabe, Gaussian kernelized self-attention for 

long sequence data and its application to ctc-based speech recognition, in: 
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Sig- 

nal Processing (ICASSP), IEEE, 2021, pp. 6214–6218 . 
[16] C. Niu, J. Zhang, G. Wang, J. Liang, Gatcluster: Self-supervised gaussian-atten- 

tion network for image clustering, in: European Conference on Computer Vi- 
sion, Springer, 2020, pp. 735–751 . 

[17] Z. Qiao, X. Qin, Y. Zhou, F. Yang, W. Wang, Gaussian constrained attention net- 

work for scene text recognition, in: 2020 25th International Conference on Pat- 
tern Recognition (ICPR), IEEE, 2021, pp. 3328–3335 . 

[18] D. Ruan, D. Wang, Y. Zheng, N. Zheng, M. Zheng, Gaussian Context Transformer, 
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, 2021, pp. 15129–15138 . 
[19] Y. Chen, Q. Zeng, H. Ji, Y. Yang, Skyformer: Remodel Self-Attention with Gaus- 

sian Kernel and Nystr \ ” om Method, Advances in Neural Information Process- 

ing Systems 34 (2021) . 
20] J. Xie, Z. Ma, D. Chang, G. Zhang, J. Guo, GPCA: A probabilistic framework for

gaussian process embedded channel attention, IEEE Transactions on Pattern 
Analysis and Machine Intelligence (2021) . 

21] C. Yuan, C. Neubauer, Variational mixture of gaussian process experts, in: Ad- 
vances in Neural Information Processing Systems, 2009, pp. 1897–1904 . 

22] L. Zhao, J. Ma, A specialized probability density function for the input of mix- 
ture of gaussian processes, in: International Conference on Intelligence Science, 

Springer, 2018, pp. 70–80 . 

23] X. Li, T. Li, J. Ma, The un ν-hardcut em algorithm for non-central student-t mix-
tures of gaussian processes, in: 2020 15th IEEE International Conference on 

Signal Processing, volume 1, IEEE, 2020, pp. 289–294 . 
24] X. Guo, X. Li, J. Ma, Variational em algorithm for student- t mixtures of gaus-

sian processes, in: International Conference on Intelligent Computing, Springer, 
2021, pp. 552–563 . 

25] W.S. Cleveland, S.J. Devlin, Locally weighted regression: an approach to regres- 

sion analysis by local fitting, Journal of the American statistical association 83 
(403) (1988) 596–610 . 

26] R.T. Rockafellar, Convex analysis, volume 28, Princeton university press, 1970 . 
27] H.-S. Park, C.-H. Jun, A simple and fast algorithm for k-medoids clustering, Ex- 

pert Systems with Applications 36 (2) (2009) 3336–3341 . 
28] E. Schubert, P.J. Rousseeuw, Faster k-medoids clustering: improving the pam, 

clara, and clarans algorithms, in: International Conference on Similarity Search 

and Applications, Springer, 2019, pp. 171–187 . 
29] R.A. Rohde, Z. Hausfather, The Berkeley Earth land/ocean temperature record, 

Earth System Science Data 12 (4) (2020) 3469–3479 . 
30] H. Uchida, A. Nelson, Agglomeration index: Towards a new measure of urban, 

concentration (2009) . 
31] I.L. Dryden, K.V. Mardia, Statistical shape analysis: with applications in R, vol- 

ume 995, John Wiley & Sons, 2016 . 

https://doi.org/10.13039/501100013290
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0001
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0002
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0003
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0004
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0005
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0006
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0007
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0008
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0009
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0010
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0011
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0012
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0013
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0014
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0015
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0016
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0017
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0018
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0019
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0020
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0021
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0022
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0023
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0024
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0025
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0026
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0027
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0028
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0029
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0030
http://refhub.elsevier.com/S0167-8655(22)00241-0/sbref0031

	Attention Mechanism Based Mixture of Gaussian Processes
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Gaussian Processes and Mixture of Gaussian Processes
	3.2 Attention Mechanism

	4 Proposed Methods
	4.1 Rethinking Mixture of Gaussian Processes From the Attention Perspective
	4.2 Local Mixture of Gaussian Processes (LMGP)
	4.3 Clustering Mixture of Gaussian Processes (CMGP)
	4.4 Discussions and Remarks

	5 Experimental Results
	5.1 Datasets and Experimental Settings
	5.2 Performance Evaluation
	5.3 Sensitivity Analysis of Parameters
	5.4 Empirical Analysis on the Time Complexity of LMGP
	5.5 Shape Classification

	6 Conclusion and Discussion
	Declaration of Competing Interest
	Acknowledgement
	References


