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Bayesian Texture Classification Based on
Contourlet Transform and BYY Harmony

Learning of Poisson Mixtures
Yongsheng Dong and Jinwen Ma

Abstract—As a newly developed 2-D extension of the wavelet
transform using multiscale and directional filter banks, the con-
tourlet transform can effectively capture the intrinsic geometric
structures and smooth contours of a texture image that are the
dominant features for texture classification. In this paper, we
propose a novel Bayesian texture classifier based on the adaptive
model-selection learning of Poisson mixtures on the contourlet
features of texture images. The adaptive model-selection learning
of Poisson mixtures is carried out by the recently established
adaptive gradient Bayesian Ying-Yang harmony learning algo-
rithm for Poisson mixtures. It is demonstrated by the experiments
that our proposed Bayesian classifier significantly improves the
texture classification accuracy in comparison with several current
state-of-the-art texture classification approaches.

Index Terms—Bayesian Ying-Yang (BYY) harmony learning
system, contourlet transform, model selection, Poisson mixtures,
texture classification.

I. INTRODUCTION

T EXTURE classification is an important but difficult task in
image processing and pattern recognition. From different

aspects, there have been established a variety of texture classi-
fication methods during the last three decades [1]–[17]. In fact,
they can be broadly divided into two categories, namely, spa-
tial-domain methods and transformed-domain methods, which
are also referred to as filter-based methods or signal-processing
methods [7].

Spatial-domain methods can be further divided into three
subcategories, namely, structural methods [2], [3], statistical
methods [1], and model-based methods [4], [5]. In fact, spatial
structural methods are based on regular or semiregular place-
ments of textural primitives [2], [3]. In the case of observable
or visual textures, it is usually rather difficult to extract the
primitives and their placements. Thus, these approaches are apt
only for highly regular deterministic textures. Most of spatial
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statistical and model-based approaches for texture classifica-
tion, such as gray-level co-occurrence matrices [1] and Markov
random field models [4], [5], are restricted to the analysis
of spatial interactions over relatively small neighborhoods.
Therefore, their performances are only good for the class of
so-called microtextures.

To alleviate these essential problems of spatial-domain
methods, transformed-domain methods have been proposed
from a different point of view [6]–[16]. The texture classifica-
tion system using a transformed-domain method involves two
steps, i.e., feature extraction, where a group of texture features
are extracted from the domain into which the image is trans-
formed, and classification, where a class label is assigned to an
input texture image according to the extracted texture features.
The commonly used transforms include the Radon [11], Gabor
[13], ranklet [10], wavelet [6]–[9], [14], [15], and ridgelet [12]
transforms. Among these transforms, the wavelet transform has
gained popular applications in the fields of image processing
and classification [6]–[9], [14], [15], [18]–[20]. The main
reason is that the wavelet transform enables the decomposition
of the image into different frequency subbands, being similar
in the way the human visual system operates. However, 2-D
wavelets lack directionality and are only good at catching point
discontinuities but do not capture the geometrical smoothness
of the contours.

As a newly developed 2-D extension of the wavelet trans-
form using multiscale and directional filter banks (DFBs), the
contourlet transform can effectively capture the intrinsic geo-
metrical structures, which are a key to visual information pro-
cessing, because the contourlet expansion can achieve the op-
timal approximation rate for piecewise smooth functions with

contours in some sense [23]. Recently, the contourlet trans-
form has been successfully used in content-based texture re-
trieval [26], palmprint classification, and handwritten numeral
recognition [27]. In this paper, we utilize the contourlet trans-
form to extract the features of a texture image for the purpose
of texture classification.

On the other hand, it is very important to design an efficient
texture classifier based on the contourlet features in the trans-
formed domain. From the point of view of statistics, we can
consider that each of the contourlet features extracted from a
random image of one texture class is approximately subject to a
Poisson mixture distribution. Then, the Bayesian classifier can
be built for texture classification if those Poisson mixtures for all
the texture classes can be clarified via some learning algorithm.

The expectation maximization (EM) algorithm is the
common method to estimate the parameters of a finite mixture
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with a given sample data set [31], and it has been utilized for
texture classification and segmentation [6], [21], [22], [26].
However, the EM algorithm is constructed under a framework
of maximum likelihood and thus unable to make a model
selection for Poisson mixtures [32], [37], i.e., to select an ap-
propriate number of Poissons for a sample data set. Therefore,
the learning algorithm that we need should own the ability to
adaptively determine the number of Poissons in the sample data
during the parameter learning, i.e., to make a model selection
adaptively, because we cannot know the appropriate number
of Poissons in the sample data of one contourlet feature for
each texture class in advance. Fortunately, the adaptive gradient
Bayesian Ying-Yang (BYY) harmony learning algorithm based
on the BYY harmony learning system and theory [40], [41]
has been recently established in [37] to solve these problems.
Although this BYY harmony learning algorithm was already
applied to texture classification directly on the data sets of
texture images and led to a better classification accuracy than
the bit-plane probability (BP) signature approach [9], it needs a
relatively large number of samples to train the classifier, which
is often practically unsatisfied. However, as we apply it on the
contourlet features of the texture images, the texture classifica-
tion accuracy can be significantly improved with the help of the
good representation of the contourlet transform. Moreover, the
training-data-demanding problem can be alleviated in a certain
sense.

In this paper, we follow the transform-based texture classi-
fication paradigm and propose a novel Bayesian texture classi-
fier via the BYY harmony learning of Poisson mixtures on the
contourlet features of texture images. The comparative classi-
fication experiments show that our proposed Bayesian classi-
fier outperforms several current state-of-the-art texture classifi-
cation approaches.

The contourlet transform is introduced in Section II. In
Section III, we describe the Poisson mixture model and the
adaptive gradient BYY harmony learning algorithm for Poisson
mixtures. Section IV presents our Bayesian texture classifier
based on the contourlet transform and the adaptive model-se-
lection learning of Poisson mixtures. The experimental results
and comparisons are contained in Section V. Finally, we briefly
conclude in Section VI.

II. CONTOURLET TRANSFORM

The contourlet transform has been recently developed in [23]
in order to get rid of the limitations of wavelets. They utilized
a double filter bank structure in which, at first, the Laplacian
pyramid (LP) [24] is used to capture the point discontinuities
and, then, a DFB [25] is used to link point discontinuities into
the linear structure. Thus, the overall result of such a transform
is based on an image expansion with basis elements such as
contour segments, and thus, it is named the contourlet transform.
More recent developments and applications on the contourlet
transform can be found in [26]–[29].

Due to its cascade structure accomplished by combining
the LP with a DFB at each scale, multiscale and directional
decomposition stages in the contourlet transform are indepen-
dent of each other. Therefore, one can decompose each scale
into any arbitrary power-of-two’s number of directions, and

different scales can be decomposed into different numbers of
directions. For simplicity, we impose that, in the pyramid DFB,
the number of DFB decomposition levels is three at each scale
of the pyramid to capture the directional information efficiently,
that is, the number of directions at each scale is 8.

In the contourlet domain, the hidden Markov tree (HMT) [26]
is suggested to model the contourlet coefficients in the fields
of denoising and texture retrieval. Although the HMT model is
quite efficient for some practical applications, its computational
cost is very large. Here, we model the contourlet coefficients
in each subband using the simpler probabilistic models, i.e.,
Poisson mixtures, rather than the relatively complicated HMT
model.

III. POISSON MIXTURES AND ITS BYY HARMONY LEARNING

As well known, Poisson distribution is a typical discrete prob-
abilistic model for count events or data, such as the number of
telephone calls you receive in an hour, the number of dandelions
per square meter on the college playing field, and the number of
cars per mile broken down on the hard shoulder of the motor
way. Mathematically, a univariate Poisson (probability) distri-
bution is defined as , ,
where is the parameter and is the factorial of .

In many practical applications, the observed data can be con-
sidered being generated from a number of components that are
linearly mixed in certain proportions. That is, the observed data
are subject to a finite mixture distribution. If all the components
are Poisson distributions, the finite mixture is called a Poisson
mixture [30], [37], which can be given as follows:

(1)

where and are
Poisson distributions, values of are the mixing pro-
portions of these Poisson components with the constraint that

, and is just the number of Poisson components.
To make the model selection adaptively during the parameter

learning, the adaptive gradient BYY learning algorithm [37] was
established for Poisson mixtures. For clarity, we still give a brief
derivation of the adaptive gradient BYY learning algorithm for
Poisson mixtures and leave the details in [37].

For the Poisson mixture modeling, a bidirectional architec-
ture of the BYY learning system has been established such
that its BYY harmony learning is equivalent to the parameter
learning with adaptive model selection on Poisson mixtures
[37]. Specifically, given a sample data set
from the original Poisson mixture, the learning task on this
bidirectional architecture is to maximize the following harmony
function:

(2)

where

(3)
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where , , and
.

For convenience of derivation, we utilize the following
so-called softmax representations of the mixing propor-
tions , , where

. In such a way, computed with
any group will certainly satisfy conditions and

.
In this way, we can obtain the partial derivatives of at

the sample point with respect to and as follows:

(4)

(5)

where ,
, is the Kronecker

function, and .
According to (4) and (5), we can construct the following

adaptive gradient BYY learning rule of and :

(6)

(7)

where is the learning rate that starts from a reasonable ini-
tial value and gradually decreases to zero in the Robbin–Monro
stochastic approximation manner [36].

According to the BYY harmony learning principles [37],
[40], [41], as the adaptive gradient BYY learning algorithm
with being larger than the number of actual Poissons has con-
verged, i.e., arrives at a maximum, the model selection
is adaptively made with the parameter learning or estimation
by forcing the mixing proportions of those extra Poissons to
attenuate to zero.

IV. PROPOSED BAYESIAN TEXTURE CLASSIFIER

Upon previous preparations, we can now present the Bayesian
texture classifier based on the BYY harmony learning of Poisson
mixtures on the contourlet features of texture images in the fol-
lowing two subsections, respectively.

A. Feature Extraction Via the Contourlet Transform

As previously discussed, the contourlet transform is more ef-
ficient in capturing the contours of an image than the wavelet
transform. In order to classify the textures more efficiently, we
can decompose a texture image into some subbands by the con-
tourlet transform and extract some features from each subband
to represent it. Thus, these contourlet features can be used to
represent the texture image more efficiently for texture classifi-
cation. Moreover, each contourlet feature can be regarded as a
random variable subject to a certain Poisson mixture distribu-
tion.

For a texture image, denoted by , we
can decompose it via the discrete contourlet transform into
a set of coefficients , and

. Note that indexes , , and specify the

Fig. 1. Contourlet transform of the “���������” texture.

scale, the direction, and the location, respectively. The number
of DFB decomposition levels varies with scale , and thus, we
denote it by . is the highest level of LP decomposition.
Fig. 1 shows the contourlet transform on the “ ” tex-
ture image from the VisTex database [33]. For the visual clarity,
only two-scale decompositions are shown. The image is de-
composed into a low-pass subband and 16 bandpass directional
subbands, where the highest level of the LP decomposition
level is 2 and the number of DFB decomposition levels is 3 at
each scale , i.e., the number of directional
subbands is 8 at each scale.

The purpose of the feature extraction is to obtain a set of tex-
ture measures that can be used to discriminate among different
texture classes. As we all know, a widely used wavelet feature
is the energy of each wavelet subband [6], [8]. Similarly, in the
contourlet domain, we extract the norm-1 energy of each sub-
band as a feature to represent the energy of the subband. How-
ever, from the statistical viewpoint, the degree of the dispersion
of the coefficients is also a metric that can discriminate different
texture classes. Hence, we extract the average absolute devia-
tion from the absolute mean and the range in each subband as
the features that measure the degree of dispersion of the coef-
ficients. The former measures the degree of deviation from the
energy, and the latter measures the degree of dispersion of the
minus coefficients and the plus coefficients because the distri-
bution of coefficients in one subband is not strictly symmetric
generally. However, in order to construct the probabilistic model
conveniently, for each of the aforementioned three features in
one subband, we define a new equivalent feature variable with
a smaller variance by multiplying a factor less than one to the
primary feature. The details are as follows.

Here, we impose that the number of DFB decomposition
levels at each scale is 3 , i.e., the
number of directional subbands at each scale is 8. For clarity,
we denote the th directional subband at the th scale by the

coefficient matrix ( is the simplified
form of ). Then, the features in are given by

(8)

(9)

(10)
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Fig. 2. Two texture images. (a) Bark.0000. (b) Bark.0004.

where
and , where and

.
For the wavelet-based texture classification approaches, the

coefficients in the low-frequency subband are generally ignored.
However, those coefficients still contain some valuable informa-
tion of the image. Thus, it is better to use them for texture classi-
fication. We denote the low-frequency subband by the
coefficient matrix and then obtain the features in by

(11)

(12)

(13)

where
and , where and

.
In this way, the feature vector of each texture patch from a

texture image is composed of three low-frequency features and
directional features, i.e.,

(14)

where con-
tains all the 24 features at the th scale.

For the sake of clarity, the feature vector can be rewritten as

(15)

where . Obviously, each feature is non-
negative.

For illustration, we select two typical 512 512 texture im-
ages “Bark.0000” and “Bark.0004” from the VisTex database
[33], which are shown in Fig. 2. As shown, the two texture im-
ages are very homogeneous. Then, we divide each of the two
texture images into 16 nonoverlapping 128 128 patches and
number them from 1 to 16. To extract the aforementioned de-
fined features, we perform a four-scale contourlet transform to
these patches, i.e., , and we can obtain the feature vector
with 99 components. Fig. 3(a) and (b) shows the sketches of
feature on the 16 patches from the two texture images, re-
spectively.

Generally speaking, the minimum distance (MD) classifier
can be used to classify the texture images when all the features
have been obtained. However, from Fig. 3(a) and (b), it is shown
that the contourlet feature of “Bark.0000” ranges from 6.34

Fig. 3. Sketches of feature � with respect to the patch number for (a) “Bark.
0000” and (b) “Bark.0004.”

Fig. 4. Trained Poisson mixture probability distributions of feature� for
(a) “Bark.0000” and (b) “Bark.0004.”

to 16.59, whereas the contourlet feature of “Bark.0004”
ranges from 6.89 to 11.3. Thus, the MD classifier is unsuit-
able for this feature. Thus, we here abandon the MD classifier
but try to seek a Bayesian classifier for our texture classifica-
tion. In order to do so, we need to model the contourlet fea-
tures of each texture class by a reasonable probabilistic model.
Usually, Gaussian mixtures can be employed to do such a job
[38], [39]. However, the contourlet features such as are dis-
cretely distributed with a limited number of values. It is diffi-
cult to get a good estimation of the parameters in the Gaussian
mixture model with only a small number of sample data via
the current learning algorithms [38]–[41]. Oppositely, Poisson
mixtures may be more efficient in this situation because only
one parameter needs to be estimated for each Poisson compo-
nent [30], [37]. As a random variable for a Poisson mixture is
limited to be nonnegative integers, we can quantize the feature
values into integers using the so-called deadzone quantization
step size suggested in [9]. By the adaptive gradient BYY

harmony learning algorithm [37], we can obtain the distribu-
tions of feature for the two texture images or classes being
shown in Fig. 4(a) and (b), respectively. It is shown that the dis-
tributions of for the two texture images are quite different
from each other, and thus, we can make use of them to construct
a Bayesian classifier to distinguish these two texture classes that
the two images represent.

For simplicity, we still denote the quantized feature vector
by , i.e., the feature vector in the following will further repre-
sent the feature vector quantized by the deadzone quantization
without explanation. Meanwhile, we assume that each compo-
nent of , i.e., , follows a Poisson mixture, i.e.,

(16)
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where all components are Poisson distributions,
is the proportion of Poisson in the mixture population,

and is the number of actual Poisson components corre-
sponding to variable .

Moreover, we assume that all the components in are in-
dependent. A brief explanation about the rationality of this in-
dependence assumption is given as follows. First, in order to
check the independence of the contourlet feature variables, we
randomly chose three feature variables in each directional sub-
band and investigated their probability distributions over all the
images of a data set. It was found that they have less depen-
dence relations according to the statistics. Thus, these feature
variables can be regarded as (at least approximately) being in-
dependent. Similarly, three features in the low-pass subband can
be also regarded as being independent due to the fact that there
are also less dependence relations among them. Second, many
established wavelet-based methods are based on the assumption
that all detail subbands are statistically independent, such as [15]
and [18]. Thus, it is reasonable that contourlet subbands are as-
sumed to be independent due to the fact that the contourlet trans-
form is a 2-D extension of the wavelet transform. Based on these
two aspects, we can make the assumption of the independence
of all the contourlet feature variables in . Next, we will design
a Bayesian classifier based on Poisson mixture models of these
features.

B. Bayesian Texture Classifier Based on Poisson Mixtures

Based on these contourlet features data, we can construct a
Bayesian texture classifier through the posteriori probability as
follows:

(17)

where represents texture class , is
the prior probability of , and denotes the conditional
probability of the feature vector with respect to the texture
class . After all the components in the posteriori probability
formula are trained, the Bayesian classifier just assigns the tex-
ture class index gaining the highest to or the cor-
responding texture image.

In the general case of texture classification on a given set
of texture images, we can maintain that is equally
distributed, i.e., . Then, we need only to learn
the parameters of those conditional probability distributions

. In fact, under the independence assumption of these
contourlet features, the conditional probability distribution

takes the following product form:

(18)

where is
just the Poisson mixture distribution with parameters

to represent the proba-
bility of the th contourlet feature given the texture class

. For this Poisson mixture model, the model scale is not
known in advance.

TABLE I
LEARNING SCHEME OF THE BAYESIAN TEXTURE CLASSIFIER BASED

ON THE BYY HARMONY LEARNING OF POISSON MIXTURES

ON THE CONTOURLET FEATURES

In such a way, the learning task of the Bayesian classifier
becomes the parameter estimation and the model selection on
Poisson mixtures for . In this case, we can utilize the adap-
tive gradient BYY learning algorithm [37] to learn the parame-
ters of these Poisson mixtures with adaptive model selection and
finally build the Bayesian classifier on the contourlet features of
texture images. The details of our Bayesian classifier learning
scheme are summarized in Table I.

In summary, for the purpose of supervised texture clas-
sification, we first perform the contourlet transform on the
patches of each texture image and compute the feature vectors
of these patches. Then, we implement the adaptive gradient
BYY learning algorithm to learn the parameters of the Poisson
mixtures with adaptive model selection for each contourlet
feature with the feature values of those training patches and
finally build the Bayesian classifier. In the test stage, for an
input patch, we only need to calculate the conditional probabil-
ities of its feature vector with respect to all the
classes, . As a result, the class label gaining the
highest is assigned to it.

V. EXPERIMENTAL RESULTS

Here, various experiments are carried out to demonstrate
our proposed Bayesian texture classifier based on the BYY
harmony learning of Poisson mixtures for the contourlet fea-
tures of texture images, being compared with several current
state-of-the-art approaches of texture classification under dif-
ferent image environments.

A. Performance Evaluation

We first evaluate our proposed Bayesian texture classifier on a
typical set of 24 gray 640 640 images from the Brodatz image
base (referred to as set 1 and shown in Fig. 5), which were also
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Fig. 5. Twenty-four Brodatz texture images of set 1.

used in [13]. In order to do so, we begin to describe how to set
up those parameters in our learning paradigm.

In the feature extraction phase, we select the pyramid and
directional filters by the “9–7” filters in the contourlet transform,
which are the biorthogonal wavelet filters. In fact, with the other
filter selection such as the “5–3” filters, the results are similar.
On the other hand, we consider the contourlet transform with
the number of contourlet decomposition scales varying from 1
to 5 for evaluation.

In the learning phase, we have investigated the distribution of
for . Numerous experiments reveal that

its distribution is simple and can be approximated by the Poisson
mixtures with the number of components less than 6. Thus, the
number 6 is the value of that should be selected and previ-
ously set for the adaptive gradient BYY harmony learning on
Poisson mixtures. Now, we explain why such a value of should
be selected. In fact, the adaptive BYY harmony algorithm can
make model selection adaptively during the parameter learning
by forcing the mixing proportions of those extra Poissons
to attenuate to zero. However, if is too large (e.g., ),
the computational cost will be also large since much computa-
tion is needed for eliminating those extra Poissons. Thus, we
cannot select a large number for . In contrast, if is too small
(e.g., ), Poisson mixtures may not be able to approximate
the probability distributions of the contourlet features properly,
which leads to a poor performance of texture classification. In
this way and by experience, 6 is a reasonable choice of in our
situation.

According to the BYY best harmony learning principle [37],
[40], [41], the adaptive gradient BYY algorithm for Poisson
mixtures has converged or been stopped when the harmony
function arrives or is stable at a maximum value. Thus,
in our experiments, we stop the BYY harmony learning process
if the absolute difference of the harmony functions at two se-
quential iterations of the algorithm, i.e., ,
becomes very small, being less than . In addition, in
order to keep a low computational cost of the algorithm in the
general case, we also set an upper bound for the number
of iterations during the learning process. That is, the adaptive
gradient BYY harmony learning algorithm is also stopped as
long as the number of iterations is greater than . As a matter
of fact, our experimental results reveal that the classification
performance is almost the same if a larger upper bound is set for
the number of iterations of the algorithm or a smaller threshold
value is set for . The other parameters can
be randomly initialized in certain intervals.

In our experiments, each image in set 1 is divided into 20
five nonoverlapping patches with the size of 128 128 pixels,
and thus, there are 600 samples available. We select training
samples from each of 24 classes and let the other samples for test

Fig. 6. Sketches of the ACARs of the proposed Bayesian texture classifier with
respect to the number of training samples with the number of contourlet decom-
position scales varying from 1 to 5.

for . The partitions are furthermore randomly
obtained, and the average classification accuracy rate (ACAR)
is computed over the experimental results on 20 random splits
of the training and test sets at each value of . Fig. 6 plots the
ACAR of our classifier versus the number of training samples

with error bars when the number of contourlet decomposition
scales varies from 1 to 5. Note that each error bar in Fig. 6 is a
distance of one standard deviation above and below the ACAR.

According to the experimental results, when the scale-1 con-
tourlet decomposition is applied, we cannot obtain the enough
directional contour information of the texture images. Thus, the
ACAR of our Bayesian classifier is very poor. For the scale-2 or
scale-3 contourlet decompositions, the ACAR of our Bayesian
classifier significantly increases but does not reach the best
value. For the scale-5 decompositions, we actually have 123
contourlet features to represent each texture. However, the sizes
of the directional subbands at the fifth scale are very small,
i.e., 2 4 and 4 2. Due to the small size of the subbands,
estimated parameters are not reliable, resulting in poor clas-
sification accuracy rates with the scale-5 decompositions. As
clearly shown in Fig. 6, the best performance of our Bayesian
classifier is achieved when the scale-4 decompositions are
performed.

It can be also observed from Fig. 6 that the difference be-
tween the ACARs for the scale-1 and scale-4 contourlet decom-
positions is about five percentage points, which is remarkable.
However, the difference between the ACARs for the scale-2 and
scale-4 contourlet decompositions is not so remarkable because
it is less than one percentage point. It is the same for scale-3 or
scale-5 contourlet decompositions. The highest ACAR of our
method is 100% achieved at when the
scale-4 contourlet decompositions are performed, which shows
that our Bayesian classifier is the optimal one on this texture set.
On the other hand, the ACAR of our Bayesian classifier almost
monotonically increases with the number of training samples.
Although there is about two percentage points difference be-
tween the ACARs of and with the scale-1 con-
tourlet decomposition, there is only about one percentage point
difference between the ACARs of and with the
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other scale contourlet decompositions. These indicate that the
classification performance of our Bayesian classifier is not very
sensitive to the number of training samples.

It should be noted that the error bars are also shown in Fig. 6.
For the five decompositions, the value of standard deviation at
each value of is different, and for the scale-4 contourlet de-
compositions, the value of standard deviation decreases from
0.21% to 0 when increases from 6 to 13, which implies that
the variation of the classification rates for a different number of
training samples is small and thus affirms the robustness of our
Bayesian classifier. Moreover, the value of standard deviation
with the scale-4 contourlet decompositions at each value of is
less than those with the other scale contourlet decompositions.

Finally, we compare our Bayesian classifier with the dom-
inant local-binary-pattern (LBP) method [13] on this texture
image set. The ACAR of our Bayesian classifier with 13 training
samples and the scale-4 contourlet decompositions is 100%.
That is, our Bayesian classifier can produce the best result of
texture classification on this texture set. Certainly, the ACAR of
our Bayesian classifier is higher than that of the dominant LBP
method, i.e., 99.54%, reported in [13].

B. Comparison With the Other Existing Methods

1) Methods in the Comparison Study:
1) SVD KLD [7]: The singular value decomposition (SVD)

is applied on wavelet transformation coefficients of image
textures, and then, the probability density function of the
singular values of wavelet transformation coefficients is
modeled as an exponential function. The model parameter
of the exponential function is estimated using maximum
likelihood estimation technique. The Kullback–Leibler
distance (KLD) between estimated model parameters of
image textures is used as a similarity metric to perform
the classification using MD classifier.

2) HMT MD [26]: Contourlet coefficients are modeled
using an HMT model with Gaussian mixtures that can cap-
ture all interscale, interdirection, and interlocation depen-
dences. The parameters of the HMT model are extracted as
image features. The KLDs between the input image model
and the mean of each database image model are measured.
The MD classifier is used for texture classification. (The
software for the implementation of the contourlet HMT
model can be downloaded from MATLAB Central [35].)

3) HMT KNN [26]: Same as HMT MD but the
-nearest-neighbor (KNN) classifier with is

adopted. The KLDs between the input image model and
each training image model are measured. The test sample
is assigned to a class to which the closest training sample
belong.

4) BP L1 [9]: Each quantized wavelet coefficient is ex-
panded into binary bit planes, and the marginal distri-
bution is then modeled by the product of these inde-
pendent Bernoulli distributions. The concatenation of the
model parameters for all high-frequency subbands forms
the so-called BP signature. A weighted L1-norm is used
for similarity measurement. Then, the input texture image
is assigned to a class according to the MD classifier.

Fig. 7. Thirty VisTex texture images of set 2.

Fig. 8. Forty VisTex texture images of set 3.

Fig. 9. Forty-eight Brodatz texture images of set 4.

5) BC-PMC: It is our proposed Bayesian Classifier based on
the Poisson Mixture learning on the Contourlet features.

2) Data Sets: To evaluate the classification performance of
the five methods, we utilize four large texture data sets, which
consist of two Vistex data sets [33] and two Brodatz data sets
[34]. The first Vistex data set consists of 30 of 512 512 texture
images (denoted by set 2 and shown in Fig. 7), and the number of
512 512 texture images in the other Vistex data set (denoted
by set 3 and shown in Fig. 8) is 40. The first Brodatz data set
consists of 48 of 640 640 texture images (denoted by set 4
and shown in Fig. 9), and the other is the entire Brodatz texture
data set consisting of 111 of 640 640 texture images (denoted
by set 5).

In the experiments on sets 2 and 3, each texture image is di-
vided into 16 of 128 128 nonoverlapping subimages, and thus,
the two resulting databases are composed of 480 and 640 tex-
ture patches, respectively. In the experiments on sets 4 and 5,
each texture image is divided into 16 of 160 160 nonoverlap-
ping subimages, and thus, we can obtain 768 and 1776 texture
patches, respectively. For each of the four data sets of texture
patches, eight texture samples are selected from each texture
class to design the classifiers; the others are adopted as test sam-
ples. The partitions are furthermore randomly obtained, and the
ACAR is computed over the experimental results on 20 random
splits of the training and test sets.

3) Results: The results are reported in Table II after im-
plementing the SVD KLD, HMT MD, HMT KNN,
BP L1, and BC-PMC approaches on the four data sets. As
shown in Table II, for the VisTex data set 2, BC-PMC outper-
forms the other four methods by 6.12%–46.00%. Similarly, for
the VisTex data set 3, BC-PMC performs better than them by
7.87%–57.15%. For the Brodatz data sets 4 and 5, BC-PMC can
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TABLE II
ACAR (IN PERCENT) OF THE FIVE METHODS ON THE FOUR LARGE TEXTURE DATA SETS

TABLE III
ACAR (IN PERCENT) FOR EACH OF THE 48 TEXTURE CLASSES IN SET 4 WITH THE FIVE METHODS. COLUMN 1: OUR PROPOSED BC-PMC;

COLUMN 2: BP � L1; COLUMN 3: HMT � KNN; COLUMN 4: HMT � MD; COLUMN 5: SVD � KLD

obtain the recognition rates 97.70% and 86.53%, respectively,
and outperforms them by at least 3.14%.

To intensively compare with the four methods (SVD KLD,
HMT MD, HMT KNN, and BP L1), the classification
accuracy rates of all 48 texture classes are obtained and shown
in Table III. From Table III, it can be observed that our method
does not perform worse than the other four methods for 38 tex-
ture classes. Our Bayesian classifier arrives a 100% classifica-
tion accuracy rate on 34 texture classes, which is larger than the
number of the texture classes recognized with no error by BP

L1, i.e., 28, and clearly exceeds those by the other methods.
The worst classification accuracy rates of the five methods, i.e.,
BC-PMC, BP L1, HMT KNN, HMT MD, and SVD
KLD, are 60.00%, 41.25%, 43.13%, 20.00%, and 15.00%, re-
spectively. Fig. 10(a) shows two textures that are easily con-
fused in the experiments by our method, which is the main
reason that we can obtain only 97.70% recognition rate rather
than a higher ACAR for the whole data set. From Table III,
it is shown that BP L1 outperforms our method by about
20.00% for the two texture classes, which implies that the BP
signatures in the undecimated wavelet domain is superior to
our extracted features in the contourlet domain in distinguishing
the two textures that have the confused directionality and gray
level. In contrast, Fig. 10(b) shows five textures for which our

method outperforms the other methods by more than 6.00%.
From this figure, it can be seen that the textures better classi-
fied by our method exhibit more diverse directional components
(such as circular or irregular shapes), on which the ACAR of BP

L1 is less than that of our method by about 10.00%–21.00%.
This shows the superiority of the contourlet in capturing direc-
tional information. As far as the ACAR for the whole data set,
i.e., the mean of the ACARs for all classes, is concerned, our
proposed BC-PMC performs better than the four methods by
3.14%–33.08%.

In summary, we compare our proposed Bayesian texture clas-
sifier with four current state-of-the-art methods of texture classi-
fication and find out that our method significantly improves the
classification accuracy rate on different sets of texture images.

C. Computational Cost

All the experiments in this paper have been implemented on a
workstation with Intel Core i5 central processing unit (3.2 GHz)
and 3-G random access memory in the MATLAB environment.

Table IV reports the time for texture classification (TTC) run-
ning each of the SVD KLD, HMT MD, HMT KNN,
BP L1, and BC-PMC approaches on data sets 4 and 5. From
Table IV, it is observed that the SVD KLD method is the most
efficient; the reason is that, since the probability density function
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Fig. 10. (a) Two textures of set 4 confused by our proposed BC-PMC. From
left to right: D103 and D104. (b) From left to right: D22, D94, D101, D102, and
D110.

TABLE IV
TTC (IN SECONDS,��� ) OF THE FIVE METHODS. COLUMN 1: OUR PROPOSED

BC-PMC; COLUMN 2: BP � L1; COLUMN 3: HMT � KNN;
COLUMN 4: HMT � MD; COLUMN 5: SVD � KLD

of the singular values is modeled by an exponential density func-
tion, the parameter estimation requires a less number of compu-
tations. However, since only one parameter is used to represent
each wavelet subband, this method does not have a good gener-
alization ability when it is applied to the texture classification,
which can be seen from the texture classification results given
in the previous subsection. That is, its ACARs are really unsat-
isfactory. In contrast, HMT MD is the most time-consuming
method among them. Our BC-PMC is about 22 times faster than
both HMT MD and HMT KNN on set 4, which implies that,
as a different modeling method in the same contourlet trans-
form domain, our proposed Poisson mixture learning is signif-
icantly more efficient than the training of the HMT model. In
addition, our BC-PMC is also slightly more efficient than the
current state-of-the-art BP L1 method. In our BC-PMC ap-
proach, the most costly part is the parameter estimations of the
Poisson mixtures by the BYY harmony learning. In the HMT
MD and HMT KNN approaches, the EM algorithm was uti-
lized to learn the parameters of the HMT model, which requires
more computational cost than our method.

If we take into account the TTC and the ACAR, the experi-
mental results clearly show that our proposed BC-PMC method
outperforms other methods.

VI. CONCLUSION

We have established a novel kind of Bayesian texture clas-
sifier through the BYY harmony learning of Poisson mixtures
on the contourlet features of texture images. The contourlet de-
composition sets up an efficient representation of the image for
texture classification, whereas the BYY harmony learning of
Poisson mixtures can lead to a good parameter estimation with
adaptive model selection. These two advantages enable the pro-
posed Bayesian texture classifier to be more effective and effi-
cient. The various experiments show that our proposed Bayesian
classifier significantly improves the texture classification accu-
racy in comparison with the current state-of-the-art approaches.

It is important to note that our proposed Bayesian texture clas-
sifier is a naive one, which is constructed under the indepen-
dence assumption of the extracted features. Although the inter-
coefficient dependences in the contourlet domain have been ex-
plored and modeled by the HMT method, the experimental re-
sults show that such a method is not more efficient and effective
than our naive classifier. Moreover, our proposed Bayesian tex-
ture classifier can be further improved if a better and applicable
BYY harmony learning algorithm for multivariate Poisson mix-
tures is established in the future.
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