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Microarray data based tumor diagnosis is a very interesting topic in bioinformatics.
One of the key problems is the discovery and analysis of informative genes of
a tumor. Although there are many elaborate approaches to this problem, it is
still diff icult to select a reasonable set of informative genes for tumor diagnosis
only with microarray data. In this paper, we classify the genes expressed through
microarray data into a number of clusters via the distance sensitive rival penalized
competitive learning (DSRPCL) algorithm and then detect the informative gene
cluster or set with the help of support vector machine (SVM). Moreover, the
critical or powerful informative genes can be found through further classif ications
and detections on the obtained informative gene clusters. It is well demonstrated by
experiments on the colon, leukemia, and breast cancer datasets that our proposed
DSRPCL-SVM approach leads to a reasonable selection of informative genes for
tumor diagnosis.
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Introduction

With the rapid development of DNA microarray tech-
nology, we can now get the expression levels of thou-
sands of genes via one single experiment with a rel-
ative cheap cost (1 , 2 ). These microarray data are
essential in analyzing health situation of the human
body and recognizing symptoms of human illnesses.
Mathematically, they can be expressed as a gene ex-
pression matrix X = (xij)n×m, where each row repre-
sents a gene, while each column represents a sample
or a patient for tumor diagnosis. That is, the numeri-
cal value xij denotes the expression level of a specific
gene i at a particular sample j. As a matter of fact,
there are many microarray datasets available on the
web.

For medical diagnosis and treatment, it is very
important to select or discover informative genes of a
tumor via the analysis of microarray data, since the
informative genes can not only provide valuable infor-
mation for discovering the crucial reasons of the tumor
as well as the treatment methods, but also support to
construct an efficient tumor diagnosis system from
their expression levels directly without any influence
of the other irrelevant genes. Actually, there have
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already been many elaborate methods for informa-
tive gene selection. However, most of them are based
on ranking genes according to a kind of criterion,
such as t, F, rank sum and χ2 test statistics (3–7 )
and the information criterion (8 ). Recently, the up-
and down-regulation probabilities for each gene were
defined and then the informative genes can be suc-
cessfully selected according to the decrease rank of
the absolute difference values between the two reg-
ulation probabilities (9 , 10 ). Generally, these statis-
tical and information methods just select a number
of top genes (the number is fixed or determined by
the threshold given to the criterion). In this way, in-
formative genes are selected through individual gene
evaluations and thus the relations among the genes
are neglected, which may lead to an incomplete se-
lection of informative genes for tumor analysis and
diagnosis.

The relations or structures of genes can be dis-
covered through unsupervised classification or clus-
tering. In fact, some typical clustering methods have
been already applied to the analysis of informative
genes and tumor diagnosis, such as hierarchical clus-
tering (4 , 11 , 12 ), k-means (13 ) and self-organizing
map (SOM) (3 ). However, as the number of genes
is large, hierarchical clustering is very difficult to be
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implemented and cannot determine the informative
genes by itself. Moreover, the other classical cluster-
ing methods like k-means and SOM require predeter-
mination of the number of gene clusters. However, we
usually do not know the number of gene clusters since
it depends on the structures of genes that are implied
in the microarray data.

In 1993, a new kind of unsupervised clustering
method, called the rival penalized competitive learn-
ing (RPCL) algorithm (14 , 15 ), was proposed to au-
tomatically determine the number of clusters during
the clustering or competitive learning on the sam-
ple data. For each input sample, the basic idea is
that not only the weight vector of the winner unit is
modified to adapt to the input, but also the weight
vector of its rival (the 2nd winner) is de-learned by
a smaller learning rate. In this way, as the learn-
ing and de-learning rates are properly selected and
the number of units or weight vectors is larger than
the number of actual clusters in the sample data, the
RPCL algorithm can automatically allocate an appro-
priate number of weight vectors for a sample dataset,
with the other extra weight vectors being driven far
away from the sample data. Recently, the RPCL al-
gorithm was generalized to the distance sensitive rival
penalized competitive learning (DSRPCL) algorithm
through a cost function theory (16 ). Actually, the
implementation of the DSRPCL algorithm becomes
more efficient and easier since the learning rate can
be easily set. Thus, we can use the DSRPCL algo-
rithm to analyze gene clusters from microarray data
without knowing the actual number of gene clusters.
In fact, the RPCL and DSRPCL algorithms have al-
ready been used to analyze microarray data (17 , 18 ).
In Nair et al (17 ), the RPCL algorithm was applied
to classify the genes into a number of clusters that
could have certain functional meanings. Moreover,
the DSRPCL algorithm was utilized to classify the
genes into a number of clusters from which a com-
pact set of informative genes could be established via
a post-filtering gene selection method (19 ). Similarly
to the DSRPCL algorithm, the cooperative competi-
tion clustering algorithm (20 ) was established to clas-
sify the genes into an appropriate number of clusters
and then the informative genes can be selected from
each of the obtained clusters.

As the DSRPCL algorithm can automatically di-
vide the genes into a number of functional clusters, we
may wonder whether there exists a cluster that can
be served as a set of informative genes directly. Ac-
tually, we can utilize support vector machine (SVM)

(21 ) to check which gene cluster contributes best to
the tumor diagnosis and whether it can be used as an
informative gene set for a tumor. That is, we can use
SVM to train a tumor diagnosis system with the m

expression profiles on the genes in each cluster and to
see which tumor diagnosis system gets the best pre-
diction accuracy. If a tumor diagnosis system gets the
best prediction accuracy that is high enough, we con-
sider the corresponding gene cluster is just the set of
informative genes for the tumor. Moreover, since the
distributions of gene expression levels on the samples
should have the similar structures at the critical or
powerful informative genes, that is, the informative
genes that can strongly discriminate the tumor from
the normal via their expression levels on the samples,
we can consider these critical or powerful informa-
tive genes belong to a sub-cluster in this informative
gene set. Thus, we can find these critical or powerful
informative genes of the tumor by further clustering
and checking on the sub-clusters of this informative
gene cluster or set. As for the critical informative
gene selection, Guyon et al have already proposed an
SVM-based method (22 ). They used a linear SVM to
train a tumor diagnosis system and selected the genes
with higher weights in the final discriminate function
as the critical or powerful genes. Recently, Zhang et
al improved this SVM-based method by adding the
smoothly clipped absolute deviation penalty on the
original objective function of the SVM (23 ). However,
the major disadvantage of the SVM-based method
is that the number of informative genes is still de-
termined by the pre-assumed threshold value to the
weights, not by the structure of the genes.

In this paper, in light of the above ideas, we pro-
pose a DSRPCL-SVM approach where the DSRPCL
algorithm is firstly utilized to classify the genes ex-
pressed through the microarray data into a number
of clusters and the informative gene cluster or set is
then detected with the help of SVM. Moreover, the
critical or powerful informative genes is found through
further classifications and detections on the informa-
tive gene clusters. The performance of this method is
demonstrated by experiments on the colon, leukemia,
and breast cancer datasets.

Method

The DSRPCL algorithm for gene clus-
tering

Given a microarray dataset X = (xij)n×m with n

genes and m samples, we let S = {Xi}n
i=1, where
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Xµ = [xµ1, xµ2, · · · , xµm]T represents the µ-th gene
through its expression levels over all the m sam-
ples. Suppose that Xµ is just an input to a sim-
ple competitive learning network, that is, a layer
of k competitive units. These competitive units
are dominated by the corresponding weight vectors
Wi = [wi1, wi2, · · · , wim]T for i = 1, 2, · · · , k. All
the weight vectors can be represented by a big vec-
tor W = vec[W1,W2, · · · ,Wk]. For each input Xi,
the basic idea of the DSRPCL algorithm is that not
only the weight vector of the winner unit (the closest
weight vector to the sample) is modified to adapt to
the input, but also the weight vectors of the rivals or
losers (the other weight vectors) are punished to keep
away from the input. As a weight vector diverges to
infinity, the corresponding cluster becomes empty and
can be canceled. Therefore, we can automatically ob-
tain the number of gene clusters as well as the centers
of these clusters assuming k is larger than the true
number of the actual gene clusters. As a result, the

genes are automatically divided into several clusters
by classifying each gene into the cluster whose center
is closest to it.

Theoretically, the DSRPCL algorithm can be re-
alized by minimizing the cost function in Equation 1,
where c(µ) is the index of the winner unit for the µ-
th gene, Wc(µ) is the nearest weight vector for Xµ,
and P is a positive constant. Ma and Wang (16 ) ob-
tained the derivatives of E(W ) with respect to wij

as in Equation 2, where δi,j is the Kronecker func-
tion. With these derivatives, the DSRPCL algorithm
is designed as a kind of gradient-descent algorithm.
Table 1 summarizes the details of the DSRPCL algo-
rithm and its variants, where we denote it as the batch
DSRPCL algorithm. The DSRPCL1 algorithm is the
adaptive DSRPCL algorithm, and the DSRPCL2 al-
gorithm modifies only the rival weight vector (the sec-
ond winner) so that E2(W ) is only affected by the
largest term with r(µ), which is consistent with the
original RPCL algorithm (14 , 15 ). The other variant

E(W ) = E1(W ) + E2(W ) =
1
2

∑
µ

‖Xµ −Wc(µ)‖2 +
2
P

∑

µ,i 6=c(µ)

‖Xµ −Wi‖−P (1)

∂E(W )
∂wij

= −
∑

µ

δi,c(µ)(x
µ
j − wij) +

∑

µ,i

(1− δi,c(µ))‖Xµ −Wi‖−P−2(xµ
j − wij) (2)

Table 1 The DSRPCL algorithm and its variants

1 Randomly initialize the vector W
(0)
1 , · · · , W (0)

k , and let T = 0.

2 Update Wi with a learning rate η (0 ≤ η ≤ 1):

1) Batch DSRPCL:

∆Wi = −η ∂E(W )
∂Wi

=

{
η
∑

µ
(Xµ −Wi), if i = c(µ),

−η
∑

µ
‖Xµ −Wi‖−P−2(Xµ −Wi), otherwise.

2) DSRPCL1:

∆Wi =

{
η(Xµ −Wi), if i = c(µ),

−η‖Xµ −Wi‖−P−2(Xµ −Wi), otherwise.

3) DSRPCL2:

∆Wi =





η(Xµ −Wi), if i = c(µ),

−η‖Xµ −Wi‖−P−2(Xµ −Wi), if i = r(µ),

0, otherwise.

4) SARPCL:

a) Let λ = e(−k1T−k0), η = η0/(c1 T + c0) and t = 0.

b) Randomly select Xµ from S = {X1, . . . , Xn}, and take ξ ∼Uniform[0, 1].

c) ∆Wi =

{
η(Xµ −Wi), if i = c(µ),

−η‖Xµ −Wi‖−P−2(Xµ −Wi), otherwise.

If ξ ≤ λ, let ∆Wi = −∆Wi.

d) If t < M , let t = t + 1 and return to STEP b).

e) If λ < ε, stop.

3 If |E(W )(T+1) − E(W )(T )| > ε1, let T = T + 1, and return to STEP 2; otherwise, stop.
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of the DSRPCL algorithm is the simulated anneal-
ing rival penalized competitive learning (SARPCL)
by applying the simulated annealing mechanism to
the DSRPCL1 algorithm. The stopping threshold
value ε is a pre-fixed small positive number. Param-
eters k0, k1, c0 and c1 are positive constant numbers
that can be selected by experience. Since these DSR-
PCL algorithms have the similar functions in cluster-
ing analysis, we typically use the DSRPCL1 algorithm
in our experiments.

According to the properties of the DSRPCL algo-
rithm shown in Ma and Wang (16 ), when k is selected
to be large enough, the DSRPCL algorithm can de-
tect the number of gene clusters during the clustering.
From the obtained gene clusters, we can check them
with SVM and find the informative gene cluster or
set.

The DSRPCL-SVM approach to infor-

mative gene analysis

We further consider the informative gene analysis
through the DSRPCL algorithm and SVM. In order
to do so, we can implement the DSRPCL algorithm
directly on the sample data S = {Xµ}n

µ=1 from the
microarray data with respect to a tumor. Usually,
we can overestimate the number of the clusters in S

and set it to be k. As a result of the implementation,
the DSRPCL algorithm divides the n genes (repre-
sented by Xµ) into a number of functional gene clus-
ters among which there is an informative gene cluster
contributing the best to the recognition or diagnosis
of the tumor. If we think this informative gene cluster
is too large, that is, it contains too many genes for tu-
mor analysis, or we just want to get some more critical
or powerful informative genes for the tumor, we can
implement the DSRPCL algorithm on the previously
obtained informative gene cluster or set (the obtained
subset of S). Again, the DSRPCL algorithm divides
the selected informative genes into a number of gene
clusters, among which we can find the most powerful
sub-cluster and genes. In such a way, we can finally
find a small number of critical or powerful genes for
the tumor.

On the other hand, the above informative gene
search can be only done with the help of a super-
vised learning system for checking which gene cluster
or sub-cluster contributes the best to the recognition
or diagnosis of the tumor. Actually, suppose Gs =
{gi1 , · · · , gip} is a divided gene cluster or sub-cluster
obtained by the DSRPCL algorithm, if the genes in

this cluster (or sub-cluster) are informative (or pow-
erful informative) to the tumor, then a supervised
learning system on the sample expression profiles of
these genes, X̂j = [xi1,j , · · · , xip,j ]T (j = 1, · · · ,m),
and their corresponding diagnosis results (if the sam-
ple is tumorous, the diagnosis result is 1; otherwise
the diagnosis result is 0) will lead to the highest pre-
diction accuracy or the lowest average error. In this
way, we can find the informative or powerful infor-
mative genes through a supervised learning system.
SVM (21 ) is a powerful learning machine for the su-
pervised learning or classification. In fact, many re-
searchers have used it to analyze microarray data and
demonstrated its advantages (24–26 ). Therefore, we
also utilize SVM to check the informative or power-
ful informative gene cluster. For comparison, we use
the MATLAB toolbox OSUSVM 3.0 to set up three
kinds of SVMs, including linear SVM (no kernel), 3-
poly SVM (cubic polynomial kernel), and radial basis
function SVM (RBF kernel).

Evaluation

To test the effectiveness of our proposed DSRPCL-
SVM approach for informative gene analysis, we con-
ducted experiments on three real-world microarray
datasets:

Colon cancer dataset. It contains expression
profiles of 2, 000 genes in 22 normal tissues and 40
colon tumor tissues, which can be retrieved from the
web at http://microarray.princeton.edu/oncology/
affydata/index.html. In our experiment, we used the
training set (22 normal and 22 tumorous tissues) and
the test set (18 tumorous tissues) provided at the web-
site.

Leukemia dataset. It contains expression profiles
of 7, 129 genes in 47 acute lymphoblastic leukemia
(ALL) and 25 acute myeloid leukemia (AML) sam-
ples, which can be retrieved from the web at
http://www.genome.wi.mit.edu/MPR/data set ALL
AML.htm. In our experiments, we used the training
set (27 ALL and 11 AML) and the test set (20 ALL
and 14 AML) provided at the website.

Breast cancer dataset. It contains expression
profiles of 5, 776 genes in 14 normal tissues and
13 breast tumorous tissues, which can be retrieved
from the web at http://genome-www.stanford.edu/
breast cancer/sbcmp/data.shtml. In our experiment,
we used the 14 normal and 13 tumorous samples pro-
vided at the website as both the training set and the
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test set since the number of the samples is very lim-
ited.

For the three kinds of SVMs, there are two pa-
rameters in the last two SVMs, γ and C, and their
selection affects the performance of SVM. In our ex-
periments, by experience we set γ = 0.02, C = 0.05 on
colon cancer data and γ = 0.002, C = 10 on leukemia
data and breast cancer data.

To improve the efficiency of the DSRPCL1 algo-
rithm, we set the de-learning rate in the update rule,
that is, the corresponding learning rate for the op-
posite or minus direction learning, to attenuate to
zero with the number of iterations. In this way, the
algorithm could make the convergent weight vectors
converge to the centers of the actual clusters in the
sample data without any deviation, keeping the extra
weight vectors being driven far away from the sample
data.

For the convenience of implementation of the two
algorithms, we filtered out 10% obviously irrelevant
genes using the cosine method. That is, we computed
the cosine value of the vector of the expressions of
each gene at all the samples with the reference vec-
tor in which each element is 1, and then ranked these
genes with the decrease of the cosine value and finally
filtered out 10% genes from the last. Moreover, we
normalized the expression vectors of the remaining
genes for our analysis.

First, we ran the DSRPCL1 algorithm on the three
microarray datasets and obtained five, four, and nine
gene clusters (except the empty clusters represented
by the weight vectors of the DSRPCL1 algorithm),
respectively, where the number of the weight vectors
or clusters was always set initially by 10 (the number
of clusters in each microarray data was assumed to
be no more than 10). According to these gene clus-
ters obtained by the DSRPCL1 algorithm, we trained
the three kinds of SVMs with the training data on
each gene cluster of the three datasets. Then we ob-
tained the prediction or classification accuracy of each
trained SVM with the test data. The experiment re-
sults on the three datasets are summarized in Table
2.

From Table 2, we can find that the DSRPCL1 al-
gorithm not only discovers a good information gene
set to a tumor, but also improves the accuracy of
tumor diagnosis or classification. Actually, in some
cases, the SVM on the selected informative gene set
(cluster) can even reach 100% prediction accuracy.
This means that the optimal gene cluster obtained
from a DSRPCL-SVM procedure on the microarray
data is just the informative gene set to the tumor.

Next, we repeated the above DSRPCL-SVM pro-
cedure (DSRPCL clustering and SVM checking) on
the optimal or informative gene cluster. That is, we
just considered the genes in the optimal cluster and

Table 2 Experimental results of the first DSRPCL-SVM procedure on three datasets

Dataset Gene cluster No. of genes Classfication accuracy

Linear SVM Poly SVM RBF SVM

Colon cancer 1 381 0.8889 0.9444 0.3889

2 182 0.7778 0.5556 0.3889

3 385 0.8889 0.8889 0.5000

4 (optimal) 435 0.9444 0.8889 1

5 418 0.8333 0.9444 0.8889

Leukemia 1 2,769 0.9545 0.9545 0.8182

2 1,939 0.8182 0.7727 0.7273

3 (optimal) 1,708 0.9545 0.9545 0.9545

4 1 0.1818 0 0

Breast cancer 1 3 0.6667 0.5556 0.5185

2 2 0.4444 0.5556 0.5185

3 (optimal) 1,580 1 1 1

4 926 1 1 1

5 771 1 1 1

6 486 1 1 1

7 175 1 1 1

8 672 1 1 1

9 584 1 1 1
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neglected all the other genes. In this way, we clearly
obtained a smaller optimal gene cluster or sub-cluster.
If the SVM on this smaller optimal gene cluster still
has a high prediction accuracy, we could consider the
genes in this cluster are more powerful. In other
words, they are powerful informative genes to the tu-
mor. From the second DSRPCL-SVM procedure, we
also obtained a number of sub-clusters of genes and
their prediction accuracies on the three datasets (Ta-
ble 3).

From Table 3, we can find that, after the sec-
ond DSRPCL-SVM procedure on each microarray
dataset, a smaller informative gene cluster was ob-
tained, while the best prediction accuracy of SVM on
this gene cluster was still rather high. In this way, we
could repeat the procedures and ultimately find a set
of most powerful genes to the tumor. Table 4 gives
the size (the number of genes) of the optimal gene
cluster and the corresponding highest prediction ac-
curacy of SVM after each round of the DSRPCL-SVM
procedure.

From Table 4, we can find that the division of
the optimal gene cluster would stop after several
DSRPCL-SVM procedures. As we successively di-
vided the optimal gene cluster, the prediction accu-
racy of SVM would drop slightly. This means that
some informative genes were left, while the remaining
genes became more powerful. As the division of the
DSRPCL-SVM procedure on the optimal gene cluster

finally stopped, we obtained the most powerful infor-
mative genes to the tumor in this indivisible cluster.
Obviously, these genes are keys to the diagnosis and
treatment of the tumor. Table 5 is a list of the iden-
tity numbers of the powerful genes obtained from the
experiments on the three datasets, respectively. Al-
though we do not know the biological meanings of
these genes, we are sure that they are critical to the
corresponding tumors for the medical diagnosis and
treatment.

From the further experiments, we can find that
the DSRPCL-SVM procedure can always find a set
of several powerful genes to a tumor or some biologi-
cal phenotypes. Clearly, this result is very significant
for the medical analysis and treatment. However, the
experiment result is not very stable. That is, the pow-
erful genes may be changed greatly with the different
initial values of the parameters in the DSRPCL algo-
rithm. The experiment results given above are some
typical examples. We think that the reasons of the in-
stability or sensitivity to the initial parameter values
may be two-fold. First, the DSRPCL algorithm may
be sensitive with the initial values of the parameters
when there are just a small number of samples in the
dataset. Second, the real powerful genes for a tumor
my be dependent and our DSRPCL-SVM method can
only find a set of powerful genes on which an SVM
diagnosis system can still be made efficiently.

Table 3 Experimental results of the second DSRPCL-SVM procedure on three datasets

Dataset Gene cluster No. of genes Classfication accuracy

Linear SVM Poly SVM RBF SVM

Colon cancer 1 157 0.5556 0.0556 0.8333

2 (optimal) 145 0.8889 0.7222 0.8889

3 37 0.6111 0 0.8333

4 96 0.9444 0.2222 0.8333

Leukemia 1 (optimal) 959 0.9545 0.9545 0.9545

2 747 0.9091 0.8636 0.9091

3 1 0.3636 0.3182 0.3182

4 1 0.8636 0.7727 0.7727

Breast cancer 1 70 1 0.9259 0.5185

2 152 1 1 0.6296

3 4 0.5926 0.5185 0.5185

4 93 1 1 0.6296

5 187 1 1 0.5926

6 82 1 1 0.5185

7 (optimal) 632 1 1 0.8148

8 62 1 1 0.5185

9 298 1 1 0.6296
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Table 4 Experimental results of the successive DSRPCL-SVM procedures on three datasets

Dataset Subdivision Highest Size of optimal

accuracy gene cluster

Colon cancer 1 1 435

2 0.8889 145

3 0.7778 61

4 0.8333 24

5 0.7222 6

6 0.7222 6

Leukemia 1 0.9545 1,708

2 0.9545 959

3 0.9545 479

4 0.9545 479

5 0.9545 271

6 0.9091 104

7 0.9091 31

8 0.9091 31

9 0.8636 5

10 0.8636 5

Breast cancer 1 1 1,580

2 1 632

3 1 94

4 0.8519 25

5 0.7037 11

6 0.7037 11

7 0.6296 4

8 0.6296 4

Table 5 Identity numbers of the powerful genes for the three datasets

Dataset Powerful gene ID No.

Colon cancer 211, 1215, 1394, 1621, 1858, 1865

Leukemia 331, 569, 787, 2281, 4586

Breast cancer 383, 385, 5294, 5797

Conclusion

We investigated the problem of informative gene
discovery and analysis from the perspective of the
newly established unsupervised clustering method—
DSRPCL algorithm. Since the DSRPCL algorithm
can detect the number of clusters automatically in a
dataset, we apply it to dividing the genes expressed
through microarray data into a number of functional
gene clusters and use SVM to check which cluster is
the set of informative genes to the tumor. More-
over, this DSRPCL-SVM procedure can be further
implemented on the informative gene cluster succes-

sively and find out the critical or powerful informative
genes of the tumor. Our experiments on the colon,
leukemia, and breast cancer datasets demonstrated
that this DSRPCL-SVM method is really efficient for
discovering the informative gene set as well as the
powerful informative genes for a tumor through the
microarray data.
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