
722 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006

A Cost-Function Approach to Rival Penalized
Competitive Learning (RPCL)

Jinwen Ma and Taijun Wang

Abstract—Rival penalized competitive learning (RPCL) has
been shown to be a useful tool for clustering on a set of sample
data in which the number of clusters is unknown. However, the
RPCL algorithm was proposed heuristically and is still in lack
of a mathematical theory to describe its convergence behavior.
In order to solve the convergence problem, we investigate it via
a cost-function approach. By theoretical analysis, we prove that a
general form of RPCL, called distance-sensitive RPCL (DSRPCL),
is associated with the minimization of a cost function on the weight
vectors of a competitive learning network. As a DSRPCL process
decreases the cost to a local minimum, a number of weight vectors
eventually fall into a hypersphere surrounding the sample data,
while the other weight vectors diverge to infinity. Moreover, it is
shown by the theoretical analysis and simulation experiments that
if the cost reduces into the global minimum, a correct number of
weight vectors is automatically selected and located around the
centers of the actual clusters, respectively. Finally, we apply the
DSRPCL algorithms to unsupervised color image segmentation
and classification of the wine data.

Index Terms—Clustering analysis, competitive learning (CL),
convergence, cost function, gradient descent.

I. INTRODUCTION

A S AN ADAPTIVE version of the classical k-means clus-
tering, competitive learning (CL) has been developed for

unsupervised learning in artificial neural networks and provided
us a promising tool for clustering, pattern recognition, and vec-
tor quantization [1]–[3]. It is also useful to improve the training
of multilayer feedforward networks [4]–[6]. The original CL
algorithm (or rule), now known as the classical (or simple) CL
algorithm, was proposed and studied from the early 1960s [7].
In the late 1980s, it was found by Rumelhart and Zipser [8],
Grossberg [9], and Hecht-Nielsen [10] that the algorithm has
the so-called dead-unit (or underutilized) problem. Many ef-
forts have been made to solve this problem. A typical strat-
egy is reducing the learning rate of the frequent winners [9],
[11]–[13], sometimes called conscience mechanism [12]. The
frequency-sensitive CL (FSCL) algorithm [13] is an example
that does improve the classical CL considerably [15], [44].

Manuscript received June 17, 2004; revised February 1, 2005, July 29, 2005,
and November 3, 2005. This work was supported by the Natural Science
Foundation of China under Projects 60471054 and 60071004. This paper was
recommended by Associate Editor N. Pal.

J. Ma is with the Department of Information Science, School of Mathemat-
ical Sciences and the Laboratory of Mathematics and Applied Mathematics,
Peking University, Beijing 100871, China (e-mail: jwma@math.pku.edu.cn).

T. Wang is with the Department of Radio Engineering, Southeast University,
Nanjing 210018, China.

Digital Object Identifier 10.1109/TSMCB.2006.870633

It has been further addressed by Xu et al. in [14] and [15]
that all existing CL algorithms have another critical problem:
The selection of an appropriate number of units. As well known
with the k-means algorithm, the number k of clusters should
be appropriately preselected; otherwise, the algorithm will per-
form badly. In a CL-related network, k directly corresponds to
an externally preselected number for the units used in a neural
network, e.g., the number either corresponds to the number of
resulted clusters when the network is used for clustering analy-
sis or to the number of radial basis functions (RBFs) when CL is
used in an RBF network. The experiments in [14] and [15] have
shown that an inappropriately selected k will result in a poor
clustering that will in turn affect the performances of FSCLs.

To tackle this problem, the rival-penalized-CL (RPCL) al-
gorithm was proposed in [14] and [15] by adding a new
mechanism into an FSCL. For each input sample, the basic idea
is that not only the weight vector of the winner unit is modified
to adapt to the input, but also the weight vector of its rival (the
second winner) is delearned by a smaller learning rate. Many
experimental results have shown that RPCL automatically allo-
cates an appropriate number of units for an input data set when
they are used for clustering. Later, the RPCL algorithm has
been applied to clustering, vector quantization, training of RBF
neural networks, plant diagnosis, and financial prediction (e.g.,
[16]–[27]). Methodologically, the RPCL algorithm was used
to establish some new mechanisms for information processing
[28]–[30]. Furthermore, in [31]–[34], the RPCL algorithm has
also been generalized to several versions for different types of
sample data.

The RPCL algorithm was proposed heuristically. It has been
shown that RPCL can be regarded as a fast approximate im-
plementation of a special-case Bayesian Ying Yang (BYY)
harmony learning on a Gaussian mixture; thus, the ability of
selecting a number of clusters can be understood from the
model-selection ability of BYY harmony learning [35], [36].
However, there still lacks a mathematical theory to directly
describe the convergence and, particularly, the correct con-
vergence behavior of RPCL, and those existing convergence
theories for the classical CL and FSCL algorithms under certain
constraints [37]–[41] are hardly possible to be adopted since
RPCL demonstrates a very different convergence behavior. The
key issue is whether the RPCL algorithm can automatically se-
lect a correct number of the weight vectors that converge to each
center of the clusters, respectively, while driving all the other
extra weight vectors far away from the sample data. This correct
convergence problem is difficult, and there has not been any
mathematical theory to solve such kind of convergence problem

1083-4419/$20.00 © 2006 IEEE

MA AND WANG: COST-FUNCTION APPROACH TO RIVAL PENALIZED COMPETITIVE LEARNING (RPCL) 723

yet, to the best of our knowledge. Recently, based on the max-
imum weighted likelihood learning framework, Cheung [42]
proposed the rival-penalized-EM (RPEM) algorithm that can
be considered as a generalized version of the RPCL algo-
rithm, with the feature of automatically selecting an appropriate
number of densities in density mixture clustering. Although
the RPEM algorithm can outperform the RPCL algorithm in
ceratin aspects, there is also a lack of a mathematical theory to
describe why the RPEM or the RPCL algorithm can converge
correctly for determining the appropriate number of clusters in
the sample data.

In this paper, we investigate the problem of RPCL correct
convergence via a cost-function approach. By analyzing the
characteristics of the RPCL algorithm, we establish a cost
function by which we can derive a general form of the RPCL al-
gorithm, called distance-sensitive RPCL (DSRPCL) algorithm.
That is, DSRPCL is associated with the minimization of the
cost function on the weight vectors in a CL network. We prove
that when the cost function reduces to a local minimum, a
number of weight vectors fall into a hypersphere surrounding
the sample data, while the other weight vectors diverge to
infinity. Moreover, it is further shown by the theoretical analysis
and simulation experiments that if this minimum is global, the
DSRPCL process consists of first making a correct number of
weight vectors fall into the hypersphere and then further push-
ing them to approach each center of the clusters, respectively,
with these extra weight vectors driven to infinity. Furthermore,
we test the DSRPCL algorithm on the unsupervised color image
segmentation and the classification of the wine dataset.

The problem of RPCL correct convergence is addressed in
Section II. Then, a cost function is constructed for a general
form of the RPCL algorithm, i.e., the DSRPCL algorithm, in
Section III. In Section IV, we further analyze the convergence
properties of the DSRPCL processes in using the cost func-
tion. In Section V, simulation and application experiments are
demonstrated, and the conclusion is presented in Section VI.

II. PROBLEM OF RPCL CORRECT CONVERGENCE

We begin with the classical CL algorithm. Given a CL
network, i.e., a layer of units with the output of each unit
denoted by ui and its weight vector by Wi = [wi1, . . . , wid]T

for i = 1, . . . , n, the classical CL algorithm consists of the
following two steps.

Step 1) Randomly take a sample X from a sample data set
S ⊂ Rd; for i = 1, . . . , n, let

ui =
{

1, if i = c such that ‖X −Wc‖ = minj ‖X −Wj‖
0, otherwise

(1)

where ‖ · ‖ denotes the Euclidean norm.
Step 2) Update the weight vectors Wi by

∆Wi = αiui(X −Wi) (2)

which is often called the winner-takes-all rule since
only the winning unit Wc is updated. The parameter
αc with 0 ≤ αc ≤ 1 is the learning rate that either is

a small positive number or starts from a reasonable
initial value and then reduces to zero according to
the so-called Robbin–Monro stochastic approxima-
tion procedure [43]

lim
t→∞αc(t) = 0

∞∑
t=1

αc(t) = ∞. (3)

A typical example of the learning rate satisfying (3)
is η(t) = η0/(c1t+ c0), where η0, c0, and c1 are
some positive constants.

The FSCL algorithm is a straightforward extension of the
classical CL algorithm, obtained by modifying (1) into the
following.

ui =




1, if i = c such that
γc‖X −Wc‖ = minj (γj‖X −Wj‖)

0, otherwise
(4)

where γj is the winning frequency of unit j, i.e., γj =
tj/

∑k
i=1 ti and ti is the cumulative number of the occurrences

of ui = 1.
Furthermore, we get the RPCL algorithm by adding the rival

penalizing mechanism to FSCL as following.

Step 1) Randomly take a sample X from S; for i =
1, . . . , n, let

ui =




1, if i = c such that
γc‖X −Wc‖ = minj (γj‖X −Wj‖)

−1, if i = r such that

γr‖X −Wr‖ = minj 	=c (γj‖X −Wj‖)
0, otherwise.

(5)

Step 2) Update the weight vectors Wi by

∆Wi =



αc(X −Wi), if ui = 1
−αr(X −Wi), if ui = −1
0, otherwise

where 0 ≤ αc and αr ≤ 1 are the learning and delearning rates
for the winner unit c and the rival unit r, respectively. It was
assumed by Xu et al. in [14] and [15] that αc and αr reduce
with t to zero with αr
 αc at each step. Moreover, from the
probabilistic perspective, several other variants of the RPCL
algorithm have been proposed for different types of sample
data [32]–[38]. Since the fundamental mechanism behind all
the studies remains the same, in this paper, we only focus on
the RPCL algorithm in its original version (5).

As the learning and delearning rates αc and αr reduce to zero
at a suitable rate, e.g., in the way of (3), the RPCL algorithm
will either converge to or freeze in a limit—a group of weight
vectors. In this sense, the convergence of the RPCL algorithm
is trivial. Instead, the key problem is whether it converges
correctly or not. For a set of sample data with k clusters and
n ≥ k, the problem of RPCL correct convergence is whether
it can automatically make k weight vectors converge to each
center of the k clusters, respectively, while driving the other
extra weight vectors far away from the sample data.

724 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006

To clearly describe how a weight vector is driven away from
the sample data, we have the aid of a (bounded) hypersphere
G that can contain all the sample data within it. Provided
that the RPCL algorithm starts with a set of initial values
of W (0)

1 , . . . ,W
(0)
n within G, the correct convergence of the

RPCL algorithm can be described through the following three
properties.

1) Separation Nature. After sufficient iterations of the
RPCL algorithm, each weight vector will finally either
fall into G or remain to stay outside G and never get
into G. That is, after a number of iterations, a number of
weight vectors will be always in G and the other weight
vectors will be always outside G. Thus, the hypersphere
separates the weight vectors into two groups.

2) Correct Division. The number of the weight vectors
fallen into G should be k, i.e., the number of the actual
clusters in the sample data. Obviously, only in this case, it
is possible for the RPCL process to result in a reasonable
classification.

3) Correct Location. k weight vectors will finally converge
to or locate around each center of the k actual clusters,
respectively.

Obviously, property 1) is a prerequisite to the RPCL correct
convergence. When property 1) holds, it is possible to check
whether a weight vector will finally be driven away from the
data set or not. When properties 1) and 2) both hold, we are able
to determine the number of clusters via the number of weight
vectors fallen within the hypersphere G.

In the following, we establish a cost function based on which
we can derive a general form of the RPCL algorithm and inves-
tigate the correct convergence problem from the perspective of
the cost minimization.

III. COST FUNCTION FOR THE RPCL ALGORITHM

In this section, according to the characteristics of the RPCL
algorithm we introduce a new kind of cost function and then
consider its derivatives. Moreover, the gradient-descent algo-
rithm of the cost function is constructed and analyzed, being
shown to be a general form of the RPCL algorithm.

A. Idea and Definition of the Cost Function

Given a set of sample data S = {Xµ}N
µ=1 with Xµ =

[xµ
1 , x

µ
2 , . . . , x

µ
d]T, the classical CL or FSCL algorithm can be

regarded as the adaptive versions of the well-known k-mean
algorithm, which minimizes the mean-square-error (MSE) cost
function as follows:

EMSE(W) =
1
2

∑
ijµ

Mµ
i

(
xµ

j − wij

)2

=
1
2

∑
iµ

Mµ
i ‖Xµ −Wi‖2

=
1
2

∑
µ

∥∥Xµ −Wc(µ)

∥∥2
(6)

where W = [W1,W2, . . . ,Wk], i.e., n = k, and each Wi =
[wi1, wi2, . . . , wid]T is the weight vector of the unit i.
Moreover, we have

Mµ
i =




1, if i = c(µ) such that∥∥Xµ −Wc(µ)

∥∥ = minj ‖Xµ −Wj‖
0, otherwise

with c(µ) denoting the index of the winner unit (or its weight
vector) for the µth sample. If there are two or more weight
vectors that are equidistant and closest to the sample Xµ,
c(µ) denotes the least of the indexes of these weight vectors.
Therefore, Mµ

i is a cluster membership function for each input
sample Xµ. That is, Xµ belongs to the ith cluster if it is one;
and Xµ does not belong to the ith cluster if it is zero.

However, EMSE(W) cannot be used for deciding a correct
number k, because it decreases monotonically as the number of
the units increases. Thus, it does not apply to the RPCL algo-
rithm. In order to construct a suitable cost function to describe
the RPCL algorithm, we consider its mechanism from two
perspectives. First, those areas where samples locate densely
will strongly attract the weight vectors. Second, each weight
vector will push the other weight vectors away from itself,
which makes it possible to drive the extra weight vectors far
away from the sample data. Moreover, when a weight vector
diverges to infinity, the corresponding cluster becomes empty
and can be neglected. In view of these considerations, we are
motivated to consider the following cost function:

E(W) = E1(W) + E2(W) (7)

where

E1(W) =EMSE(W) =
1
2

∑
µ

∥∥Xµ −Wc(µ)

∥∥2

E2(W) =
2
P

∑
µ,i	=c(µ)

‖Xµ −Wi‖−P

where W = vec[W1,W2, . . . ,Wn] and P is a positive number.
This new cost function is not only proportional to the distance
between each sample point and its winner weight vector where
c(µ) = 1 but also inversely proportional to the distance between
this sample point and any other loser weight vector where
c(µ) = 0. It will be shown by both analysis and experiment in
the following sections that a lower value of E(W) corresponds
to a better clustering solution W. Moreover, the global mini-
mum value of E(W) decreases with n from the beginning, i.e.,
n = 1, and then does not decrease with n beyond the correct
number k. From this cost function, we can derive a general form
of the RPCL algorithm via the gradient-descent method.

B. Derivatives of the Cost Function

According to the definition given by (7), the cost function
becomes positive infinity when two weight vectors are equal
and meet at a sample Xµ. We let B denote the set of these
special W. Clearly, the cost function is not differentiable in
B. However, except B, it can be easily found from (7) that the

MA AND WANG: COST-FUNCTION APPROACH TO RIVAL PENALIZED COMPETITIVE LEARNING (RPCL) 725

cost function is finite and continuous at any W. Moreover, it
can be proved that the cost function is differentiable at any W
excluding B.

In order to do so, we begin to consider the differentiablity
of the cost function in the general case of W where there is
just a unique weight vector closest to a sample Xµ. In the other
words, each sample is closest to a unique weight vector. As the
samples are fixed, the membership functions Mµ

i can remain
unchanged in a neighborhood of W. In this case, E(W) is
smooth within the neighborhood and thus differentiable at W.
Moreover, the derivative of the cost function with respect to wij

is given by

∂E(W)
∂wij

=
∂E1(W)
∂wij

+
∂E2(W)
∂wij

= −
∑

µ

δi,c(µ)

(
xµ

j − wij

)
+

∑
µ,i

(
1 − δi,c(µ)

)

× ‖Xµ −Wi‖−P−2
(
xµ

j − wij

)
(8)

where δi,j is the Kronecker number.
We further consider the differentiablity of the cost function

in the special case of W where two or more weight vectors are
equidistant and closest to a sample Xµ. We can consider this
kind of W as a point at the boundaries of the regions (in the
whole weight definition space Rnd) where all the membership
functions Mµ

i do not change. Suppose that W′ is just such a
boundary point where there are only two component weight
vectors W ′

i and W ′
j (with i < j) that are equidistant and closest

to a sample Xµ′
. That is

∥∥∥W ′
i −Xµ′

∥∥∥ =
∥∥∥W ′

j −Xµ′
∥∥∥ = min

l

∥∥∥W ′
l −Xµ′

∥∥∥ > 0.

In this case, a neighborhood of W′ is divided by the
smooth (curved) surface ‖Wi −Xµ′‖ = ‖Wj −Xµ′‖ into two
parts or subregions Ali and Alj , respectively, with the con-
straints ‖Wi −Xµ′‖ = minl ‖Wl −Xµ′‖ ≤ ‖Wj −Xµ′‖ in
Ali , and ‖Wj −Xµ′‖ = minl ‖Wl −Xµ′‖ < ‖Wi −Xµ′‖ in
Alj . Since i < j, according to the definition of the winning unit,
the above dividing surface is within Ali .

From the side of Ali , the cost function is differentiable at
W′ and has the derivatives given by (8) with Mµ′

i = 1 and
Mµ′

j = 0. From the other side of Alj , the cost function is
also differentiable at W′ and has the derivatives given by (8)
with Mµ′

i = 0 and Mµ′
j = 1. Because ‖W ′

i −Xµ′‖ = ‖W ′
j −

Xµ′‖, it can be easily verified that the left-hand and right-
hand derivatives are equal. Because each direction toward W′

is either within Ali or within Alj , the derivatives of the cost
function at W′ lead to the same values in all the directions.
According to the differential theory, the cost function is differ-
entiable at this boundary point W′ and its derivative takes the
form of (8).

In a similar way, we can prove that the cost function is
differentiable at those boundary points where there are three or
more weight vectors that are equidistant and closest to a sample
or there are two or more samples in this equidistant situation.

Therefore, the cost function is differentiable at all the boundary
points except B. Summing up the above results, we obtain that
the cost function is differentiable at any W excluding B.

C. DSRPCL Algorithm

Based on the derivatives of the cost function, we can con-
struct a gradient-descent algorithm as follows:

∆wij = −η ∂E(W)
∂wij

(9)

where η is a small positive number as the learning rate. For
convenience of analysis, we define the gradient of E(W) by

grad (E(W)) =
[
∂E(W)
∂w11

,
∂E(W)
∂w12

, . . . ,
∂E(W)
∂wnd

]T

.

In this case, the gradient-descent algorithm can be also ex-
pressed by

∆W = −ηgrad (E(W)) . (10)

We let the algorithm start from a set of initial weight vectors
W(0) = vec[W (0)

1 , . . . ,W
(0)
n] in the field Rnd − B. As η is

small enough, E(W) will decrease after each modification.
Thus, E(W) cannot become infinity. That is, the updated
weight vectors W(t) = W(t−1) − ηgrad(W(t−1)) will never
enter B. On the other hand, we can stop the algorithm when the
change of E(W) between two consecutive steps is less than a
threshold value.

Instead of this batch algorithm, we can get the following
adaptive algorithm from (8), i.e., for the current sample Xµ,
we update

∆Wi =
{
η(Xµ−Wi), if i = c(µ)
−η‖Xµ−Wi‖−P−2(Xµ−Wi), otherwise

(11)

which is actually a CL algorithm. At each sample Xµ, the
weight vector Wc(µ) of the winner unit c(µ) is modified by

∆Wc(µ) = η(Xµ −Wi)

which can be regarded as winner learning. On the other hand,
all the loser weight vectors are modified by

∆Wi = −η‖Xµ −Wi‖−P−2(Xµ −Wi), for i 	= c(µ)

which can be regarded as a delearning action.
For convenience, we can divide the sample space Rd into n

regions as follows:

Ri =
{
X ∈ Rd : ‖X −Wi‖ ≤ ‖X −Wj‖, j 	= i

}
,

for i = 1, 2, . . . , n. (12)

726 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006

Accordingly, the sample data set S is divided into n clusters (or
classes) by

Ci = S ∩Ri, for i = 1, . . . , n. (13)

Particularly, if a sample point Xµ exactly lies on a boundary of
some regions, we break the ties by classifying it as any of the
corresponding clusters. Furthermore, we define Ci = S − Ci

as the complementary set of the cluster Ci.
Comparing the derived algorithm with the classical CL algo-

rithm (1), we can observe that the mechanism of the algorithm
(11) is that the modification of the winner weight vectors
reduces E1(W), which drives a group of weight vectors to
converge to the centers of the actual clusters in the sample data,
while the modification of the loser (or other) weight vectors
reduces E2(W), which drives the remaining weight vectors
away from the winner weight vectors so that the extra weight
vectors are pushed away from the sample data. Therefore, this
algorithm behaves in a similar way as the RPCL algorithm.

We further explore the relation between this algorithm and
the original RPCL algorithm. Observing the sum of E2(W)
over the sample Xµ, it can be found that the dominant term
is just ‖Xµ −Wr(µ)‖−P , where r(µ) denotes the index of the
rival unit. We can modify this rival weight vector such that
E2(W) is affected by the largest term only. The algorithm has
the following form:

∆Wi =



η(Xµ −Wi), if i = c(µ)
−η‖Xµ −Wi‖−P−2(Xµ −Wi), if i = r(µ)
0, otherwise

(14)

which takes the same form as the RPCL algorithm by letting

αc = η, αr = η
∥∥Xµ −Wr(µ)

∥∥−P−2
.

Furthermore, we have

αc

αr
=

∥∥Xµ −Wr(µ)

∥∥2+P
. (15)

That is, αc/αr is strongly dependent on ‖Xµ −Wr(µ)‖. More-
over, given the parameter P , the problem of choosing the
learning rate αc and the delearning rate αr is equivalent to
choosing the learning rate η.

In summary, a cost-function formulation of the general form
of the RPCL algorithm has been established. Since this form of
the algorithm is distance sensitive, we refer to it as the DSRPCL
algorithm. For clarity, the algorithm given by (9) or (10) is
called the batch DSRPCL algorithm. The adaptive algorithm
given by (11) is called the DSRPCL1 algorithm, which im-
plements the delearning action to all the losers. The adaptive
algorithm given by (14) is called the DSRPCL2 algorithm,
which implements the delearning action only to the rival. As
a kind of gradient learning algorithm, the learning rate η plays
an important role in the DSRPCL algorithm. In fact, it is just the
convergence rate of this linearly convergent learning algorithm.
Specifically, when η is small, the DSRPCL algorithm converges
slowly but stably. Otherwise, when η is large, the DSRPCL

algorithm may converge quickly but often be trapped into a
local minimum. In the batch DSRPCL algorithm, η can be a
small positive constant or searched at each step in the optimum
manner. However, in the DSRPCL 1 and 2 algorithms, accord-
ing to the stochastic approximation procedure [43], η should
start from a reasonable initial value and then reduce to zero
in the way of (3). Practically, the learning rate can be selected
as a positive constant by experience. As will be shown by the
simulation experiments in Section V, the DSRPCL algorithm is
effective and has the same convergence behavior as the original
RPCL algorithm. Therefore, in the rest of this paper, we study
the convergence properties of the RPCL learning based on the
DSRPCL algorithm.

Before doing so, there are still two points to be further
explained. First, the winning frequencies of the units do not
appear in the DSRPCL algorithm, that is, the conscience
mechanism is not used. Actually, the conscience mechanism
is a constraint that all the winning frequencies are equal. Its
purpose is to solve the dead unit problem, which, in this
paper, is alternatively avoided by selecting the initial weight
vectors randomly within the hypersphere G or as a group of
sample points. Moreover, for clustering analysis, the conscience
mechanism is only suitable for the type of sample data in which
each cluster has the equal a priori probability, i.e., having the
same number of samples. For those types of data in which
each cluster has a different a priori probability, as discussed in
[32]–[37], the competition should take those a priori probabil-
ities in consideration instead of the conscience mechanism.

Second, we can observe that the DSRPCL 1 and 2 algorithms
are two extreme cases of a spectrum. One implements the
delearning action only to the strongest rival, in the spirit of the
original RPCL learning in [14] and [15]. The other implements
the delearning action to all the losers, that is, all the losers
are considered as the rivals to the winner. The two kinds of
delearning implementation are similar in general performance.
Moreover, similar to the cases encountered by the adaptive al-
gorithm previously proposed in [31, Sec. 6.1], we can also have
a spectrum of RPCL variants by implementing the delearning
action to a number of rivals between 1 and n− 1, either deter-
ministically or randomly. Therefore, the performances of such
a spectrum of DSRPCL algorithms should be similar generally
but with details spread between the DSRPCL1 and DSRPCL2
algorithms. Here, we only study the two typical algorithms.

IV. ANALYSIS OF DSRPCL PROCESSES

As shown in the previous section, the DSRPCL algorithm is
a kind of gradient-descent method on the cost function E(W).
We now analyze the convergence properties of the DSRPCL
algorithm via this cost function.

A. Separation Nature

As stated in Section II, the separation nature of an RPCL
process implies that a number of weight vectors will fall into
a hypersphere G surrounding the sample data, while the other
weight vectors will be driven far away from the sample data.
In other words, an RPCL process separates a number of useful

MA AND WANG: COST-FUNCTION APPROACH TO RIVAL PENALIZED COMPETITIVE LEARNING (RPCL) 727

weight vectors from the other extra ones in the sample space.
Mathematically, a weight vector is defined to be far away from
the sample data if it becomes a loser for all the samples. An
RPCL process is just the sequence of the iterations of these
weight vectors W(t) = [W (t)

1 , . . . ,W
(t)
n] starting from a set

of initial weight vectors W = [W (0)
1 , . . . ,W

(0)
n] ∈ Rnd − B

according to the updating rule as t increases step by step (with-
out the stop rule). As shown by many experiments, an RPCL
process always demonstrates the separation nature. Now, we
prove this property for the batch DSRPCL process as follows.
Lemma 1: When a weight vector W (t)

i in the batch DSRPCL
algorithm is far away from the sample data at time t, it will be
always a loser for any sample and will go away from the sample
data in the sequential iterations.

Proof: When a weight vector W (t)
i in the batch DSRPCL

algorithm is far away from the same data, that is, it is a loser for
all the samples at time t, it is on the one side of the sample data.
According to (8) and (10), we have

∆Wi = η
∑

µ

‖Xµ −Wi‖−P−2(Wi −Xµ). (16)

As a result, ∆Wi directs to the outside of the sample data.
Therefore, W (t+1)

i goes more away from the sample data (i.e.,
each sample point).

If every weight vector goes away from the sample data, the
cost function E(W(t)) will increase to infinity, which contra-
dicts the fact that E(W(t)) decreases in the batch DSRPCL
process. Thus, there exists a weight vector Wj within or around
the field of the sample data at any time. As W (t)

i is already far
away from the sample data, W (t+1)

i is farther away from the
sample data. But Wj is close to the sample data. Then, Wj is

closer to any sample than W
(t+1)
i . Therefore, W (t+1)

i cannot

be a winner for any sample. In other words, W (t+1)
i is a loser

for any sample. Hence, W (t+1)
i is farther away from the sample

data and a loser for any sample.
In the same way as above for the sequential times, we have

that Wi will always be a loser for any sample and will go away
from the sample data in the sequential iterations. �

Theorem 1: For a batch DSRPCL process where the learning
rate η is small enough, there exists a hypersphere G surrounding
the sample data such that after sufficient iterations, each weight
vector W (t)

i will either: 1) fall into G or 2) keep outside G and
diverge to infinity.

Proof: Because the batch DSRPCL algorithm is a
gradient-descent algorithm, E(W(t)) decreases with t in
the batch DSRPCL process when η is small enough. Since
E(W(t)) is always positive and thus bounded below, it con-
verges to a minimum value E∗.

While t increases to infinity, each sequence {W (t)
i } may

or may not have a divergent subsequence. If {W (t)
i } has a

divergent subsequence, W (t)
i will be far away from the sample

set and will become a loser for any sample at a certain time.
According to Lemma 1, it will always go away from the sample
data in the sequential iterations. Therefore, it will diverge to
infinity.

On the contrary, not every weight vectors will be all so
far away from the sample data because E(W(t)) decreases
to E∗ and there must be a certain {W (t)

i } that do not have
any divergent subsequence. In this case, W (t)

i is bounded.
According to the Bolzano–Weierstrass theorem [45], there must
exist certain accumulation point(s) of the subsequence(s) of the
sequence {W (t)

i }. Given a hypersphere G, which surrounds all
the samples as well as all the accumulation points of the non-
divergent subsequences of {W (t)

i }, there exists a large positive

integer T such that, for t > T , W (t)
i will be always within G.

Summing up the two results, we complete the proof. �
According to Theorem 1, when the learning rate η is selected

small enough, the separation nature holds for a batch DSRPCL
process. With both the learning and delearning mechanisms in
a batch DSRPCL process, some weight vectors are possible to
be pushed away from the sample data. Once they go outside
the hypersphere surrounding the sample data, these weight
vectors will be always losers and thus delearned in subsequent
iterations, such that they are driven away from the sample
data and will diverge to infinity. It follows from (8) that the
derivatives with respect to these weight vectors attenuate to
zero. We can neglect the weight vectors that diverge to infinity
since they will not affect the value of E(W) ultimately.

On the other hand, those weight vectors that do not diverge
to infinity will go towards a minimum point Ŵ∗ of E(Ŵ)
in a traditional gradient-descent manner as the cost function
decreases during the process, where Ŵ denotes the group of
weight vectors that converge. According to the differential the-
ory, the gradient of the cost function must be zero at Ŵ∗. In this
case, these weight vectors converge to Ŵ∗ even if the learning
rate η is a small positive constant. Since the batch DSRPCL
algorithm is a gradient-descent algorithm, these weight vectors
may be stable at a saddle point of E(Ŵ). However, we can
escape this kind of solution by disturbing the final result of the
algorithm with some noise. Actually, when it is just a saddle
point, the algorithm under the disturbance will leave it for a sta-
ble solution. Otherwise, the algorithm will return to the stable
solution. Thus, we can neglect this case. We so regard that these
weight vectors converge to a minimum point of E(Ŵ).

For the DSRPCL1 algorithm, the weight vectors update as
each sample comes. It is an adaptive gradient-descent algorithm
of the cost function. Under the mechanism of DSRPCL, two
weight vectors will push each other and keep a certain distance
during the learning process. Thus, when any two weight vec-
tors are initialized with a distance, it can be considered that
‖Wi −Wj‖ ≥ δ for any i 	= j, where δ is a positive constant,
during a DSRPCL1 process. In this constrained case, E(W)
is twice continuously differentiable and {W : E(W) ≤ C} is
compact for all C > 0. Then, E(W) satisfies the conditions
of Liung’s theorem [46] and thus converges to a minimum
during this adaptive learning process only if the leaning rate
η attenuates in the way of (3). In the same way as Theorem 1,
we can prove that a DSRPCL1 process also has the separation
nature in this learning-rate setting.

For the DSRPCL2 algorithm, the adaptive gradient is ac-
tually a major part of the adaptive gradient in the DSRPCL1
algorithm. Thus, the DSRPCL2 algorithm would behave in

728 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006

a way similar to the DSRPCL1 algorithm. In a DSRPCL2
process, there is a slight difference that each extra weight vector
will be driven far away from the sample data and finally stop
somewhere, such that it will be neither a winner nor a rival in
the further competition.

In summary, a DSRPCL process has the separation nature
such that a number of weight vectors converge within a hy-
persphere surrounding the sample data while the other weight
vectors go outside the hypersphere. It can also be seen that
this separation nature comes from the convergence of E(W(t))
during the iteration process.

B. Correct Division and Location

Since the separation nature really holds in a DSRPCL
process, the problem of the correct convergence of the
DSRPCL algorithm turns into whether a DSRPCL process
has the properties of correct division and location of these
converged weight vectors.

For a set of sample data with k actual clusters, the property
of correct division is that k weight vectors converge within
the hypersphere of the sample data, while the other n− k
weight vectors diverge to infinity. Moreover, the property of
correct location means that the k converged weight vectors will
finally locate at or around each center of the k actual clusters,
respectively. Now, we analyze this issue on a set of sample
data from a mixture of k separated spherical clusters of which
the centers are m1, . . . ,mk, respectively. That is, each actual
cluster in the sample data is the set of the samples which are
closest to a vector mi.

1) Global Minimum Point W∗ of E(W) at n = k: We
consider the cost function in the decomposition E(W) =
E1(W) + E2(W) given in (7). According to its definition,
E1(W) must have at least a minimum point, and we denote its
global minimum point by W0. Moreover, if each actual cluster
has a large number of samples, the global minimum point W0

is unique1 with their component vectors located around the
centers of the actual clusters m1, . . . ,mk, respectively, i.e., we
approximately have W0 = [m1, . . . ,mk].

According to (12) and (13), the sample data are divided by
a given W, into k clusters C1, . . . , Ck. On one hand, since
E1(W) is contributed by the samples in each cluster Ci,
E1(W) will be obviously larger than E1(W0) when W has a
considerable distance from W0, that is, when the classification
{C1, . . . , Ck} by W is not consistent with the actual clusters
of the mixture. On the other hand, E2(W) is contributed by the
samples in each complementary set Ci and the minimization
of E2(W) drives the weight vector Wi of the cluster Ci away
from the samples in Ci. Under an inconsistent classification,
one or more actual cluster(s) may be divided into two or more
parts with each of them classified to classes that are different
from Ci. Correspondingly, in the complementary set of Ci,
there will be a number of misclassified samples that are close
to Wi. Thus, E2(W) will be larger than E2(W0). Summing

1Here, we do not consider the interchanging of weight-vector labels or the
columns in W.

up both conditions, it follows that E(W) is considerably larger
than E(W0), that is, such a W cannot be the global minimum
point of E(W). Therefore, the global minimum point W∗ of
E(W) must be close to W0.

Moreover, given that k weight vectors are located at each
center of the k actual clusters, respectively, i.e., W = W0, each
weight vector will deviate from the center of the corresponding
actual cluster as E2(W) further decreases from E2(W0).
Then, it will cause E1(W) to increase. At the beginning, the
decrement of E2(W) dominates when it is larger than the
increment of E1(W), since the gradient of E1(W) around W0

is approximately zero. However, as W deviates further away
from W0, E1(W) will increase quickly and thus equilibrate
with the decrease of E2(W). As a result, the global minimum
point W∗ of E(W) is not W0 but located around W0.
2) Deviation of W∗ From W0: From the expression of

E2(W), we can see that the deviation of W∗ from W0, i.e., the
distance between W∗ and W0, depends on the style of delearn-
ing and the selection of P . If the delearning is implemented
on the rival only, the decrement of E2(W) is small. Thus, the
deviation is small. If the delearning is implemented on all the
losers, the decrement is obviously increased; thus, the deviation
becomes larger.

On the other hand, as P becomes larger, the decrement be-
comes lower. Thus, the deviation becomes smaller. Otherwise,
the deviation becomes larger. Therefore, if P is selected large
enough, the deviation can be controlled in a small neighborhood
of the origin. That is, W∗ is closely around W0. In other words,
the k weight vectors of W∗ are located closely around each
center of the k actual clusters, respectively.

3) Variation of the Global Minimum of E(W) With n:
Since E1(W) = EMSE(W), its global minimum value de-
creases with n, which is shown in Fig. 1(a). On the other hand,
as n increases, the number of the samples in each complemen-
tary set Ci increases and thus E2(W) increases. Therefore, the
global minimum value of E2(W) increases with n, which is
shown in Fig. 1(b).

Adding the two curves of the variation of the global mini-
mum value of E1(W) and E2(W) together, we have the curve
of the variation of the global minimum of E(W), which is
shown in Fig. 1(c). The global minimum value of E(W) is
just located at n = k. In fact, as n decreases from k, the best
classification based on W cannot match the structure of the
actual clusters in the mixture. In this case, E1(W) increases
considerably, while E2(W) decreases at a low degree. There-
fore, the global minimum of E(W) still decreases with n when
n ≤ k. However, as n increases from k, the best classification
can match the structure of the clusters in the mixture in such a
way that an actual cluster is divided into two smaller clusters.
In this case, E1(W) decreases at a low degree, while E2(W)
increases considerably. Therefore, the global minimum value of
E(W) increases with n when n ≥ k. As a result, the curve of
the variation of the global minimum value of E(W) is convex,
and the minimum point is n = k.

Furthermore, if the n− k extra weight vectors are put to
infinity and do not affect E(W) anymore, the global minimum
value of E(W) does not increase from k, which is shown in
Fig. 1(d).

MA AND WANG: COST-FUNCTION APPROACH TO RIVAL PENALIZED COMPETITIVE LEARNING (RPCL) 729

Fig. 1. Sketches of the global minimum value of the cost functions with
respect to n, where k is the correct number of the clusters in the sample data.
(a) Sketch of the global minimum value of E1(W). (b) Sketch of the global
minimum value of E2(W). (c) Sketch of the global minimum value of E(W).
(d) Sketch of the global minimum value of E(W) with the extra weight vectors
set to infinity.

Summing up the above analysis, we observe that the global
minimum point of E(W) is unique and corresponds to the best
classification on the sample data.2 In other words, a DSRPCL
process has the properties of correct division and location as
long as E(W(t)) converges to the global minimum of E(W).
Although the above heuristic analyses are not so strict to be
as a mathematical proof, they are intuitive and reasonable.
Furthermore, as will be shown in the next section, they are
consistent with the empirical results that demonstrate that the
global minimum of E(W) arrives at n = k with the correct
number of weight vectors located around each center of the
actual clusters, respectively, but with the extra weight vectors
driven far away from the sample data.

In addition, as a type of descent method, the DSRPCL
algorithm may be trapped in a local minimum. However, we can
implement the DSRPCL algorithm together with a mechanism
of searching the global minimum of E(W). The simulated-
annealing technique will be applied to the DSRPCL algorithm
on the simulation experiments in the next section.

C. Selection of P

According to the previous analysis, the global minimization
of E(W) provides us a new criterion to determine the number
clusters in a sample data set. That is, if E(W) based on a

2Note that the extra weight vectors must be set to infinity.

sample data set is globally minimized at n = k, the number
of clusters in the sample data set should be k. However, it has
been found from the simulation and experimental results that
P in the cost function or the DSRPCL algorithm should be
selected properly; otherwise, this new criterion or the DSRPCL
algorithm will not work efficiently. In fact, if P is too small, the
power of delearning may become so strong that the majority
of the weight vectors will be pushed away from the sample
data; conversely, if P is too large, the power of delearning may
become so weak that only a few or none of the weight vectors
will be pushed away from the sample data. In other words, a
smaller value of P tends to make the criterion select a smaller
number of clusters in a sample data set, while a larger value of
P tends to make the criterion select a larger number of clusters
in a sample data set. However, it is shown by the experiments
that there exists a wide interval [P0, P1] of P such that the new
criterion can be reasonable and consistent with the number of
actual clusters in the sample data set. In many cases of the
sample data, we have found that only if P ≥ 0.01, the global
minimum point of E(W) is close to the global minimum
point of E1(W) (at n = k), which corresponds to the correct
division and location of the weight vectors on the sample
data. Thus, in order to make the converged weight vectors be
located around each center of the clusters in the sample data,
respectively, P0 should not be smaller than 0.01. On the other
hand, it has been shown by experiment that if P > 1.9, some
extra weight vectors cannot be pushed away from the sample
data in certain cases. Thus, P1 should not be lager than 1.9.
Experimentally, as P is selected around 0.2, the DSRPCL
algorithm performs well. Hence, P will always be selected by
0.2 in our experiments in the next section.

V. EXPERIMENTAL RESULTS

In this section, several simulation experiments are carried
out to demonstrate our proposed cost function as well as the
DSRPCL algorithms. Moreover, the DSRPCL algorithms are
applied to unsupervised color image segmentation and classifi-
cation of the wine data.

A. Simulation Experiments for Clustering Analysis

1) Sample Data Sets: We begin with a description of the five
sets of sample data used for our simulation experiments. We
conducted five Monte Carlo experiments where samples were
drawn from a mixture of four or three bivariate Gaussian dis-
tributions on the plane coordinate system (i.e., d = 2). All the
Gaussian distributions are cap-shaped, that is, their covariance
matrices have the form of σ2I , where σ is the standard variance.

As shown in Fig. 2, the five sets of sample data are generated
at different degrees of overlap among the clusters in the mixture
by controlling the variances of Gaussian distributions and with
equal or unequal mixing proportions of the clusters in the
mixture by controlling the number of samples in each cluster.
The detailed parameters for these five sets of sample data are
given in Table I, where mi, σi, αi, and Ni denote the mean
vector, the standard variance, the mixing proportion, and the
number of samples of the ith Gaussian, respectively.

730 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006

Fig. 2. Five sets of sample data used in the experiments. (a) First set of the sample data S1. (b) Second set of the sample data S2. (c) Third set of the sample
data S3. (d) Fourth set of the sample data S4. (e) Fifth set of the sample data S5.

2) Simulation Results of the DSRPCL Algorithms: Accord-
ing to the analysis on the cost function, the correct convergence
of the DSRPCL algorithm is equivalent to that E(W(t)) con-
verges to the global minimum of E(W) when n is greater than

the number of the actual clusters in the sample data. If the min-
imum point of E(W) is unique and global on a set of sample
data, the DSRPCL algorithm will always converge correctly. In
fact, when the set of sample data has a symmetric structure like

MA AND WANG: COST-FUNCTION APPROACH TO RIVAL PENALIZED COMPETITIVE LEARNING (RPCL) 731

TABLE I
PARAMETERS OF THE FIVE SETS OF SAMPLE DATA

Fig. 3. Trajectories of weight vectors (solid blocks) during the learning
process of the batch DSRPCL algorithm on the second set of sample data in
the case n = 7 and k = 4. The learning rate η was selected to be 0.001. The
number of iterations is 31. (Color version available online at http://ieeexplore.
ieee.org.)

S1 and S2, i.e., the number of the samples in each cluster is the
same and these clusters are separated at a certain degree; it is
usual that the minimum point of E(W) is unique and global.
Thus, the DSRPCL algorithm will converge correctly on this
kind of sample data. In order to demonstrate this result, we
run the batch DSRPCL, DSRPCL1, and DSRPCL2 algorithms
on the second set of sample data S2. Since there exists some
deviation between the global minimum of the cost function and
the true parameters and this deviation is caused by E2(W), we
can make the leaning rate concerning the derivatives of E2(W)
in the DSRPCL algorithm (i.e., the delearning rate) attenuate
to zero so that the deviation will be eliminated eventually. In
our experiments here or in the following sections, we add this
deviation-eliminating mechanism to the DSRPCL algorithm.
For the three DSRPCL algorithms, we set the delearning rate
to be η/m, where m = [t/5] for the batch DSRPCL algorithm

Fig. 4. Trajectories of weight vectors (solid blocks) during the learning
process of the DSRPCL1 algorithm on the second set of sample data in the case
n = 7 and k = 4. The learning rate η was selected to be 0.003. The number
of iterations is 16 018. (Color version available online at http://ieeexplore.
ieee.org.)

Fig. 5. Trajectories of weight vectors (solid blocks) during the learning
process of the DSRPCL2 algorithm on the second set of sample data in the case
n = 7 and k = 4. The learning rate η was selected to be 0.02. The number
of iterations is 16 023. (Color version available online at http://ieeexplore.
ieee.org.)

and m = [t/5N] for the DSRPCL1 and DSRPCL2 algorithms,
where [x] is the upper integer of a real number x, t is the time,
i.e., the number of updated iterations, and N is the number of
samples.

The experimental results of the batch DSRPCL, DSRPCL1,
and DSRPCL2 algorithms in the case of n = 7 and k = 4, are
given in Figs. 3–5, respectively. The learning rates of the three

732 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006

Fig. 6. Regions for checking the validity of the empirical results. There should be one weight vector in each black region and no weight vectors in the gray
region. (a) In the case of the first to fourth sample data, the four black regions are the circles of the radius 0.25 at (−1, 0), (1, 0), (0, 1), and (0, −1), respectively.
The gray region is the difference set of the envelope [−2.1, 2.1] × [−2.1, 2.1] of the sample data to the union of the four black circles. (b) In the case of the fifth
sample data, the three black regions are the circles of the radius 0.25 at (1, 0), (0, 1), and (0, −1), respectively. The gray region is the difference set of the envelope
[−1.5, 2.0] × [−1.8, 1.8] of the sample data to the union of the three black circles.

algorithms are selected to be 0.001, 0.003, and 0.02, respec-
tively. We stop each algorithm when ∆Et(W) = |E(W(t)) −
E(W(t−1))| < 10−6. From the three figures, we observe that all
the three DSRPCL algorithms result in the correct convergence.
That is, the four weight vectors are finally located around the
centers of the four actual clusters, respectively, while the three
extra weight vectors are driven away from the sample data. It is
clear that the deviation between each converged weight vector
and the corresponding center of the actual cluster is almost
eliminated with the deviation-eliminating mechanism.

On the other hand, we have found that the DSRPCL algo-
rithm may result in the wrong convergence when n becomes
larger. In this case, the DSRPCL algorithm is certainly trapped
in a local minimum of E(W) when the resulted classification
is wrong. Therefore, the uniqueness of the minimum point of
the cost function E(W) is broken at such n, though such
phenomenon seldom appears if n ≤ 2k.

3) Simulation Results of the Simulated-Annealing RPCL
(SARPCL) Algorithm: For a set of sample data with an asym-
metric structure like S3, S4, and S5, the DSRPCL algorithm
does converge incorrectly even if n is slightly larger than k. As
n becomes larger, this phenomenon appears more frequently.
That is, there exist a number of local minimums and saddle
points. In order to avoid or eliminate this phenomenon, we can
utilize some global searching techniques such as simulated an-
nealing [7], genetic algorithms [47], and evolution computation
[48]. Here, we apply the simulated-annealing mechanism to
the DSRPCL1 algorithm, resulting in the following SARPCL
algorithm.

SARPCL Algorithm

Step 1) Randomly and independently select each initial
weight wij from the interval [a, b], and let T = 0.

Step 2) At timestep T , let λ = exp(−k1T − k0), η =
η0/(c1T + c0), and t = 0.

Step 3) At subtimestep t, randomly select a sample pattern
Xµ from S = {X1,X2, . . . , XN} and take a ran-
dom number ξ subject to the uniform distribution on
[0, 1]. If ξ > λ, the weight vectors are modified by

∆Wi =
{
η(Xµ−Wi), if i = c(µ)
−η‖Xµ−Wi‖−P−2(Xµ−Wi), otherwise.

(17)

Otherwise, if ξ ≤ λ, the weight vectors are modified
by

∆Wi =
{−η(Xµ −Wi), if i = c(µ)
η‖Xµ −Wi‖−P−2(Xµ −Wi), otherwise.

(18)

Step 4) If t < M , we let t = t+ 1 and return to Step 3).
Step 5) If λ < ε, stop; otherwise, let T = T + 1 and return

to Step 2).

In the SARPCL algorithm, the delearning rate is set to be
η/(T + 1). Actually, we can consider 1/T as the temperature
in the process of an annealing simulation. On each stage of a
temperature point, the weight vectors will evolve forM times to
arrive at an equilibrium distribution of the weight vectors. Thus,
M is related to n. The learning rate η is generally selected by
experience. The stopping threshold value ε is usually selected
to be 10−6. The other way to stop the algorithm is to set an
upper threshold value for T . Moreover, k0, k1, c0, and c1 are
positive numbers, which are also selected by experience, and
[a, b] is the interval for the initial weights.

In the experiments of the SARPCL algorithm on the five
sets of sample data, the parameters are selected as follows:
η0 = 0.003, M = 100, k1 = 0.005, k0 = 1.200, c1 = 0.015,
c0 = 1.000, and [a, b] = [−1.2, 1.2]. We stop the algorithm and
get the empirical results when T = 10000.

For checking the validity of an empirical result of the
SARPCL algorithm, i.e., a group of resulted weight vectors,
on a set of sample data, we adopt a group of checking regions

MA AND WANG: COST-FUNCTION APPROACH TO RIVAL PENALIZED COMPETITIVE LEARNING (RPCL) 733

TABLE II
VALID RANGES OF n ON THE FIVE SETS OF SAMPLE DATA

as shown in Fig. 6. The procedure aims to check whether the
SARPCL algorithm converges correctly or not. Being com-
bined with the annealing-simulation mechanism, the SARPCL
algorithm makes E(W(t)) converge to the global minimum of
E(W) more probably. According to the analysis on the cost
function, this means that each group of the resulted weight
vectors is valid with a high probability, demonstrated by the
simulation experiments when n is not much larger than k.
However, as n becomes much larger than k, the local minimum
points of E(W) may increase rapidly such that a group of
resulted weight vectors will be invalid with a considerable large
probability, even if the SARPCL algorithm is used. Thus, the
usefulness of the SARPCL algorithm relies on whether there
exists a large valid range of n in which the SARPCL algorithm
converges correctly with a probability near 1. By the following
simulation results, we will demonstrate that there indeed exists
a large valid range of n for each experimental sample data set.

On each data set, we run the SARPCL algorithm for 100
times at each value of n (≥ k) from k. In order to determine
the valid range of n, we increase n from k and compute at each
n the percentage of the valid empirical result, i.e., the number of
the valid results over 100. The upper bound of the valid range
can be estimated by solving the largest integer of n at which
the valid percentage is larger than or equal to a threshold value
near one. We set this threshold value to be 1, 0.97, and 0.95,
respectively, and get the valid ranges on the five sets of sample
data listed in Table II.

In Table II, VP represents the valid percentage of the empir-
ical results of the SARPCL algorithm. When the set of sample
data has a symmetric structure such as S1 and S2, the valid
range is rather large; otherwise, if the set of sample data has an
asymmetric and complex structure, the valid range is relatively
small. After all, the valid ranges for the five sets of sample data
are reasonably large for applying the SARPCL algorithm to an
unsupervised classification.

Based on all these simulation experiments, we can find
that as the cost reduces into the global minimum through a
DSRPCL process, a correct number of weight vectors is auto-
matically selected and located around the centers of the clusters,
respectively. That is, this cost function can both detect the
number of actual clusters and make a reasonable classification
on such a data set via its minimization through the DSRPCL or
the ASRPCL algorithm. However, if two or more clusters are
seriously overlapped, the DSRPCL algorithm generally regards
them as one cluster and leads to a wrong result, which is also
demonstrated by the simulation experiments.

From the simulation experiments of both the DSRPCL and
the ASRPCL algorithms, we can find that when each initial
weight wij is randomly and independently selected from an
interval [a, b] such that each initial weight vector is randomly
selected in the field or the hypersphere of the sample data, the
dead unit problem is avoided completely. Thus, the DSRPCL

Fig. 7. Trajectories of weight vectors (solid blocks) during the learning
process of the batch DSRPCL algorithm using the Mahalanobis distance on
a sample data set consisting of four elliptical clusters or Gaussians in the case
n = 8 and k = 4. The learning rate η was selected to be 0.001. The number
of iterations is 100. In this figure, the contour lines of each Gaussian based
on a pair of final estimated mean vector and covariance matrix obtained from
the DSRPCL algorithm are retained unless its density is less than e−3 (peak).
(Color version available online at http://ieeexplore.ieee.org.)

algorithm can overcome the dead unit problem without the con-
science mechanism only if the initial weight vectors are selected
appropriately. Moreover, as there is no constraint that all the
winning frequencies are equal in the DSRPCL algorithm, the
classification accuracy of the sample data in which each cluster
has a different a priori probability is improved considerably in
comparison with that of the original RPCL algorithm.

By the other experiments, we further find that the DSRPCL
algorithm works well on the sample data set with a large num-
ber clusters (e.g., 40 clusters) or in a higher dimensional space
(e.g., 20-dimensional space) only if these clusters are separated
at a degree as those in the above sample data sets. When the
clusters become elliptical or the other forms like a triangle or a
rectangle, the DSRPCL algorithm can still detect the number of
clusters in the sample data only if these clusters are separated
at a similar degree. However, the classification may be not so
good. Actually, for the case of elliptical clusters, we can use
the Mahalanobis distance instead of the Euclidean distance in
the cost function to improve the classification performance. In
this way, the DSRPCL algorithm changes greatly according
to the new derivatives of the cost function with respect to
the mean vectors and covariance matrixes, which are omitted
in this paper. However, a typical experimental result of the
DSRPCL algorithm using the Mahalanobis distance is given
Fig. 7, from which we can find that the Mahalanobis distance-
based DSRPCL algorithm can solve the classification problem
of elliptical clusters efficiently.

B. Experiments for Unsupervised Color Image Segmentation

Segmenting a digital color image into homogenous regions
corresponding to the objects (including the background) is a

734 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006

Fig. 8. Experimental results on the color image of two goats. (a) Original color image. (b) Segmentation image of the GCC algorithm. (c) Segmented image
of the DSRPCL1 algorithm after 75 488 iterations (the execution time on a Pentium-4 personal computer was 14.641 s). (d) Segmented image of the DSRPCL2
algorithm after 75 645 iterations (the execution time on a Pentium-4 personal computer was 7.938 s). (Color version available online at http://ieeexplore.ieee.org.)

fundamental problem in image processing. When the number
of objects in an image is not known in advance, the image
segmentation is in an unsupervised mode and becomes rather
difficult in practice [49]. However, the DSRPCL algorithm
provides a new tool for solving this unsupervised-color-image-
segmentation problem. We apply it to the unsupervised color
image segmentation on two typical color images that are
expressed in the three-dimensional color space by the RGB
system. Actually, we use each weight vector in the DSRPCL
algorithm to represent an object in a color image and set k to
be larger than the number k∗ of the actual objects in the image.
When the weight vectors are far from the color representation
field of the image, we cancel these weight vectors. Finally, the
pixels in the image are partitioned according to the converged
weight vectors under the minimum distance principle.

In our experiments, for ease of segmentation, we make a
median filtering on each of the two regularized images and reg-
ularize all the three coordinates of the pixels in each color image
by dividing them by 32 so that the regularized coordinates are
within an interval of [0, 8]. After such a preprocessing, we run
the DSRPCL algorithm on the data sets of the two color images,
respectively, by letting k = 6 with the stopping criterion as
above. The initial parameters are randomly selected in some
intervals. Since the batch DSRPCL algorithm has the similar
convergence behavior as the DSRPCL1 algorithm, we only
apply the DSRPCL 1 and 2 algorithms to the unsupervised color
image segmentation. Here, the learning rates of the DSRPCL 1
and 2 algorithms are selected to be 0.1 and 0.5, respectively.

The experimental results of the two DSRPCL algorithms on
the color image of two goats are given in Fig. 8. As compared
with the original image given in Fig. 8(a), the unsupervised-
color-image-segmentation results of the two DSRPCL algo-
rithms are rather good. From the two segmented images given
by Fig. 8(c) and (d), we can observe that two objects are finally
located accurately. That is, the partitions accurately match the

actual objects in the image. Although k is set to be six for both
DSRPCL algorithms, they only find two objects in the image,
i.e., keep two weight vectors in the color representation field,
with the other weight vectors being driven far away from the
color representation field. Moreover, the experimental results of
the two DSRPCL algorithms on the color image of an elephant
are given in Fig. 9. From the two segmented images given by
Fig. 9(c) and (d), we can also observe that three objects are
finally located accurately. As a result, the DSRPCL algorithm
can be successfully applied to the unsupervised color image
segmentation.

Finally, we compare the DSRPCL algorithm with the original
RPCL algorithm and the generalized competitive clustering
(GCC) algorithm proposed in [49] based on our unsupervised-
color-image-segmentation experiments as well as the simulated
experiments on the randomly generated data sets from Gaussian
mixtures as above. In comparison with the original RPCL algo-
rithm [14], [15], the DSRPCL algorithm owns a better conver-
gence behavior. Generally, the DSRPCL or SARPCL algorithm
is not so sensitive to the initial values of the weight vectors and
leads to a good result. Oppositely, the original RPCL algorithm
is sensitive to the initial values of the weight vectors, and the
conscience mechanism makes it difficult to locate the clusters
or objects accurately. Moreover, the segmentation results of the
DSRPCL algorithm are also better than those of the GCC algo-
rithm based on the fuzzy theory given in the Web (http://www-
rocq.inria.fr/~boujemaa/Partielle2.html). For comparison, we
give the segmentation results of the GCC algorithm on these
two images by Figs. 8(b) and 9(b), respectively, downloaded
from the above Web site. By comparing the segmentation
results of the DSRPCL and GCC algorithms on these two color
images, we can find that the DSRPCL algorithms lead to a more
accurate segmentation on the contours of the objects in each
image. By our experiments, we even find that the execution
time of the DSRPCL algorithm is generally shorter than that

MA AND WANG: COST-FUNCTION APPROACH TO RIVAL PENALIZED COMPETITIVE LEARNING (RPCL) 735

Fig. 9. Experimental results on the color image of an elephant. (a) Original
color image. (b) Segmentation image of the GCC algorithm. (c) Segmented
image of the DSRPCL1 algorithm after 73 024 iterations (the execution time
on a Pentium-4 personal computer was 15.063 s). (d) Segmented image of
the DSRPCL2 algorithm after 73 843 iterations (the execution time on a
Pentium-4 personal computer was 7.875 s). (Color version available online at
http://ieeexplore.ieee.org.)

of the GCC algorithm. As a whole, the DSRPCL algorithm is
an efficient algorithm for clustering analysis and unsupervised
color image segmentation.

C. Classification of the Wine Data

We further apply the DSRPCL algorithm to classification
(or recognition) of the wine data [50], which are typical real
data for testing the classification algorithm. Actually, the wine
dataset consists of 178 samples of three types of wine. Each
datum is 13-dimensional and consists of chemical analyses of
a sample from a certain type of wine. We first regularize these
wine data into an interval of [0, 8] and then apply the SARPCL
algorithm to solving the unsupervised classification problem
of the wine data by setting k = 6 with the parameters being
selected similarly as above. It is shown by the experiments that
the SARPCL algorithm can detect the three classes in the wine
dataset with an optimal classification accuracy of 97.20% (there
are five errors), which is slightly less than the classification

accuracy 97.75% (there are four errors) of the method of linear
mixing kernels (Gaussians) with the information minimization
criterion [51]. Moreover, when the Mahalanobis distance is
used in the SARPCL algorithm, the best classification accuracy
on the wine data set can reach to 100%, i.e., all the wine samples
can be classified correctly.

D. Discussions on the Behaviors of the DSRPCL Algorithms

Finally, we present some discussions on the behaviors of
the DSRPCL algorithms. As shown by the simulation and
application experiments, the DSRPCL algorithms can allocate
a correct number of weight vectors at or around the cen-
ters of the actual clusters, respectively, with the extra weight
vectors being driven outside the hypersphere surrounding the
sample data. That is, the DSRPCL algorithms converge sim-
ilarly as the original RPCL algorithm. However, they have
certain different behavior characteristics. The batch DSRPCL
algorithm converges more stably than the DSRPCL 1 and 2
algorithms, but these two adaptive DSRPCL algorithms con-
verge much more quickly than batch one. Moreover, they are
not so sensitive to the initial values of the weight vectors as
batch one. Clearly, the sensitivity of initial values of weight
vectors is improved considerably by the SARPCL algorithm,
but the simulated-annealing procedure incurs a larger computa-
tional cost.

As for the two adaptive DSRPCL algorithms, the first algo-
rithm can quickly drive the extra weight vectors far away from
the sample data set, while the second algorithm can drive the ex-
tra weight vectors just in the outside of the sample data. For the
sample data set in which the actual clusters are well separated,
the two algorithms can both converge to a good result. But
when some actual clusters are overlapped at a certain degree,
the first algorithm tends to drive more weight vectors than the
second algorithm, which is demonstrated by some experiments
on unsupervised color image segmentation. The reason is just
that the first algorithm implements the delearning action to all
losers, while the second algorithm implements the delearning
action only to the strongest loser, i.e., the rival. As pointed
out at the end of Section III, these two algorithms are the
two extremes of DSRPCL. It is also found by the experiments
that the intermediate schemes of DSRPCL usually lead to a
result between those of the two extremes on the determination
of the number of clusters. However, in certain cases of the
sample data, they can even outperform both DSRPCL 1 and
2 algorithms on the classification accuracy.

VI. CONCLUSION

A cost-function approach is proposed to investigate the prob-
lem of RPCL correct convergence via a DSRPCL algorithm
that is associated with the minimization of a cost function on
the weight vectors. As the cost function reduces to a local
minimum, the DSRPCL algorithm has the separation nature
that a number of weight vectors converge within a hypersphere
surrounding the sample data, while the other weight vectors
diverge to infinity. If we make the cost function reduce to the
global minimum, the DSRPCL algorithm will allocate a correct

736 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 4, AUGUST 2006

number of weight vectors that will converge to each center of
the clusters in the sample data, respectively.

ACKNOWLEDGMENT

The authors would like to thank the editor and three anony-
mous reviewers for their valuable comments and insightful
suggestions; L. Xu for his strong support, valuable suggestions,
and helpful discussions on this research; and B. Cao for his
support of the experiments.

REFERENCES

[1] P. A. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach.
London, U.K.: Prentice-Hall, 1982.

[2] J. Makhoul, S. Rpucos, and H. Gish, “Vector quantization in speech
coding,” Proc. IEEE, vol. 73, no. 11, pp. 1551–1558, Nov. 1985.

[3] N. Nasrabadi and R. A. King, “Image coding using vector quantization: A
review,” IEEE Trans. Commun., vol. 36, no. 8, pp. 957–971, Aug. 1988.

[4] J. Moody and C. Darken, “Fast learning in networks of locally tuned
processing units,” Neural Comput., vol. 1, no. 2, pp. 281–294, 1989.

[5] T. Poggio and F. Girosi, “Regularization algorithms for learning that
are equivalent to multilayer networks,” Science, vol. 247, no. 4945,
pp. 978–982, 1990.

[6] S. J. Nowlan and G. E. Hinton, “Evaluation of adaptive mixtures of
competing experts,” in Advances in Neural Information Processing Sys-
tem, vol. 3, R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds.
San Mateo, CA: Morgan Kaufmann, 1991, pp. 774–780.

[7] R. Hecht-Nielsen, Neurocomputing. Reading, MA: Addison-Wesley,
1990.

[8] D. E. Rumelhart and D. Zipser, “Feature discovery by competitive
learning,” Cogn. Sci., vol. 9, no. 1, pp. 75–112, 1985.

[9] S. Grossberg, “Competitive learning: From iterative activation to adaptive
resonance,” Cogn. Sci., vol. 11, no. 1, pp. 23–83, 1987.

[10] R. Hecht-Nielsen, “Counterpropagation networks,” Appl. Opt., vol. 26,
no. 23, pp. 4979–4984, Dec. 1987.

[11] E. L. Bienenstock, L. N. Cooper, and P. W. Munro, “Theory for the
development of neuron selectivity: Orientation specificity and binocu-
lar interaction in visual cortex,” J. Neurosci., vol. 2, no. 1, pp. 32–48,
Jan. 1982.

[12] D. DeSieno, “Adding a conscience to competitive learning,” in Proc. IEEE
Int. Conf. Neural Networks, San Diego, CA, 1988, vol. 1, pp. 117–124.

[13] S. C. Ahalt, A. K. Krishnamurty, P. Chen, and D. E. Melton, “Competitive
learning algorithms for vector quantization,” Neural Netw., vol. 3, no. 3,
pp. 277–291, 1990.

[14] L. Xu, A. Krzyzak, and E. Oja, “Unsupervised and supervised classifi-
cation by rival penalized competitive learning,” in Proc. 11th Int. Conf.
Pattern Recognition, The Hague, The Netherlands, Aug. 30–Sep. 3 1992,
vol. 1, pp. 672–675.

[15] ——, “Rival penalized competitive learning for clustering analysis, RBF
net, and curve detection,” IEEE Trans. Neural Netw., vol. 4, no. 4,
pp. 636–648, Jul. 1993.

[16] J. Mao and A. K. Jain, “A self-organizing network for hyperellipsoidal
clustering (HEC),” IEEE Trans. Neural Netw., vol. 7, no. 1, pp. 16–29,
Jan. 1996.

[17] A. Likas, “A reinforcement learning approach to online clustering,”
Neural Comput., vol. 11, no. 8, pp. 1915–1932, Nov. 1999.

[18] R. Li, E. Sherrod, J. Kim, and G. Pan, “Fast image vector quantiza-
tion using a modified competitive learning neural network approach,”
Int. J. Imaging Syst. Technol., vol. 8, no. 4, pp. 413–418, 1997.

[19] S. A. Billings and G. L. Zheng, “Radial basis function network configura-
tion using genetic algorithms,” Neural Netw., vol. 8, no. 6, pp. 877–890,
1995.

[20] A. G. Bors and I. Pitas, “Median radial basis function neural network,”
IEEE Trans. Neural Netw., vol. 7, no. 6, pp. 1351–1364, Nov. 1996.

[21] A. Krzyzak, T. Linder, and G. Lugosi, “Nonparametric estimation and
classification using radial basis function nets and empirical risk minimiza-
tion,” IEEE Trans. Neural Netw., vol. 7, no. 2, pp. 475–487, Mar. 1996.

[22] P. R. Chang and W. H. Yang, “Environment-adaptation mobile radio
propagation prediction using radial basis function neural networks,”
IEEE Trans. Veh. Technol., vol. 46, no. 1, pp. 155–160, Feb. 1997.

[23] A. Roy, S. Govil, and R. Miranda, “A neural-network learning theory and
a polynomial time RBF algorithm,” IEEE Trans. Neural Netw., vol. 8,
no. 6, pp. 1301–1313, Nov. 1997.

[24] J. Lee, C. Beach, and N. Tepedelenlioglu, “A practical radial basis func-
tion equalizer,” IEEE Trans. Neural Netw., vol. 10, no. 2, pp. 450–455,
Mar. 1999.

[25] A. G. Bors and I. Pitas, “Optical flow estimation and moving object seg-
mentation based on median radial basis function network,” IEEE Trans.
Image Process., vol. 7, no. 5, pp. 693–702, May 1998.

[26] H. Furukawa, T. Ueda, and M. Kitamura, “A systematic method for ra-
tional definition of plant diagnostic symptoms by self-organizing neural
networks,” Neurocomputing, vol. 13, no. 2–4, pp. 171–183, Oct. 1996.

[27] Y. M. Cheung, W. M. Leung, and L. Xu, “Adaptive rival penalized com-
petitive learning and combined linear predictor model for financial fore-
cast and investment,” Int. J. Neural Syst., vol. 18, no. 5/6, pp. 517–534,
1997.

[28] Y. M. Cheung and L. Xu, “A RPCL-based approach for Markov model
identification with unknown state number,” IEEE Signal Process. Lett.,
vol. 7, no. 10, pp. 284–287, Oct. 2000.

[29] Y. M. Cheung, “Rival penalization controlled competitive learning for
data clustering with unknown cluster number,” in Proc. 9th ICONIP,
Singapore, Nov. 18–22, 2002, vol. 2, pp. 467–471.

[30] Z. Y. Liu, K. C. Chiu, and L. Xu, “Strip line detection and thinning
by RPCL-based local PCA,” Pattern Recognit. Lett., vol. 24, no. 14,
pp. 2335–2344, Oct. 2003.

[31] L. Xu, “YING-YANG machine: A Bayesian–Kullback scheme for
unified learning and new results on vector quantization,” in Proc.
ICONIP, Beijing, China, Oct. 30–Nov. 3, 1995, vol. 2, pp. 977–988.
Keynote talk.

[32] ——, “Bayesian–Kullback Ying-Yang machine: Reviews and new re-
sults,” in Proc. ICONIP, Hong Kong, Sep. 24–27, 1996, vol. 1, pp. 59–67.

[33] ——, “Rival penalized competitive learning, finite mixture, and multisets
clustering,” in Proc. IEEE Int. Joint Conf. Neural Networks, Anchorage,
AK, May 4–9, 1998, vol. 3, pp. 251–2530.

[34] ——, “An overview on unsupervised learning from data mining per-
spective,” in Advances in Self-Organizing Maps. N. Allison et al., Eds.
New York: Springer-Verlag, Jun. 2001, pp. 181–210.

[35] ——, “Best harmony, unified RPCL and automated model selec-
tion for unsupervised and supervised learning on Gaussian mixtures,
three-layer nets and ME-RBF-SVM models,” Int. J. Neural Syst., vol. 11,
no. 1, pp. 3–69, 2001.

[36] ——, “BYY harmony learning, structural RPCL, and topological
self-organizing on mixture models,” Neural Netw., vol. 15, no. 8/9,
pp. 1125–1151, Oct./Nov. 2002.

[37] D. M. Clark and K. Ravishankar, “A convergence theorem for Grossberg
learning,” Neural Netw., vol. 3, no. 1, pp. 87–92, 1990.

[38] C. M. Kuan and K. Hornik, “Convergence of learning algorithms
with constant learning rates,” IEEE Trans. Neural Netw., vol. 2, no. 5,
pp. 484–489, Sep. 1991.

[39] B. Kosko, “Stochastic competitive learning,” IEEE Trans. Neural Netw.,
vol. 2, no. 5, pp. 522–529, Sep. 1991.

[40] H. Yang and T. S. Dillon, “Convergence of self-organizing algorithms,”
Neural Netw., vol. 5, no. 3, pp. 485–493, 1992.

[41] A. S. Galanopoulos, R. L. Moses, and S. C. Ahalt, “Diffusion approxi-
mation of frequency sensitive competitive learning,” IEEE Trans. Neural
Netw., vol. 8, no. 5, pp. 1026–1030, Sep. 1997.

[42] Y. M. Cheung, “Maximum weighted likelihood via rival penalized EM for
density mixture clustering with automated model selection,” IEEE Trans.
Knowl. Data Eng., vol. 17, no. 6, pp. 750–761, Jun. 2005.

[43] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Stat., vol. 22, no. 3, pp. 400–407, Sep. 1951.

[44] S. Y. Kung, Digital Neural Networks. Englewood Cliffs, NJ: Prentice-
Hall, 1993.

[45] V. A. Zorich, Mathematical Analysis I. Berlin, Germany: Springer-
Verlag, 2004.

[46] L. Ljung, “Strong convergence of a stochastic approximation algorithm,”
Ann. Stat., vol. 6, no. 3, pp. 680–696, 1978.

[47] D. E. Goldberg, Genetic Algorithms in Search, Optimization & Machine
Learning. Reading, MA: Addison-Wesley, 1989.

[48] R. Storn and K. Price, “Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,” J. Glob. Optim.,
vol. 11, no. 4, pp. 341–359, Dec. 1997.

[49] N. Boujemaa, “Generalized competitive clustering for image segmenta-
tion,” in Proc. 19th Int. Conf. North American Fuzzy Information Process-
ing Society, Atlanta, GA, 2000, pp. 133–137.

[50] C. L. Blake and C. J. Merz, (1998), UCI Repository of Machine Learning
Databases, Irvine: Dept. Inf. Comput. Sci., Univ. California. [Online].
Available: http://www.ics.uci.edu/~mlearn/MLRepository.html

[51] S. J. Roberts, R. Everson, and I. Rezek, “Maximum certainty data parti-
tioning,” Pattern Recognit., vol. 33, no. 5, pp. 833–839, May 2000.

MA AND WANG: COST-FUNCTION APPROACH TO RIVAL PENALIZED COMPETITIVE LEARNING (RPCL) 737

Jinwen Ma received the M.S. degree in applied
mathematics from Xi’an Jiaotong University, Xian,
China, in 1988 and the Ph.D. degree in probability
theory and statistics from Nankai University, Tianjin
China, in 1992.

From July 1992 to November 1999, he was a
Lecturer or Associate Professor at the Department of
Mathematics, Shantou University. From December
1999, he worked as a Full Professor at the Institute of
Mathematics, Shantou University. Since September
2001, he has been with the Department of Infor-

mation Science, School of Mathematical Sciences, Peking University. During
1995 and 2003, he also worked at or visited several times the Department of
Computer Science and Engineering, the Chinese University of Hong Kong,
as a Research Associate or Fellow. From September 2005 to August 2006,
he was a Research Scientist at the Laboratory of Mathematical Neuroscience,
RIKEN Brain Science Institute, Japan. He is the author or coauthor of more than
80 academic papers on neural networks, pattern recognition, artificial intelli-
gence, and information theory.

Taijun Wang received the M.S. degree in signal and
information processing from Southeast University,
Nanjing, China, in 1982.

Since 1988, he has been an Associate Professor
in the Department of Radio Engineering, Southeast
University. His research interests are related to dig-
ital signal processing, pattern recognition, artificial
neural networks, statistical learning theory, and sci-
entific visualization.

