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The mixture of Gaussian processes (MGP) is a powerful model, which is able to characterize data gen-
erated by a general stochastic process. However, conventional MGPs assume the input variable obeys
certain probabilistic distribution, thus cannot effectively handle the case where the input variable lies on
a general manifold or a graph. In this paper, we first clarify the relationship between the MGP prediction
strategy and the attention mechanism. Based on the attention mechanism, we further design two novel
mixture models of Gaussian processes, which do not rely on probabilistic assumptions on the input do-
main, thus overcoming the difficulty of extending MGP models to manifold or graph. Experimental results
on real-world datasets demonstrate the effectiveness of the proposed methods.
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1. Introduction

Gaussian process (GP) [1] is the dominant non-parametric
Bayesian model to learn and infer over temporal data or uncertain
functions, which has been widely used in many fields. In the ma-
chine learning community, a trained Gaussian process with zero
mean function and commonly used covariance function is always
stationary, thus a single Gaussian process cannot effectively model
multimodal data generated by a non-stationary source. To tackle
this problem, the mixture of Gaussian processes (MGP) [2,3] has
been proposed to enhance the model flexibility. Specifically, the
generative mixture of Gaussian processes has been thoroughly
studied in recent years [4-7]. We refer to these models as the con-
ventional mixture of Gaussian processes. Usually, a conventional
MGP assumes the input variable obeys certain probabilistic distri-
bution over the input domain. However, this assumption is only
valid when the input variable lies in a Euclidean space because
most probabilistic distributions are defined on a Euclidean space
(or its subset). Although some probabilistic distributions on spe-
cific manifolds have been investigated (such as the von-Mises dis-
tribution on a circle), they are fairly complicated and highly de-
pend on the concrete definition of the underlying manifold. When
the input variable lies on a general manifold or a graph, it would
be difficult to assume that the input variable obeys certain proba-
bilistic distribution.

Attention mechanism [8] is one of the most popular research
topics in machine learning and pattern recognition, which attempts
to implement the action of selectively concentrating on a few rel-
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evant things while ignoring others. As a flexible module, it has
been widely used in natural language processing [9], computer vi-
sion [10], graph neural networks [11] and so on. The basic idea of
the attention mechanism is to concentrate on related information
based on similarity, which can be understood as a “soft” hash ta-
ble. Most recent research works embed the attention module into
a large neural network structure, or develop novel attention mod-
ules based on traditional statistical learning methods.

In this paper, we first propose to rethink MGP from the per-
spective of attention mechanism, and we find that the prediction
strategy of MGP can be regarded as an attention mechanism. This
observation inspires us to extend MGP to a general (Riemannian)
manifold and graph as long as there is a well-defined similarity or
distance function. We propose two novel mixture of Gaussian pro-
cesses models as show in Fig. 1. The first one is the local mixture
of Gaussian processes (LMGP), which trains many Gaussian pro-
cesses locally and weight their predictions via the attention mech-
anism. The second one is a clustering based mixture of Gaussian
processes, which divides training samples into groups by cluster-
ing method, then training a Gaussian process model within each
group and combining their predictions via attention mechanism.

2. Related Works

The connection between traditional statistical learning methods
and the attention mechanism has been an active research area in
recent years. Gaussian distributions and Gaussian mixture models
have been utilized to design novel attention modules for specific
tasks, such as neural machine translation [12,13], speech enhance-
ment [14], speech recognition [15], image clustering [16], scene
text recognition [17] and computer vision [18]. In these applica-
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Fig. 1. The illustration of LMGP and CMGP.

tions, domain knowledge can be effectively described by Gaus-
sian distributions and Gaussian mixture models. Gaussian kernels
also play an important role in remodeling self-attention [19]. Gaus-
sian process channel attention [20] models the correlations among
the channels via GPs and further interprets the channel attention
schemes in a probabilistic way. Most of these related works em-
phasize on Gaussian distributions or Gaussian mixture models, while
we emphasize on mixture of Gaussian processes. Besides, the main
aim of these related works is to develop more powerful attention
modules or interpret the attention mechanism based on traditional
statistical learning methods, while we aim to understand MGPs
from the perspective of the attention mechanism and design novel
MGP models.

3. Preliminaries
3.1. Gaussian Processes and Mixture of Gaussian Processes

In machine learning, a Gaussian process is defined by a mean
function @ (-) and a covariance function c(-,-). In practice, u(-) is
usually assumed to be 0, and c(., -; #) is parameterized by 6. Given
a dataset {(x;, y,-)}f’: 1> Gaussian process regression assumes that
y = f(x), where f is a GP. The parameter @ is learned by maximiz-
ing the marginal likelihood log p({y;}¥, [{x;}} ;;#). When a new
input x, is given, the corresponding response y, is predicted ac-
cording to the conditional property of Gaussian distributions. The-
oretically, the learning procedure requires O(N3) complexity and
the prediction procedure requires ©(N?) complexity, which is pro-
hibitively large for big data.

In MGP, the data are assumed to be generated from K inde-
pendent GP components. First, latent indicators {z,-}f\’= , are gen-
erated according to p(z; = k) = . For those samples with z; =
k, the driven variables {x;|z; =k,i=1,..-,N} are generated by a
Gaussian distribution (g, ), then the responses {y;|z; = k,i=
1,---, N} are generated by a Gaussian process with parameters 6.
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The learning procedure of MGP is challenging, and state-of-the-
art methods are based on the EM algorithm. Suppose the EM al-
gorithm iterates for T steps, the time complexity of learning an
MGP model using the hard-cut EM algorithm [4] is approximate
O(N3T/K?).

The prediction strategy of MGP is more complicated than a sin-
gle Gaussian process. Given an input X,, we have

K
P A Y)Y O} = ZP(Z* = kix,, {(xi. y) Y4,
k=1
{01 f;)p(y*|x*,z* = k,{(xi,y,-)}ﬁl,ek). (1)
Therefore, we need to predict the response in each GP component
separately, and weight the predictions with the posterior proba-

bility that x, belongs to the corresponding component. The time
complexity of prediction is approximate O(N2/K).

3.2. Attention Mechanism

Consider a dictionary or a hash table {ky:vy,---, kg : vk}
where {k;}K are keys while {1;}K  are corresponding values.
Given a query g, we first determine whether q appears in the keys.
If qe{ky,---,kg}, say q = k;, then return the corresponding value
v;. Otherwise, the program raises an error. The attention mecha-
nism can be considered as a “soft” hash table. When a query g
is given, we first calculate the similarity sim(q, k;) between q and
each k;, then return the weighted average of values:

K
> wy; where ;=
i=1

exp(sim(q, k;))
Y\, exp(sim(q. k;))

Here, {w,-}f(= , are attention weights. The intuition behind this equa-
tion is that if q and k; are similar, then w; is relatively large, and
the importance of the corresponding value v; is high.

The key of attention mechanism is the similarity function,
which directly determines attention weights. In deep learning, the

(2)
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similarity between q and k; is usually defined as the cosine simi-
larity after projecting them to a low-dimensional space by learn-
able linear transformations. If a distance function d(., -) is defined,
we can also naturally define the similarity function by composing
a decreasing function h with d, i.e., sim(q, k;) = h(d(q, k;)). Specif-
ically, if sim(q, k;) = B1(q = k;), then the attention mechanism de-
generates to a dictionary as 8 — oc.

The attention mechanism is similar to gating networks. How-
ever, gating networks are usually learnable functions of inputs, and
gating network based mixture of experts are learned by the EM al-
gorithm. The attention mechanism emphasizes more on the simi-
larity between samples, and the pre-defined or learnable similarity
function encodes more prior knowledge.

4. Proposed Methods

4.1. Rethinking Mixture of Gaussian Processes From the Attention
Perspective

We first point out that the prediction strategy of MGP can be
regarded as an attention mechanism. Suppose the response pre-
dicted by the k-th Gaussian process component is yff). and the
posterior probability that z, = k is wy, then Eq. (1) can be rewrit-
ten as ZL{:] a)kyik), which has exactly the same form as Eq. (2). In
fact, in the prediction phase of MGP, we can consider a dictionary
{Component 1 :yil), ..., Component K : yg()}, the final prediction
equals to the result of querying x, in this dictionary with the at-
tention mechanism. Here, the weight w, is given by

B P exp (- - ) T (. — )
SR B2 exp (=3 (e — ) TE (% - )

From the attention perspective, Eq. (3) is equivalent to define the
similarity function as

(3)

Wy

sim(X,, Component k)

1 . 1
5 (% = ) TE (X, — ) — 5 log [Ty . (4)

The key-point here is that Eq. (4) is totally determined by the
probabilistic assumption on z — X. Since we assume that in the k-
th component inputs are subject to A (f, Xy), the similarity be-
tween X, and the k-th component is defined as the log probabil-
ity that x,, comes from N (g, X;). There are some research works
[21-24] that modify the probabilistic assumption on z — X, which
boils down to change the definition of similarity function between
X, and components in the attention viewpoint.

Furthermore, the attention perspective enables us to abandon
probabilistic assumptions on z — X, as long as the similarity be-
tween an input and a Gaussian process component is properly
defined. Although imposing probabilistic assumptions on z — X
makes the data generating process clear, it also has several draw-
backs. First, learning parameters is challenging since the samples
are correlated and there are exponentially many summations in
the Q-function as indicated in [4,7]. Second, assuming z — x fol-
lows certain distribution [4,22-24] is only valid for Euclidean data.
If x lies on a manifold, we have to use distributions on manifolds,
which is fairly complicated. On the other hand, defining the simi-
larity function between an input and a GP component is straight-
forward and flexible. In the next subsections, we introduce two
novel mixtures of Gaussian processes based on the attention mech-
anism.

= logm; —

4.2. Local Mixture of Gaussian Processes (LMGP)

Conventional mixtures of Gaussian processes build the model
in a top-down way: samples are divided into groups and in each
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Fig. 2. The choice of K in LMGP influences the covered region.

group, the samples are generated by a Gaussian process. The lo-
cal mixture of Gaussian processes builds the model in a bottom-up
way, which is similar to locally weighted regression [25]. For each
sample (x;,y;), we find its (K — 1)-nearest neighbors and train the
i-th GP on these K data points (including (x;, y;)). There are N such
local GPs in total. In the prediction phase, when a new input X,
is given, we naturally define the similarity between x, and the i-
th GP as sim(x,, Component i) = —d? (X, X;) where d(.,-) is a pre-
defined distance function. Suppose that the prediction of i-th GP is

y®, then the final prediction is

exp(sim(x,, Component i))
Y}, exp(sim(x,, Component i))

N
> wy? where w;=
i=1

Note that this model is applicable to non-Euclidean data (i.e., X lies
on a manifold or a graph) as long as the distance function d(., -) is
well-defined, and we do not need to specify a probabilistic distri-
bution on the input domain.

The choice of K is important in practice. It is well-known that
Gaussian processes quickly converge to the mean function in ex-
trapolation. Suppose the inputs of the dataset used for training
i-th GP is &; and conv(x;) denotes the convex hull [26] of A;,
it is possible that x, ¢ conv(X;) for any i if K is too small. See
Fig. 2 for example. As a criterion, we suggest to set K such that
UN  conv(;) = conv (Ul &)).

Suppose the time of calculating d(.,-) for two inputs takes
O(P). For each sample, finding its (K — 1)-nearest neighbor re-
quires O(N(P+K))!, and training the GP takes O (K3). Therefore,
the time complexity of learning an LMGP model is O(N2(P + K) +
NK3), and the prediction complexity is O(NK? + NP). Theoretically,
both learning and prediction of LMGP are faster than GP and MGP.
In practice, however, LMGP may be rather slow since iterating
over N samples training N Gaussian processes sequentially is time-
consuming due to implementation reasons, and the cost can be
further reduced by parallelization.

If x, is very far from x;, then the i-th GP is not important for
predicting y.. Approximately, we can first find L-nearest neighbors
of X, and replace the summation in Eq. (5) by these L-nearest
neighbors. In this way, the prediction complexity is reduced to
O(LK2 +N(P +1)).

4.3. Clustering Mixture of Gaussian Processes (CMGP)

One drawback of LMGP is that we need to train far more GPs
than conventional MGP. Although the training complexity of LMGP
is theoretically less than conventional MGP, in practice it may take
a longer time due to underlying implementation issues such as
vectorization acceleration and caching. Besides, these GP compo-
nents are heavily overlapped and thus redundant. Consider an ex-
treme example, if K =N in LMGP, then we need to train GPs on
the same data points for N times.

1 See https://stats.stackexchange.com/questions/219655/k-nn-computational-
complexity for a detailed discussion.


https://stats.stackexchange.com/questions/219655/k-nn-computational-complexity

T. Li and J. Ma

The clustering mixture of Gaussian processes is more similar to
conventional MGP. The number of GP components K is pre-defined.
We first cluster the samples into K groups using the k-medoids
algorithm, and the cluster label of i-th sample is denoted by z;.
Then in each cluster, we train a Gaussian process. Given a new in-
put x,, we define the similarity between x, and the k-th GP as
sim(x,, Component k) = —minzi:k d?(x,,x;) where d(-,-) is a pre-
defined distance function. The final prediction is given by the same
formula Eq. (5) as LMGP (with N replaced by K).

Compared with conventional MGP models, one distinguishing
feature of CMGP is we do not need to perform EM iterations until
convergence. The learning procedure is straightforward and easy:
first cluster the samples, then train GPs in each cluster separately.
Besides, CMGP is able to process non-Euclidean data provided that
we can perform the clustering algorithm on the inputs. For the
k-medoids clustering algorithm, this requirement is equivalent to
we have a pre-defined distance function on the input domain. A
typical implementation of k-medoids clustering takes O(KN2pT)
[27,28], where T is the number of iterations and calculating d(-, -)
is assumed to take O(p). Training K Gaussian processes takes ap-
proximately O(N3/K?), thus the total time complexity of train-
ing a CMGP model is O(KN?pT + N3/K?). As for prediction, cal-
culating attention weights takes O(Np), and obtaining predictions
of K Gaussian process components needs O(N2/K), so the total
time complexity of prediction is ©®(Np + N2/K). Theoretically, the
time complexity of CMGP has no significant difference compared
with conventional MGP models. However, CMGP is usually faster
in practice since it avoids tedious EM iterations.

4.4. Discussions and Remarks

In the training process of LMGP and CMGP, GPs are inde-
pendently trained and they are not mixed together. However, in
the prediction phase, separate predictions of GP components are
mixed, thus we refer to them as mixture models.

The proposed frameworks can be generalized in many aspects.
For example, it is valid to consider other regression functions in-
stead of GPs in each component. We choose to develop the the-
ory with GPs because our initial motivation is to extend conven-
tional MGP to the case that input variables lie on a general mani-
fold/graph. Compared with other regression techniques, covariance
functions of GPs can effectively utilize the structural information of
the input domain (see Eq. (6)), which is very suitable for the case
we considered. In addition, since GPs can be used for classification,
LMGP and CMGP can also be applied for classification too.

5. Experimental Results
5.1. Datasets and Experimental Settings

We use the following datasets to evaluate the prediction perfor-
mances of the proposed methods:

e Berkeley Earth? [29] records monthly averaged temperature
anomalies (unit: centigrade) from 1850 to recent at 1° x 1°
latitude-longitude grid. In this experiment, we use the records
of the first half-year of 2020, and we refer to these sub-datasets
as 2020/1 to 2020/6, respectively.

o Accessibility?[30] describes travel times (unit: hour) to major cities
(cities of 50,000 or more people in year 2000) with a resolution of
30 arc seconds.

« Vegetation* records percent tree coverage rate at 30 arc seconds.

2 http://berkeleyearth.org/data/.

3 https://forobs.jrc.ec.europa.eu/products/gam/index.php.

4 https://globalmaps.github.io/ptc.html. Source: Geospatial Information Authority
of Japan, Chiba University and collaborating organizations.
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Fig. 3. Detailed distributions of these datasets.

For Berkeley Earth datasets, we use the records at 10° x 10° grid
as the training set, and for the Accessibility dataset and the Vege-
tation dataset we use the records at 5° x 5° grid as the training set.
The aim is to predict outputs at other 1° x 1° grids. This setting is
similar to statistical downscaling simulation in the geographic in-
formation system community. Invalid values are excluded. For ex-
ample, travel times and percent tree coverage rates are only mean-
ingful on dry land and islands. In summary, there are 648 train-
ing samples and 64152 testing samples in Berkeley Earth datasets,
599 training samples and 14480 testing samples in the Accessi-
bility dataset, 301 training samples and 7388 testing samples in
the Vegetation dataset. Detailed distributions of these datasets are
shown in Fig. 3.

Besides LMGP and CMGP, we consider the following competing
methods in this experiment:

AVE: averaging the responses of all training samples.

1-NN: 1-nearest neighbor regression.

SVR: support vector regression with Gaussian kernel.

NN: feedforward neural network with three hidden layers
containing 10, 10, 5 units, respectively.

(e) GP: a single Gaussian process.

(f) MGP: a mixture of Gaussian processes.

For MGP and CMGP, we set K = 2. For LMGP, we set K = 128
as discussed in Section 4.2. We postpone the sensitivity analysis of
parameters until Section 5.3.

We use the squared exponential covariance function [1] in
Gaussian processes. Specifically, given inputs x; and X,, the
squared exponential covariance function calculates the covariance
between these two points by

(6)

The equation above requires a pre-defined distance function dy. As
stated in Section 4.3 and Section 4.2, attention mechanism based
MGPs also require us to define the similarity function, or equiva-
lently, the distance function. For geographic data, the spherical dis-
tance (great-circle distance) is a natural choice for dy. For compar-
ison, we also consider dy to be the Euclidean distance for compar-
ison.

(X1, X; 0) = 07 exp(—02dy (X1, X2)) + O21(X1 = Xy) .

5.2. Performance Evaluation

We report the results of these methods in Table 1. The perfor-
mances are evaluated by Rooted Mean Square Errors (RMSE) and
Mean Absolute Errors (MAE). We also record the running times
(including training and testing). For NN, MGP, CMGP, the results
are affected by the randomness of initialization, so we run each
method for 10 times and report the averaged results.
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Rooted Mean Squared Errors (RMSEs), Mean Absolute Errors (MAEs) and running times (in seconds) of proposed methods and competing methods on the Berkeley Earth

2020/1-2020/6 datasets, the Accessibility dataset and the Vegetation dataset.

Method dy Berkeley Earth 2020/1 Berkeley Earth 2020/2 Berkeley Earth 2020/3 Berkeley Earth 2020/4
RMSE MAE time RMSE MAE time RMSE MAE time RMSE MAE time
AVE - 1.3475 0.9285 0.07 2.0667 1.1952 0.00 2.3122 1.3928 0.00 1.8123 1.1310 0.00
1-NN - 0.7771 0.4440 15.36 0.9753 0.5169 13.58 0.9601 0.5174 13.75 0.9340 0.4953 13.80
SVR - 1.2421 0.8101 0.14 1.7934 1.0305 0.03 2.0354 1.1414 0.03 1.4696 0.9204 0.03
NN - 0.9990 0.6764 0.96 1.3734 0.8583 0.51 1.3822 0.8897 0.63 1.1341 0.7314 0.69
GP Euclidean 0.6785 0.4103 21.65 0.8327 0.4903 18.68 0.8168 0.4772 19.08 0.8077 0.4823 19.35
Sphere 0.5906 0.3219 33.97 0.7350 0.3828 30.23 0.7680 0.4190 28.67 0.7483 0.4099 26.77
MGP Euclidean 0.6865 0.4184 11.98 0.8440 0.4934 8.77 0.8846 0.4888 28.94 0.7963 0.4361 26.05
Sphere 0.6036 0.3262 72.68 0.7669 0.4051 56.57 0.7801 0.4064 74.00 0.7506 0.4026 84.95
CMGP Euclidean 0.6422 0.3774 11.18 0.8377 0.4931 4.80 0.7951 0.4500 6.81 0.7635 0.4352 7.24
Sphere 0.5803 0.3082 40.31 0.7322 0.3795 37.46 0.7408 0.3767 38.21 0.7183 0.3698 39.33
LMGP Euclidean 0.6333 0.3590 499.63 0.7772 0.4378 488.67 0.7808 0.4371 521.08 0.7723 0.4320 487.80
Sphere 0.5883 0.3169 3424.55 0.7321 0.3790 3298.64 0.7409 0.3767 3242.84 0.7232 0.3756 3348.82
Method dy Berkeley Earth 2020/5 Berkeley Earth 2020/6 Accessibility Vegetation
RMSE MAE time RMSE MAE time RMSE MAE time RMSE MAE time
AVE - 2.0251 1.5515 0.00 1.4950 1.0863 0.00 0.6595 0.4000 0.00 0.3463 0.3148 0.00
1-NN - 0.9003 0.4921 13.84 0.6673 0.3935 13.64 0.2060 0.1339 3.38 0.3810 0.2592 1.21
SVR - 1.4319 0.9319 10.56 1.1247 0.7468 0.02 0.4168 0.1847 0.09 0.3182 0.2510 0.04
NN - 1.0127 0.6627 0.58 0.7148 0.4910 0.70 0.2579 0.1636 1.42 0.3144 0.2622 0.70
GP Euclidean 0.8163 0.5584 13.70 0.5591 0.3825 18.22 0.2176 0.1341 13.83 0.3021 0.2536 1.30
Sphere 0.6325 0.3427 22.57 0.5077 0.3003 22.34 0.2016 0.1200 16.62 0.2948 0.2487 3.20
MGP Euclidean 0.7154 0.4486 8.84 0.5157 0.3149 6.09 0.2373 0.1379 14.47 0.3183 0.2751 3.18
Sphere 0.6360 0.3474 73.02 0.4686 0.2765 68.33 0.2260 0.1288 22.17 0.2974 0.2505 23.74
CMGP Euclidean 0.6988 0.4356 6.95 0.5386 0.3616 6.92 0.2039 0.1292 7.05 0.2952 0.2515 2.06
Sphere 0.6243 0.3387 38.32 0.4568 0.2651 39.60 0.1928 0.1203 18.97 0.2937 0.2446 11.71
LMGP Euclidean 0.6694 0.4054 525.27 0.5037 0.3065 500.11 0.1969 0.1262 708.07 0.3075 0.2649 124.59
Sphere 0.6255 0.3357 3549.57 0.4569 0.2631 3312.25 0.1917 0.1194 1434.83 0.2950 0.2487 807.48

We have the following observations. First, the distance function
significantly influences the performance. The squared exponential
covariance function with Euclidean distance wrongly describes the
relationships between points. On the other hand, using spherical
distance in the square exponential covariance function consistently
helps to improve the performance, which demonstrates the impor-
tance of choosing a proper distance function in Gaussian processes.
Second, introducing a mixture structure does not necessarily im-
prove the performance. On most datasets, we observe that MGP
obtains comparable results as GP. However, we cannot conclude
that mixture structure is useless since CMGP and LMGP outper-
form GP in most cases. Therefore, choosing a proper distance func-
tion is important for mixture models, and the main reason that
conventional MGP fails to gain performance improvement is that it
ignores the non-Euclidean structure of the input domain. Third, we
find that the proposed methods consistently achieve the best per-
formance both in terms of RMSE and MAE, which demonstrates the
effectiveness of the proposed methods. The running times of LMGP
are very long. The theoretical complexity of LMGP grows quadrati-
cally with respect to the number of training points, it may be very
slow in practice due to implementation reasons. CMGP is usually
faster than MGP because there is no iteration process in CMGP. Al-
though the structure of CMGP looks similar to MGP, CMGP often
outperforms MGP even using the Euclidean distance function. The
reason is that CMGP clusters the points merely based on the input,
while MGP determines the class labels in consideration of both in-
put and output. In practice, we find the boundary of clusters found
by MGP has an irregular shape, while CMGP tends to divide all in-
put points according to the northern and southern hemispheres.

We illustrate the prediction results of GP, MGP, LMGP and CMGP
on 2020/6 in Fig. 4. From Table 1, we can see that LMGP and CMGP
achieve better performances than GP and MGP. Fig. 4 visualizes the
differences among their prediction results and highlights some re-
gions where the difference is significant. We observe that LMGP
and CMGP can obtain finer prediction results compared with GP
and MGP.
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5.3. Sensitivity Analysis of Parameters

For LMGP, we vary the parameter K in {16,32,64, 128} and
plot the RMSE and MAE in Fig. 5. The best performances are usu-
ally achieved by K = 128. When K = 64, the results are compa-
rable with the best results. The performances degenerate signifi-
cantly if we further decrease K. This observation is consistent with
the discussion in Section 4.2 and Fig. 2. However, if we further
increase K, the overlap between two GP components may be too
large, and there may be too many redundant components. Besides,
from Table 1 we can see the time cost of LMGP with K = 128 is
high. Therefore, we do not increase K and set K = 128 in our ex-
periments.

For CMGP, we set the number of clusters K in {2,3,5,7} and
plot the RMSE and MAE in Fig. 6. From Fig. 6, we can see that
the performances of CMGP are not sensitive to the choice of K
when K varies in a reasonable range. On Berkeley Earth datasets,
the performances are comparable when K = 2 or 3, but tend to get
slightly worse as we further increase K. However, on the Accessi-
bility dataset and the Vegetation dataset, the results are marginally
better with larger K. The reason is the input regions do not cover
the globe in these two datasets and exhibits a stronger clustering
property as indicated in Fig. 7.

5.4. Empirical Analysis on the Time Complexity of LMGP

In this subsection, we empirically study the time complexity
of LMGP. From the discussion in Section 4.2, the training com-
plexity of LMGP mainly depends on dataset size N and parame-
ter K, and the approximate testing complexity of LMGP mainly de-
pends on parameters K, L. In Fig. 8, we illustrate the relationship
between time complexity of LMGP and these parameters. We use
the non-linear function sin(x/20) + cos(x/10) + sin(cos(x/30)) +
cos(sin(x/40)) + exp(0.05 x x/100) — x/200 to generate N ran-
dom samples in [-100,100] for training, where N varies
in {2000, 2500, 3000, 5000, 6000, 7500, 10000}. Then we vary
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Fig. 6. Sensitivity analysis of CMGP with respect to K.
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Fig. 7. Clustering results of the accessibility dataset and the Vegetation dataset.

K in {300,500, 600, 800, 1000, 1200, 1500, 1750,2000} and L in
{1,3,5,10, 30, 50, 2000} to investigate the running times of LMGP
under various parameter settings. In the testing phase, we fix N =
2000, so L = 2000 means we use all Gaussian process components
to make prediction without approximation.

For training, the theoretical complexity is O(N%(p + K) + NK3),
whose dominating term grows quadratically with respect to N.
However, in practice, the coefficient of the linear term K3 is so
large that N2(p+ K) « NK3, thus the dominating term is NK3,
which grows linearly with respect to N and cubically with re-
spect to K. In Fig. 8(a), the slopes of these curves are approxi-
mately 1 in the log scale, which indicates that the practical train-
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Fig. 8. Time complexity of LMGP (in log scale).

ing time of LMGP grows linearly with respect to N. In Fig. 8(b),
the slopes of these curves are approximately 3 in the log scale,
which indicates that the practical training time of LMGP grows cu-
bically with respect to K. The theoretical complexity for testing is
O(LK? + N(p + L)). Similarly, since K2 > N in our setting, the dom-
inating term is LK2. From Fig. 8(c) and 8(d) we can also validate
the practical testing time of LMGP grows linearly with respect to
L and quadratically with respect to K, especially when K and L are
relatively large.

5.5. Shape Classification

In this section, we conduct experiments on shape classification
to show that CMGP and LMGP can also be applied for classifica-
tion tasks. In shape classification, the input is the shape recorded
by landmarks (pre-shapes), which can be transformed to complex
vectors in the Kendall shape space [31]. Therefore, we use the met-
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Table 2
Classification accuracy and running time (in seconds) of the proposed methods and
competing methods on the Apes dataset and the Mice dataset.

MethodDataset Apes Mice

Accuracy Time Accuracy Time
k-NN (k=1) 74.47% 0.00 73.08% 0.00
k-NN (k = 3) 78.72% 0.00 73.08% 0.00
k-NN (k = 5) 78.72% 0.00 73.08% 0.00
k-NN (k = 10) 74.47% 0.00 69.23% 0.00
SVM 70.21% 0.60 100.00% 0.04
GP 78.72% 17.16 69.23% 6.68
MGP (K =2) 23.40% 17.14 46.15% 8.50
MGP (K =3) 19.15% 16.23 50.00% 11.43
MGP (K = 4) 21.28% 20.42 46.15% 12.59
CMGP (K =2) 80.85% 19.57 76.92% 8.10
CMGP (K = 3) 78.72% 23.30 73.08% 11.24
CMGP (K = 4) 78.72% 26.36 73.08% 12.54
LMGP (K = 16) 74.47% 664.86 73.08% 168.75
LMGP (K = 32) 80.85% 840.93 76.92% 243.28
LMGP (K = 64) 82.98% 1269.32 - -

ric of the Kendall shape space to derive the distance function. We
use the Apes dataset and the Mice dataset [31]. The Apes dataset
records ape skull landmarks of 29 male and 30 female adult go-
rillas, 28 male and 26 female adult chimpanzees, and 30 male
and 24 female adult orangutans. We randomly choose 120 sam-
ples for training and the rest for testing. The Mice dataset records
T2 mouse vertebra landmarks, and the data have three categories:
30 control, 23 large, 23 small. We randomly choose 50 samples for
training and the rest for testing. The results are reported in Table 2.
We observe that the performances of MGP are very poor since it
cannot correctly describe the distribution of input variables in the
Kendall shape space. However, CMGP and LMGP still achieve satis-
fying results, and the performances are usually better than a single
GP. We do not claim the superiority of CMGP and LMGP over other
methods, since SVM obtains 100% accuracy on the Mice dataset.
Nevertheless, CMGP and LMGP outperform a single GP by intro-
ducing the mixture structure, and they are more flexible than con-
ventional MGPs.

6. Conclusion and Discussion

In this paper, the attention mechanism offers a new perspec-
tive to understand the mixture of Gaussian processes model. Fur-
thermore, two novel mixture of Gaussian processes models (LMGP
and CMGP) have been proposed based on the attention mecha-
nism. Unlike conventional MGP models, the proposed methods do
not require probabilistic assumptions on the inputs, thus it is ap-
plicable to non-Euclidean data. Experimental results on real-world
datasets show that LMGP and CMGP are effective. In the future,
it is interesting to explore the relationship between the attention
mechanism and other statistical learning methods. Besides, based
on the attention mechanism, it is promising to design new types
of MGP models according to specific application scenes.
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