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Abstract. We propose a new performance attribution framework that decomposes a con-
strained portfolio’s holdings, expected returns, variance, expected utility, and realized 
returns into components attributable to (1) the unconstrained mean-variance optimal port-
folio; (2) individual static constraints; and (3) information, if any, arising from those con-
straints. A key contribution of our framework is the recognition that constraints may 
contain information that is correlated with returns, in which case imposing such con-
straints can affect performance. We extend our framework to accommodate estimation risk 
in portfolio construction using Bayesian portfolio analysis, which allows one to select con-
straints that improve—or are least detrimental to—future performance. We provide simu-
lations and empirical examples involving constraints on environmental, social, and 
governance portfolios. Under certain scenarios, constraints may improve portfolio perfor-
mance relative to a passive benchmark that does not account for the information contained 
in these constraints.
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1. Introduction
Constraints are ubiquitous in portfolio management. 
They are regularly imposed, both directly and indi-
rectly, by portfolio managers, regulators, risk managers, 
trading desks, and investors. Because these constraints 
directly affect the portfolio-construction process, all sta-
keholders have become interested in quantifying how 
constrained portfolios deviate from the unconstrained 
optimal benchmark, using various metrics and con-
cepts, such as unrealized alpha, opportunity cost, and 
implementation inefficiency. Measuring the impact of 
constraints on portfolio performance has become parti-
cularly important as socially responsible investing (SRI) 
and environmental, social, and governance (ESG) pro-
ducts have grown in popularity over the last decade 
because constraints are usually involved in the con-
struction of these portfolios.

In this article, we develop a general framework in 
which the financial impact of constraints can be mea-
sured by attributing the performance of portfolios to 
contributions from individual constraints. Because a 

constrained portfolio contains a proper subset of securi-
ties of the unconstrained version, mathematical logic 
suggests that the constrained optimum is at best equal 
to the unconstrained optimum or, more likely, inferior. 
However, the nonsuperiority of constrained optima 
relies on a key assumption that is almost never explicitly 
stated: the constraint does not provide additional infor-
mation regarding asset returns. In other words, con-
straints are assumed to be statistically independent of 
the returns. In some cases, such an assumption is war-
ranted; for example, one can imagine constructing a sub-
set of securities with Committee on Uniform Securities 
Identification Procedures (CUSIP) identifiers that contain 
prime numbers. Imposing such a constraint clearly reduces 
the risk-adjusted return of the optimized portfolio.

But what if the constraint is not independent of the 
returns? For example, consider the constraint to invest 
only in stocks whose prices will appreciate by more 
than 10% over the next 12 months. Apart from the 
infeasibility of imposing such a condition, it should be 
obvious that this constraint would, in fact, increase the 
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risk-adjusted return of the optimized portfolio. There-
fore, quantifying the impact of constraints rests entirely 
on whether and how the constraints are related to 
the performance characteristics of the securities under 
consideration.

To formalize this idea, we consider investors who 
construct portfolios by maximizing the standard mean- 
variance utility. We denote the optimal portfolio with-
out constraints as the mean-variance optimal (MVO) 
portfolio, which is usually a simple and passive bench-
mark to which all investors have access. However, the 
portfolio obtained when imposing constraints will likely 
differ from the MVO portfolio. Therefore, we develop a 
methodology to decompose the constrained portfolio’s 
holdings, expected returns, variance, expected utility, 
and realized returns into different components: those 
attributable to the MVO portfolio, the individual con-
straints treated as static, and the information contained 
in the constraints. This methodology yields a constraint 
attribution framework for evaluating the performance 
of a portfolio.

The key to our framework is to model the information 
content available in portfolio constraints. We assume 
that each constraint is based on a firm characteristic, 
x ≡ [x1 x2 ⋯ xN]

′, where xi is the characteristic for the 
ith asset, such as its ESG score or a label representing its 
industry. By modeling x as a random variable and 
allowing it to be correlated with asset returns, we are 
able to provide an explicit decomposition of the perfor-
mance of a portfolio attributable to information in its 
constraints, which depends critically on the expected 
value and covariance matrix of returns conditioned on 
x. Furthermore, in the special case of normally and mul-
tivariate Student’s t distributed returns, we demonstrate 
that the information contribution from a constraint is 
determined by the correlation between x and the indi-
vidual asset returns. The excess return from information 
is positive when this correlation is positive and the con-
straint is binding. The excess variance of a portfolio is 
negative when the portfolio holdings of a shrinkage 
portfolio (defined in Equation (8)) and the holdings 
attributable to constraints are positively correlated, and 
the magnitude of the reduction in variance depends on 
the absolute value of the same correlation.

This simple but profound result highlights the 
mechanism through which a constraint contributes to 
the performance of a portfolio. Whereas a constraint 
treated as static must decrease a portfolio’s expected 
utility, the information in the constraint can contribute 
either positively or negatively to a portfolio’s expected 
utility and returns, depending on whether the charac-
teristics of the constraint are positively or negatively 
correlated with asset returns. In this sense, constraints 
serve as an indirect mechanism for using information 
that is otherwise unavailable to investors in the pas-
sive benchmark.1

In addition, we demonstrate that our framework can 
accommodate estimation risk in the expected value 
and covariance matrix of asset returns used to con-
struct portfolios. We do this using Bayesian portfolio 
analysis and modeling the dependence between firm 
characteristic x and the posterior predictive returns. 
This allows for performance attribution of portfolio 
constraints for out-of-sample returns. Furthermore, we 
establish an equivalence result between a Bayesian 
portfolio with constraints and an unconstrained portfo-
lio with a certain prior on asset returns, which implies 
that our attribution results can also be interpreted as 
the influence of investors’ views on returns (expressed 
as Bayesian priors) on the portfolio’s performance.

We apply our framework to two common classes of 
portfolio constraints. The first occurs when investors 
restrict exposure to a certain factor, such as the average 
ESG score, market capitalization, beta, or book-to-market 
values of the portfolio. The second is exclusionary invest-
ing, in which certain assets are excluded from the portfo-
lio based on criteria such as whether the firm belongs to 
an industry associated with “sin” stocks. We derive addi-
tional analytical results and provide simulated examples 
to illustrate the attribution in these scenarios, which natu-
rally leads to a method for selecting constraints that may 
improve portfolio performance.

Finally, we provide an empirical application in the 
context of SRI and ESG investing. Their growing popu-
larity and assets under management have triggered a 
backlash recently.2 Our framework provides a poten-
tial solution to properly disclose the financial impact of 
the constraints imposed by these investments and rec-
oncile SRI and ESG investing with fiduciary duty.

In particular, using real-world data sets, we quantify 
the financial impact of ESG constraints when the aver-
age portfolio ESG score is required to be above a certain 
threshold as well as exclusionary investing based on sin 
stocks and stranded assets. Whereas the expected utility 
contribution of these constraints, treated as static, is 
indeed negative, the contribution from the information 
contained in the constraints to portfolio performance is 
dynamic over time. This contribution is generally nega-
tive before 2007, implying that high ESG stocks deliv-
ered lower excess returns relative to the Fama–French 
five-factor model, on average, which is consistent with 
equilibrium theories of ESG returns (Pástor et al. 2021, 
Pedersen et al. 2021). However, after 2008, the informa-
tion in the constraints starts to contribute positively to 
portfolio performance in certain years, reflecting the 
increasing attention toward SRI and ESG-related issues, 
an effect consistent with the Pástor et al. (2022) findings 
of shifted preferences.

We emphasize that our intention in this article is 
not to provide a measure for determining whether SRI 
and ESG investing deliver positive or negative excess 
returns. Instead, our primary objective is to illustrate 
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how our framework can be used to attribute perfor-
mance to any portfolio constraints and to the informa-
tion contained in those constraints. We make our 
software publicly available to researchers and inves-
tors to facilitate the application of our performance 
attribution framework.

1.1. Contributions and Related Literature
Our article contributes to the literature in several 
respects. First and foremost, we provide an attribution 
framework that decomposes the performance of con-
strained portfolios relative to a static benchmark by 
quantifying the information content in constraints both 
in-sample and out-of-sample. The classic literature on 
style analysis and performance attribution includes 
Fama (1972), Brinson et al. (1986), and Sharpe (1992). In 
addition, the transfer coefficient (Clarke et al. 2002) and 
other measures based on the shadow cost have been 
proposed to measure the marginal cost of each con-
straint (Grinold 2005, Stubbs and Vandenbussche 2010, 
Menchero and Davis 2011, Goldberg 2021).

A key contribution of our decomposition framework 
to this literature is a quantitative measure of the infor-
mation contained in each constraint. We show that rec-
ognizing the information contained in the constraints 
has important implications for performance analysis 
and understanding the impact of, for example, SRI and 
ESG investing.

Second, our framework is connected to the extensive 
literature on robust portfolios that accounts for estima-
tion risk in the parameters of portfolio construction 
because imposing constraints is one way to deal with 
estimation risk. We discuss the relationship between 
this literature and our method in more detail in Section 
3. In particular, portfolio constraints can mitigate esti-
mation risk as shown by the no-short-sale constraints 
of Jagannathan and Ma (2003), the norm constraints of 
DeMiguel et al. (2009b), the gross-exposure constraints 
of Fan et al. (2012b), and the variance-based constraints 
of Levy and Levy (2014).

Although our framework can accommodate estima-
tion risk, our goal is not to propose a new robust portfo-
lio rule or a better way to deal with estimation risk. 
Instead, we propose to use our framework to decompose 
the performance of out-of-sample returns of existing 
robust portfolio rules. In fact, we show that, even with-
out estimation error, there exists information in con-
straints that can affect portfolio performance. Whereas 
constraints undoubtedly play a role in reducing estima-
tion risk and improving out-of-sample performance as 
documented by the literature cited above, we demon-
strate a different mechanism through which they can 
affect a portfolio: the information contained in the con-
straints, which can contribute either positively or nega-
tively to the performance of a portfolio depending 
on the statistical correlations of this information with 

returns. This is a key distinction from the prior literature 
on estimation risk and robust portfolio optimization. In 
practice, investors often impose constraints for business 
or regulation reasons other than reducing estimation 
risk, such as in SRI and ESG products, and these con-
straints can serve as an indirect mechanism to incorpo-
rate information. Our methodology provides a way to 
quantify this effect precisely, which, to the best of our 
knowledge, has not appeared in the existing literature.

Third, our framework and results differ in several 
respects from those of Brandt et al. (2009) and Hjal-
marsson and Manchev (2012), who incorporate firm 
characteristics into the estimation of portfolio weights 
to derive robust portfolios. Their frameworks parame-
terize the portfolio weights of each stock as a (linear) 
function of the firm characteristic and then estimate the 
coefficients of this function. They do not model the 
impact of portfolio constraints, which is our focus. 
Also, the goal of their frameworks is to derive robust 
portfolio rules by avoiding the estimation of the return 
distribution. As discussed above, our framework has a 
very different goal. Whereas Brandt et al. (2009) and 
Hjalmarsson and Manchev (2012) convincingly demon-
strate that their frameworks can produce robust portfo-
lios, our results make a different contribution: we 
provide a quantitative measure of the information con-
tained in portfolio constraints. This is relevant to both 
the asset pricing literature and the SRI and ESG litera-
ture because constraints are routinely used to construct 
such portfolios.

Fourth, from a technical perspective, our methodol-
ogy involves solving a quadratic optimization problem 
subject to stochastic linear constraints. Whereas the lit-
erature on stochastic optimization is vast (Powell 2019), 
most of it is concerned with solving a sequential prob-
lem in which the stochasticity in the environment, 
objective, or constraints affects the optimal policy. The 
constraint is imposed on either the expected value of 
the random variables as in Jin et al. (2008) or the proba-
bility of a certain condition as in Bonami and Lejeune 
(2009). Our framework is concerned with the static 
portfolio selection problem, which is easy to solve, and 
the constraint is imposed sample-wise. Our main con-
tribution, instead, is to quantify the information that 
these stochastic constraints contain with respect to the 
random variables involved in the objective function.

Finally, our results also contribute to the literature 
on the impact of SRI, ESG, and other nonfinancial 
objectives on investment returns. Because ESG mea-
sures from different data providers can lead to very 
different correlations (Berg et al. 2022), our findings 
highlight that the effect of a specific measure of SRI or 
ESG on investment performance depends on the infor-
mation contained in the constraints created by these 
measures. These constraints need not always result in 
lower risk-adjusted returns.
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We develop our main framework in Section 2. In Sec-
tion 3, we incorporate estimation risk into our frame-
work using Bayesian portfolio analysis. We consider 
two common examples of portfolio constraints in Sec-
tion 4 and provide an illustrative application to ESG 
investing in Section 5. We conclude in Section 6.

2. A Framework for Constraint Attribution
We consider a universe of N assets whose returns are 
given by the random vector rt � [r1, t ⋯ rN, t]

′.3 Because 
we principally consider the static portfolio-selection 
problem in this article, we omit the time subscript t and 
simply write r in most cases. We denote by m and S the 
expected value and covariance matrix of r, respectively. 
Investors solve the following mean-variance portfolio:

max
v

v′m�
γ

2 v′Sv

s:t: Av � b,
(1) 

where v ≡ [ω1 ⋯ ωN]
′ is an N-dimensional vector repre-

senting portfolio weights, γ�is the relative risk-aversion 
parameter, b ≡ [b1 ⋯ bJ]

′ is a J-dimensional vector, and

A ≡
A′1
⋯
A′J

0

B
@

1

C
A

is a J ×N full-rank matrix. Together, b and A describe J 
constraints. In particular, A′j is the jth row of A and bj is 
the jth element of b, which together describe the jth 
constraint.

We consider the case of equality constraints in (1) for 
expositional simplicity. It is also easy to derive a parallel 
set of results under inequality constraints, Av ≤ b, and 
we describe ways to generalize our results throughout 
our exposition. Common examples of portfolio con-
straints that can be described by (1) include v′1 � 1 
representing a full investment constraint, ωi � 0 repre-
senting the exclusion of asset i, and v′A1 � b1 repre-
senting a certain level of factor exposure.

A critical implicit assumption in the existing literature 
on constraint attribution is that the constraints, A, are trea-
ted as constants and are, therefore, independent of returns, 
r. Under this setting, the solution to the optimization prob-
lem in (1) without constraints, which we refer to as the 
unconstrained MVO portfolio, yields the best portfolio in 
terms of the objective value, and imposing constraints can 
only decrease the objective value.4 The following result 
summarizes the optimal portfolio weights and the decom-
position of portfolio holdings, expected return, and 
expected utility attributable to each constraint.5 We pro-
vide proofs of all propositions in Online Appendix A.
Proposition 1 (Static Constraints). The optimal portfolio 
weight, v∗, of Problem (1) is given by

v∗ �
1
γ

S�1
(m�A′l∗), (2) 

where the Lagrange multipliers are given by l∗ � (AS�1 

A′)�1
(AS�1m� γb) provided that the feasible region of the 

constrained optimization problem is nonempty. Here, l∗ is a 
measure of the shadow cost of the portfolio’s expected utility 
with respect to each constraint.6

Equation (2) leads to a series of decompositions: 
1. Portfolio holdings decomposition:

v∗ �
1
γ

S�1m�
1
γ

S�1A′l∗: (3) 

• vMVO ≡
1
γS�1m: holdings of the unconstrained 

MVO portfolio.
• vCSTR ≡�

1
γS�1A′l∗: components attributable 

to each constraint.
2. Expected return decomposition:

m′v∗ �
1
γ

m′S�1m�
1
γ

m′S�1A′l∗: (4) 

• 1
γm′S�1m: expected return of the unconstrained 

MVO portfolio.
• � 1

γm′S�1A′l∗: components attributable to each 
constraint.

3. Expected utility decomposition:

m′v∗ �
γ

2 v∗
′

Sv∗ �
1

2γm′S�1m�
1

2γl∗
′AS�1A′l∗:

(5) 

• 1
2γm′S�1m: expected utility of the unconstrained 

MVO portfolio.
• � 1

2γl∗
′AS�1A′l∗: components attributable to all 

constraints combined together. This term can be equiv-
alently written as � γ2 v′CSTRSvCSTR.

A few observations regarding the intuition behind 
these decompositions are in order. First, constraints 
may change the portfolio weights in either direction 
because the last term in (3) can lead to both positive 
and negative entries.

Second, in the expected return decomposition in (4), if 
the Lagrange multiplier, or the shadow cost, for the ith 
constraint λi > 0, the sign of the marginal contribution of 
that constraint is determined by the sign of �m′S�1Aj, 
which may be positive. To see that, we observe �m′

S�1Aj �� |S
�1m | · |Aj | · cosθ, where θ�is the angle 

between vMVO �
1
γS�1m (holdings of the MVO portfo-

lio) and Aj (constraint coefficients). When these two vec-
tors are negatively correlated, cosθ�is negative, which 
implies that the ith constraint increases expected returns.

Third, when constraints are static, they always 
decrease expected utility relative to the unconstrained 
MVO portfolio because the last term in (5) is always 
negative. In addition, this last term provides an attri-
bution of expected utility to all constraints combined 
together. Unlike the decomposition of the portfolio 
holdings and expected return, which both provide a 
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simple linear additive attribution to individual con-
straints, the expected utility cannot be decomposed 
into a linear combination of each constraint because of 
the risk term. Nonetheless, there is a clear interpreta-
tion of the portfolio holdings decomposition, vCSTR, 
operating on the covariance matrix S.

Finally, the portfolio holdings decomposition in (3) 
provides a way to derive investor views on m implied 
by their holdings. For example, if a portfolio deviates 
from the benchmark portfolio, vMVO, by vCSTR, it is 
equivalent to solving an unconstrained mean-variance 
problem using m�A′l∗ as the expected value of assets. 
Therefore, the deviation, �A′l∗, can be treated as the 
investor’s view implied by the portfolio holdings. This 
idea is explored extensively by, for example, Tu and 
Zhou (2010) and Ardia and Boudt (2015). We follow Tu 
and Zhou (2010) and the performance analysis litera-
ture mentioned in Section 1 to consider a partial equi-
librium analysis of the impact of constraints from the 
investment perspective. The equilibrium analysis that 
accounts for the impact of investors on asset prices is 
an important problem but beyond the scope of this 
paper.

2.1. Constraints with Information
To extend the framework beyond static constraints, we 
consider constraints that are potentially correlated with 
returns. Let the random vector xt ≡ [x1, t ⋯ xN, t]

′ be a 
characteristic or score associated with each asset at 
time t. The randomness in x comes from the fact that 
these scores may change period by period and, more 
importantly, may be correlated with rt. For example, xt 
can represent a firm’s ESG score, price-to-earnings 
ratio, momentum measure, or even a proprietary alpha 
signal at time t. We again omit the subscript t and sim-
ply write x in most cases.

Investors form constraints based on the value of x, 
and we denote the jth constraint by Aj(x). For example, 
Aj(x) � x corresponds to the factor exposure constraint, 
x′v � bj. More generally, investors can impose J con-
straints based on J different characteristics denoted by 
the vector

X ≡ [x′1 x′2 ⋯ x′J]
′, 

where xj represents the jth characteristic that forms the 
jth constraint, Aj(xj). We denote

A(X) �
A′1(x1)

⋮
A′J(xJ)

0

B
@

1

C
A

to be the J × N coefficient matrix of J constraints that 
each depend on one characteristic. Investors observe 
the characteristics X at the time of portfolio construc-
tion but not the returns r. We assume the following 
about the distribution of asset characteristics, X.

Assumption 1. The characteristics X have finite moments 
up to order two.

2.2. Attribution with Information
We use r |X to denote the distribution of returns condi-
tioned on information in X and mX and SX to denote its 
conditional mean and covariance matrix. We first attri-
bute portfolio performance metrics conditioned on X. 
This can be interpreted as a per-period attribution 
because it is a function of the realizations of asset char-
acteristics X in each period. After that, the overall attri-
bution is simply the expectation with respect to X, 
which can be interpreted as the long-run average of the 
per-period attribution.

Portfolio weights depend on the constraints and, 
therefore, X. We still use v∗ and vCSTR to represent the 
weights of the constrained portfolio and components 
attributable to constraints, respectively, but it is worth 
noting that they are functions of X in the context of 
random characteristics. The following result sum-
marizes the attribution of expected return and utility 
because of information in each constraint, conditioned 
on X.

Proposition 2 (Conditional Attribution with Information). 
Under Assumption 1 and conditioned on information in X 
that is used to form constraints A(X), the following decom-
positions hold for the optimal portfolio v∗. 

1. Expected return decomposition:

E[v∗′r |X] � m′Xv∗ � m′XvMVO + m′vCSTR

+ (m′X � m′)vCSTR, (6) 
where 

• m′XvMVO �
1
γm′XS�1m: expected return of the 

unconstrained MVO portfolio.
• m′vCSTR ��

1
γm′S�1A(X)′l∗: components attrib-

utable to each constraint treated as static.
• (m′X�m′)vCSTR ��

1
γ (m

′
X�m′)S�1A(X)′l∗: com-

ponents attributable to information in constraints.

Here, the Lagrange multipliers are given by l∗ � (A(X)
S�1A(X)′)�1

(A(X)S�1m� γb) provided that the feasible 
region of the constrained optimization problem is nonempty.

2. Expected utility decomposition:

m′Xv∗ �
γ

2 v∗
′

SXv∗

� m′XvMVO �
γ

2 v′MVOSXvMVO

�
γ

2 v′CSTRSvCSTR + (m
′
X � m′)vCSTR

� γv′SHR(SX � S)vCSTR: (7) 

• m′X vMVO�
γ
2 v′MVO SX vMVO �

1
γm′X S�1m� 1

2γ�
(S�1m)′SX(S

�1m): optimal expected utility of the 
unconstrained MVO portfolio.
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• �
γ
2 v′CSTRSvCSTR ��

1
2γl∗

′A(X)S�1A(X)′l∗: com-
ponents attributable to all constraints combined together, 
treated as static.
• (m′X�m′)vCSTR � γv′SHR(SX�S)vCSTR � �

1
γ�

(m′X�m′)S�1A(X)′l∗� 1
γ (S

�1m+ 1
2 S�1A(X)′l∗)′(SX 

�S)S�1A(X)′l∗: component attributable to informa-
tion in constraints.

Here, vSHR is a shrinkage portfolio defined as

vSHR ≡vMVO +
1
2 vCSTR �v∗�

1
2 vCSTR: (8) 

Proposition 2 provides a decomposition of the 
expected return and utility into components attribut-
able to the unconstrained MVO portfolio, static con-
straints, and information.

We provide a few remarks regarding the choice of 
the benchmark portfolio in this decomposition. First, 
the unconstrained MVO portfolio here is with respect 
to Problem (1), using the unconditional expected return 
m and covariance matrix S. This is consistent with how 
performance attribution is typically carried out in the 
investment management industry; investors pick a 
widely accepted benchmark portfolio, such as the mar-
ket portfolio or a passive index, and compare the per-
formance of the actual portfolio, which may contain 
additional constraints and information, against the cho-
sen benchmark. The decomposition in Proposition 2
provides investors with a quantitative measure of infor-
mation contained in portfolio constraints relative to any 
benchmark portfolios they may use.7

Second, benchmarking toward the unconstrained 
MVO portfolio without information in X provides a 
way to quantify the value-added performance that 
investors receive by paying for professional portfolio 
management. Investors delegate the process of incorpo-
rating information through constraints either because 
of limited cognitive resources or time budgets or 
because they are not able to fully incorporate such infor-
mation in X into return forecasts. The large literature 
documenting limited attention (Corwin and Coughe-
nour 2008, Hirshleifer et al. 2011) and bounded rational-
ity (Simon 1955, Hirshleifer et al. 2006) in investor 
behavior provide support for this view. This is particu-
larly relevant for uninformed and less sophisticated 
investors who lack the conditioning information avail-
able only to informed investors as in the frameworks of 
Dybvig and Ross (1985) and Ferson and Siegel (2001).

We emphasize that the decomposition in Proposition 
2 is fundamentally different from the traditional con-
straint attribution given in Proposition 1, in which the 
coefficients that form constraints are assumed to be 
constant. Once the constraints depend on asset charac-
teristics X that are potentially correlated with returns, 
they provide information. Proposition 2 quantifies this 
effect explicitly by showing how information contri-
butes to the expected return and utility of a portfolio.

The information component of expected return is 
(m′X�m′)vCSTR, which implies that the information 
contributes positively when portfolio holdings attribut-
able to constraints are positively correlated with the 
excess return vector of all assets, m′X�m′. This term can 
be further decomposed into components attributable to 
each individual constraint under certain distributional 
assumptions of X. We discuss this in Section 2.3.

The information component of expected utility is 
(m′X�m′)vCSTR �γv′SHR(SX�S)vCSTR. The first part is 
the same as the information component of the expected 
return, and the second part corresponds to the informa-
tion component from the variance, which itself consists 
of two terms:

� γvSHR(SX�S)vCSTR

��γ v′MVO +
1
2 v′CSTR

� �

(SX�S)vCSTR

��
γ

2 v′CSTR(SX�S)vCSTR �γv′MVO(SX�S)vCSTR:

(9) 

The first term corresponds to the excess variance, 
SX�S, from portfolio holdings attributable to con-
straints, vCSTR. The second term corresponds to an inter-
action effect between the unconstrained MVO portfolio, 
vMVO, and the component attributable to constraints, 
vCSTR.

Taken together, (9) can be interpreted as the covari-
ance between the shrinkage portfolio, vSHR, and the 
portfolio attributable to constraints, vCSTR. However, 
this covariance is not with respect to the returns of the 
original assets, but with respect to a set of hypothetical 
assets whose covariance is determined by the negative 
excess covariance matrix, �(SX�S).8 Figure 1 shows 
two examples of the shrinkage portfolio, which shrinks 
the optimal constrained portfolio, v∗, toward the uncon-
strained MVO portfolio, vMVO.

Finally, Online Appendix B.3 provides the uncondi-
tional version of Proposition 2, which can be inter-
preted as the average decomposition over multiple 
time periods.

2.3. Decomposing Information with Specific 
Distributions

The attribution in Proposition 2 depends critically on 
two terms, (mX�m) and (SX�S), which capture the 
excess return and covariance because of information in 
X, respectively. They cannot be simplified further for 
general distributions of r and X. However, for certain 
classes of specific distributions, we can decompose 
these terms further and obtain considerable intuition 
about their contribution.

We consider multivariate normal and multivariate 
Student’s t (MVT) distributions in this section. The nor-
mal distribution is a common choice in the portfolio 
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literature, and the Student t distribution is widely 
adopted to model heavy-tail returns. Both appear in 
the posterior predictive distribution in Bayesian portfo-
lio analysis, which we use to account for estimation 
risk in Section 3.

We make the following two parallel assumptions.

Assumption 2. The returns and characteristics, (r′, x′1, 
: : : , x′J), are jointly normally distributed.

Assumption 29. The returns and characteristics, (r′, x′1, 
: : : , x′J), follow a multivariate Student t distribution:

r

X

 !

~ MVT
m

X̄

 !

,
V Vr, X

VX, r VX, X

 !

,ν
 !

:

Recall that X represents the (N × J)-dimensional vector 
[x′1 ⋯ x′J]

′, and we use X̄ ≡ [x̄′1 ⋯ x̄′J]
′ to denote the 

expected value of X. Assumption 2′ implies that the 
returns r ~ MVT(m, V,ν). The parameters m and V are 
usually referred to as the location vector and scale 
matrix, respectively, and ν�is the degree of freedom. The 
first two moments of an MVT distribution are given by

E[r] � m and S � Cov(r) � ν

ν� 2 V: (10) 

The expected value is the location vector, but the 
covariance matrix is not the scale matrix. Hence, we 
use V to denote the scale matrix to emphasize its differ-
ence from the covariance matrix, S.

The next assumption describes the dependence 
between characteristics and returns.

Assumption 3. The joint distribution of the return vector, 
r, and characteristics X � [x′1 x′2 ⋯ x′J]

′ satisfies the follow-
ing conditions: 

1. The characteristic values are independent both across 
different assets and between the J different constraints.

2. For the jth constraint, the correlation between the return 
and characteristic value of each asset is ρj, and there is no 
cross-correlation between the return and characteristic value 
of different assets. In other words, the covariance between 
returns r and characteristics xj is given by Cov(r, xj) �

ρjσrσxj I with σr the cross-sectional standard deviation of 
returns, σxj the cross-sectional standard deviation of the jth 
characteristic, and I the identity matrix.

Assumption 3(1) asserts that multiple asset charac-
teristics are independent of each other, which makes it 

possible to decompose the contribution from each con-
straint in mathematically intuitive forms (see Proposi-
tions 3 and 4). More generally, when characteristics are 
dependent, a similar decomposition is also possible 
with additional interaction terms between different con-
straints, and we provide this generalization in Online 
Appendix B.1.

Assumption 3(2) simplifies the dependence between 
returns and characteristics, still allowing the returns, 
r, to be arbitrarily dependent cross-sectionally. This 
assumption is first used in Lo and MacKinlay (1990) to 
describe cross-sectional estimation errors of intercepts in 
capital asset pricing model regressions, and later in Lo 
and Zhang (2024) to describe the dependence structure 
between returns and an impact factor, such as ESG. 
Online Appendix B.1 provides a generalization that 
relaxes this assumption as well.

Given Assumption 3, the covariance matrix of [r′
x′1 ⋯ x′J] can be written as

S ρ1σrσx1 I ⋯ ρJσrσxJ I

ρ1σrσx1 I

⋮

ρJσrσxJ I

σ2
x1

I 0 0

0 ⋱ 0

0 0 σ2
xJ

I

0

B
B
@

1

C
C
A

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

: (11) 

The following result characterizes the excess return 
and covariance because of the information in X.

Proposition 3 (Information Decomposition). Under 
Assumptions 1 and 3, 
• if Assumption 2 holds, r |X is normally distributed with 

an expected value given by

mX � E[r |X] � m+
XJ

j�1
ρjσr
(xj� x̄j)

σxj

, (12) 

and a covariance matrix given by

SX � Cov(r |X) � S�
XJ

j�1
ρ2

j σ
2
r I; (13) 

• if Assumption 2′ holds, r |X follows a multivariate Stu-
dent t distribution:

MVT(m+Vr, XV�1
X, X(X� X̄), s(V�Vr, XV�1

X, XVX, r), ν+NJ),
(14) 

Figure 1. Illustration of Shrinkage Portfolios Defined in (8) 

(a) (b)
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where s � ν+(X�X̄)′V�1
X,X(X�X̄)

ν+NJ is a scaling parameter that 
approaches one as the number of assets, N, increases without 
bound. In particular, its expected value is given by

mX � E[r |X] � m+
XJ

j�1
ρjσr
(xj � x̄j)

σxj

, (15) 

for all N, and its covariance matrix is given by

SX � Cov(r |X) �
p
(1� 2=ν) S�

XJ

j�1
ρ2

j σ
2
r I

0

@

1

A, (16) 

where �
p 

denotes equality in probability as N increases with-
out bound.

Both the normal distribution and the multivariate 
Student t distribution are special cases of the elliptical 
distribution family (Fang et al. 1990). Therefore, it is 
not surprising that their conditional moments conform 
to similar analytical forms.

Proposition 3 allows for more explicit decompositions 
of the expected return and utility of the constrained 
portfolio by substituting (12)–(16) into Proposition 2, 
which we summarize in Proposition 4.

Proposition 4 (Attribution with Normal and MVT Returns). 
Under Assumptions 1, 2 (or 2′), and 3 and conditioned on 
information in X that is used to form constraints A(X), the 
following decompositions hold for the optimal portfolio, v∗: 

1. Expected return decomposition:

E[v∗′r |X] � m′Xv∗ � m′XvMVO + m′vCSTR

+
XJ

j�1
ρjσr
(x′j � x̄′j )vCSTR

σxj

, (17) 

where the Lagrange multipliers are the same as in Proposi-
tion 2 provided that the feasible region of the constrained 
optimization problem is nonempty. 

• m′XvMVO: expected return of the unconstrained 
MVO portfolio.
• m′vCSTR: components attributable to each con-

straint treated as static.
• ρjσr

(x′j�x̄′ j)vCSTR

σxj
: component attributable to infor-

mation in the jth constraint.
2. Expected utility decomposition:

m′Xv∗ �
γ

2 v∗
′

SXv∗

� m′XvMVO �
γ

2 v′MVOSXvMVO�
γ

2 v′CSTRSvCSTR

+
XJ

j�1
ρjσr
(x′j � x̄′j )vCSTR

σxj

+ γρ2
j σ

2
r v′SHRvCSTR

 !

:

(18) 

• m′XvMVO�
γ
2 v′MVOSXvMVO: optimal expected 

utility of the unconstrained MVO portfolio.

• �
γ
2 v′CSTRSvCSTR: components attributable to all 

constraints combined together, treated as static.
• ρjσr

(x′j�x̄′j )vCSTR

σxj
+ γρ2

j σ
2
r v′SHRvCSTR: component 

attributable to information in the jth constraint.
When Assumption 2′ is true, (18) holds when N and ν�

increase without bound.9

The last term of (17) (see also (12)) shows that the 
excess expected return, mX�m, is linear in x. More 
importantly, it is determined by three terms: the first 
term, ρj, determines the correlation between asset char-
acteristics and returns; the second term, σr, measures 
the standard deviation of returns; and the third term, 
(xj� x̄j)=σxj , determines whether each asset’s character-
istic value is above or below the average characteristic 
value, much as does a z-score. When the asset charac-
teristics are positively correlated with returns, those 
assets with above-average characteristic values have 
positive excess returns. When the asset characteristics 
are negatively correlated with returns, those assets 
with below-average characteristic values have positive 
excess returns.

Proposition 4 also highlights a connection between the 
information component of our decomposition and tradi-
tional regression-based performance attribution (Fama 
1972, Sharpe 1992). The last term of (17) can be written 
equivalently as the product of two terms. The first term, 
ρjσr=σxj , is the beta of the asset returns regressed on each 
of the jth characteristics, which is a standard procedure 
in classic style analysis and performance attribution. The 
second term, (x′j � x̄′j )vCSTR, is the average loading on 
the jth characteristic of the portfolio holdings directly 
attributable to constraints. Our results show that an 
interaction effect between the two determines the infor-
mation contribution from constraints.

The last term of (18) (see also (13)) shows that the 
excess covariance, (SX�S), is always negative. In other 
words, when v′SHRvCSTR > 0, that is, the shrinkage port-
folio holdings and the holdings attributable to constraints 
are positively correlated, incorporating information in X 
always reduces the variance of a portfolio. In addition, 
the magnitude of reduction in variance because of the 
jth constraint depends on ρ2

j , the squared correlation 
between the jth asset characteristics and returns. The con-
straints with a higher magnitude of correlation lead to 
larger reductions in variance. On the other hand, when 
v′SHRvCSTR < 0, incorporating information in X increases 
the variance and reduces the expected utility of a portfo-
lio. These two scenarios correspond to the two cases in 
Figure 1, respectively.

3. Accounting for Estimation Risk via 
Bayesian Portfolio Analysis

Our framework so far relies on knowing the popula-
tion value of m and S but does not account for the 
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estimation risk when these parameters are estimated 
using a sample. In this section, we apply Bayesian port-
folio analysis to accommodate estimation risk and ana-
lyze out-of-sample returns. We emphasize that we 
present our main framework in the previous section in 
the population model because it highlights the funda-
mental role of information in constraints in determining 
the performance of a portfolio. This holds true even if 
investors know the true m and S without any estima-
tion risk. The goal of this section is not to propose a new 
robust portfolio rule or a better way to deal with estima-
tion risk, but rather to generalize our framework to out- 
of-sample returns of existing robust portfolio rules.

3.1. Bayesian Portfolio Analysis
Bayesian portfolio analysis is a classic and natural 
framework to account for estimation risk (Avramov 
and Zhou 2010, Fabozzi et al. 2010, Jacquier and Polson 
2011). We follow the classic literature to assume that 
returns rt, t � 1, 2, : : : are independently and identically 
distributed (IID) over time with mean m and covari-
ance matrix S. Investors at time T have observed 
returns ΦT � {r1, r2, : : : , rT}, and the predictive density 
of the next return is

P(rT+1 |ΦT) �

Z

m

Z

S

P(rT+1, m, S |ΦT)dm dS

�

Z

m

Z

S

P(rT+1 |m, S)P(m, S |ΦT)dm dS, (19) 

where P(rT+1 |m, S) describes the data-generating pro-
cess, that is, the distribution of returns conditioned on 
known parameters, and P(m, S |ΦT) is the posterior den-
sity of m and S. Given an appropriate prior, P(m, S), the 
posterior density is P(m, S |ΦT)∝P(ΦT |m, S) × P(m, S).

Unlike the conditional distribution, the Bayesian pre-
dictive distribution (19) accounts for estimation error 
by integrating over the unknown parameter space. The 
optimal portfolio is then constructed by maximizing 
the expected utility with respect to the predictive distri-
bution. For notational convenience, we denote the 
(N × 1)-vector, r̃ ≡ rT+1 |ΦT, as the predictive return 
vector that follows (19), and m̃ ≡ E[r̃] and S̃ ≡ Cov(r̃)
are the expected value and covariance matrix of r̃, 
respectively. By convention, we always consider pre-
dictive returns conditioned on the previous T returns 
in the Bayesian framework, and we omit the time sub-
script T + 1 in r̃ and its moments for notational conve-
nience without causing any confusion.

In the case of mean-variance utility, the optimal port-
folio with respect to the predictive distribution solves 
the optimization problem in (1) with m and S replaced 
by m̃ and S̃:

max
v

v′m̃�
γ

2 v′S̃v

s:t: A(XT)v � b,
(20) 

where XT is the asset characteristics at time T. We use 
ṽ∗ to denote the weights for the optimal Bayesian port-
folio by solving the optimization problem (20).

3.2. Attribution with Information Using Predictive 
Distribution

We assume that the asset characteristics, Xt, t � 1, 2, : : : , 
are identically distributed over time, and Xt may be 
correlated with rt+1 in general. Therefore, at time T, XT 
is not independent of the predictive returns, r̃, that fol-
low (19). Following our notations so far and again 
omitting the time subscript T in asset characteristics 
without causing any confusion, we use r̃ |X to denote 
the predictive returns conditioned on additional infor-
mation in XT and m̃X ≡ E[r̃ |X] and S̃X ≡ Cov[r̃ |X] to 
denote the conditional mean and covariance matrix.

With these notations, the performance attribution in 
Proposition 2 can be generalized to accommodate the 
Bayesian predictive distribution by replacing the popula-
tion moments (m, S, mX, SX) with the corresponding 
moments from the predictive distribution (m̃, S̃, m̃X, S̃X). 
We provide the formal statement of this result in Proposi-
tion B.3 in Online Appendix B.2.1.

We emphasize that so far we have not made any 
assumptions about the specific form of the prior P(m, S)
nor the distribution of returns conditioned on known 
parameters P(rT+1 |m, S). Therefore, the decomposition 
in Online Proposition B.3 holds for any Bayesian portfo-
lios constructed using the predictive distribution. In gen-
eral, the predictive distribution in (19) and its moments, 
m̃, S̃, m̃X, and S̃X, can be obtained via Monte Carlo sim-
ulation in the Bayesian statistics literature.10 Therefore, 
as long as a portfolio rule can be expressed as a Bayesian 
portfolio, our framework can be applied to derive a 
decomposition of the performance into the different 
components outlined in Propositions 2 and B.3, at least 
numerically.

For certain Bayesian portfolios in the literature with 
specific distributions of the prior, we can use our 
results in Section 2.3 to derive more explicit decompo-
sitions, which we discuss next. We follow the majority 
of this literature to assume that the return distribution 
conditioned on m and S is normal to allow for tractabil-
ity of the posterior predictive distribution.

3.2.1. Normal Predictive Returns with Unknown m and 
Known S. It is known that the expected return vector m 
is much more challenging to estimate than the covari-
ance matrix S, partially because using higher sampling 
frequencies improves the accuracy of the covariance esti-
mator but not the mean estimator (Merton 1980). Several 
studies document that the estimation risk is mainly due 
to errors in the estimated expected return (Broadie 1993, 
Chopra and Ziemba 1993, Ceria and Stubbs 2006), which 
suggests that uncertainty in the mean is the first order 
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effect to address in portfolio optimization (Jacquier and 
Polson 2011).

Therefore, we first consider uncertainties in m and 
treat S as known. In this case, the posterior predictive 
distribution is usually normal. Proposition B.2 in Online 
Appendix B.2.2 derives an explicit expression of the 
information component for predictive returns, which is 
similar to Proposition 3 except that the population 
moments (m, S, mX, SX) are replaced by the predictive 
moments (m̃, S̃, m̃X, S̃X).

This result can be applied to several classic models 
such as Klein and Bawa (1976), Jorion (1986), and Black 
and Litterman (1992), and Online Appendix B.2.2 pro-
vides more details. In each model, they adopt different 
priors that lead to normal predictive distributions with 
different parameters. In our framework, these portfo-
lios without constraints correspond to different bench-
mark portfolios ṽMVO.

3.2.2. Student t Predictive Returns with Unknown m 
and S. When m and S are both unknown and modeled 
as random parameters in the Bayesian framework, the 
predictive density of returns is typically a multivariate 
Student t distribution, r̃ ~ MVT(m̃, Ṽ,ν).

Similar to the case of normal predictive returns, the 
result of Proposition B.4 in Online Appendix B.2.2 can 
be applied to a broader class of Bayesian portfolios and 
shrinkage portfolios with certain equivalence to Bayes-
ian portfolios, including the noninformative diffuse 
prior P(m, S)∝ |S |�(N+1)=2 as in Klein and Bawa (1976) 
and Brown (1978) and the normal–inverse–Wishart 
conjugate prior for (m, S) as in Frost and Savarino 
(1986), Stambaugh (1997), Pástor (2000), Pástor and 
Stambaugh (2000), Zhou (2009), and Lai et al. (2011). In 
these examples, the predictive distribution is MVT 
with different parameters.

In addition, Tu and Zhou (2010) establish a certain 
equivalence between priors on portfolio weights, v, 
and priors on m and S. DeMiguel et al. (2009b) show 
that certain norm-constrained portfolios can be equiva-
lently interpreted as Bayesian portfolios with prior 
beliefs on portfolio weights. The insights of these two 
seminal articles provide an important link between the 
literature on robust portfolios with priors on portfolio 
weights11 and the literature on Bayesian portfolio anal-
ysis. This implies that our attribution framework can, in 
principle, be applied to robust portfolio rules that 
directly impose priors or shrinkage on portfolio weights 
through their Bayesian equivalents. However, deriving 
the specific Bayesian formulation for each of them is not 
the focus and beyond the scope of this article. Online 
Appendix B.2.2 discusses this literature in more detail.

3.3. Interpreting Constraints as Bayesian Priors
In this section, we formally establish that, in the context 
of Bayesian portfolios, solving a portfolio with constraints 

can be equivalently interpreted as solving an uncon-
strained portfolio with a certain prior on m and S.

In particular, following Section 3.2, we consider nor-
mally distributed returns conditioned on m and S: 
r | (m, S) ~ N(m, S), and two priors, π1 and π2, on the 
unknown parameters, which lead to posterior predictive 
returns with moments (m̃1, S̃1) and (m̃2, S̃2), respec-
tively. We consider a constrained Bayesian portfolio (I) 
with prior π1 that solves the problem in (20):

ṽ∗1 �
1
γ

S̃
�1
1 (m̃1�A′l̃) where

l̃ � (AS̃
�1
1 A′)�1

(AS̃
�1
1 m̃1� γb), (21) 

and an unconstrained Bayesian portfolio (II) with prior 
π2 that maximizes the same predictive mean-variance 
utility in (20) but without any constraint:

ṽ∗2 �
1
γ

S̃
�1
2 m̃2: (22) 

The following result establishes the equivalence between 
the two portfolios.

Proposition 5 (Constraints as Priors). With portfolios I 
and II in (21) and (22), respectively, 

1. When m is unknown and S is known, consider two 
priors on m:

π1 : m ~ N m1, S

τ

� �

,

π2 : m ~ N m2, S

τ

� �

, 

where m1 and m2 are prior means, and τ�is a precision hyper-
parameter. Portfolios I and II are identical (ṽ∗1 � ṽ∗2) if the 
following condition holds:

m2 � m1�A′l̃1, PR�
T
τ

A′l̃1, DT, (23) 

where

l̃1, PR ≡ (AS�1A′)�1
(AS�1m1� (1+ 1=τ)γb),

l̃1, DT ≡ (AS�1A′)�1
(AS�1m̂� γb)

are Lagrange multipliers of two hypothetical constrained 
portfolios (20) with predictive distributions

r̃ ~ N m1, 1+ 1
τ

� �

S

� �

and r̃ ~ N(m̂, S), 

respectively. Here m̂ is the sample mean of the returns.
2. When m and S are both unknown, consider two priors 

on m and S:

π1 : m |S ~ N m1, S

τ

� �

, S ~ IW(S1, v0),

π2 : m |S ~ N m2, S

τ

� �

, S ~ IW(S2, v0), 

where m1 and m2 are prior means, S1 and S2 are prior 
covariance matrices, τ�and v0 are hyperparameters, and IW 
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stands for the inversed-Wishart distribution. Portfolios I and 
II are identical (ṽ∗1 � ṽ∗2) if the following conditions hold:

m2 � m1�A′l̃2, PR�
T
τ

A′l̃2, DT, (24) 

S2 � S1 +
Tτ

T + τ (m1�m2)(m1 +m2� 2m̂)′, (25) 

where

l̃2, PR ≡ (AS̃
�1
1 A′)�1

(AS̃
�1
1 m1� γb),

l̃2, DT ≡ (AS̃
�1
1 A′)�1

(AS̃
�1
1 m̂� γb)

are Lagrange multipliers of two hypothetical constrained 
portfolios (20) with predictive distributions

r̃ ~ MVT m1, v0 +T�N� 1
v0 +T�N + 1 S̃1, v0 +T�N + 1

� �

,

r̃ ~ MVT m̂, v0 +T�N� 1
v0 +T�N + 1 S̃1, v0 +T�N + 1

� �

, 

respectively, and

S̃1 ≡ 1+ 1
T+ τ

� �
1

v0 +T�N� 1

� �

S1 +TŜ +
Tτ

T+ τ
(m1� m̂)(m1� m̂)′

� �

is the predictive covariance matrix of returns under prior π1.

Proposition 5 shows that Bayesian portfolio I with 
constraints is equivalent to Bayesian portfolio II with a 
different prior and without constraints. The relation-
ships between their priors are characterized by (23) 
when S is known and (24) and (25) when S is unknown. 
In both cases, imposing a constraint is equivalent to 
moving the prior mean on m by two terms, both of 
which yield clear financial intuitions. The first term 
reflects the effect of prior π1 (see l̃1, PR and l̃2, PR), and 
the second term reflects the effect of the observed data 
(see l̃1, DT and l̃2, DT).12

The connection between portfolio constraints and 
investor views is closely related to the seminal work of 
Tu and Zhou (2010), DeMiguel et al. (2009b), and Ardia 
and Boudt (2015). Tu and Zhou (2010) establish the 
equivalence between (objective-based) priors on v and 
priors on m and S but do not explicitly consider the 
effect of portfolio constraints. DeMiguel et al. (2009b) 
consider minimum variance portfolios and show that 
certain norm constraints on v are equivalent to Bayesian 
portfolios with a prior on v. We consider mean- 
variance portfolios and priors on m and S, and our con-
straints are different from theirs. Ardia and Boudt (2015) 
point out the connection between portfolio constraints 
and investor views but do not explore the equivalence 
in the context of Bayesian portfolios.

3.4. Summary
We summarize the procedure of applying our frame-
work to Bayesian portfolios that account for estimation 
risk. This allows for performance attribution and con-
straint selection based on out-of-sample returns. 
• Step 1: Pick a Bayesian method to derive the pre-

dictive distribution of asset returns that accounts for 
estimation risk. Different methods correspond to differ-
ent benchmark portfolios ṽMVO.
• Step 2: Performance attribution using Online Prop-

osition B.3 either directly with Monte Carlo methods or 
using the analytical expressions given in Online Propo-
sition B.4. For the latter, one estimates the correlation, 
ρj, between the characteristics of the jth constraint, xj, 
and the predictive returns, r̃, using a rolling window 
of panel data in the past T periods. This is a low- 
dimensional problem because there is only one param-
eter to estimate for each constraint, ρj, which can be 
achieved with a fairly high degree of accuracy (Lo and 
Zhang 2024, Lo et al. 2024).
• Step 3: The results can be used either for purposes 

of performance attribution and disclosure or to choose 
the constraint that provides the highest contribution to 
performance. Because portfolio constraints can be inter-
preted as Bayesian priors as shown in Section 3.3, the 
attribution result also reflects the influence of investors’ 
views on returns (expressed as Bayesian priors) on the 
portfolio’s performance.

Different Bayesian portfolios correspond to different 
predictive distributions of returns and different bench-
mark portfolios. Whereas our framework can be 
applied to Bayesian portfolios, we emphasize that it 
should not be treated only as a way to deal with estima-
tion risk. In fact, even without estimation error, the 
same decomposition holds. Constraints can serve as a 
mechanism for incorporating information in both pop-
ulation and out-of-sample returns. Our methodology 
provides a way to quantify this effect.

We consider two common types of portfolio con-
straints and demonstrate how to select constraints that 
improve portfolio performance using simulations in 
Section 4. Our empirical analysis in Section 5 applies 
the framework to portfolios that account for estimation 
risk using two robust portfolio rules: Jorion’s (1986) 
rule and the 1=N rule, which is shown to be equivalent 
to Bayesian portfolios with a particular prior (DeMi-
guel et al. 2009a, b).

4. Common Examples of Portfolio 
Constraints

In this section, we consider two common examples of 
portfolio constraints: factor exposures and exclusions. 
We derive additional analytical results for these con-
straints and conduct simulations to illustrate the attri-
bution of expected returns and utility. All results in this 
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section can be derived from either the unconditional m 

and S or the posterior predictive moments, m̃ and S̃. 
The latter can be used to select constraints ex ante.

4.1. Factor Exposure
A common constraint in portfolio construction arises 
when investors wish to control the average value of a 
characteristic or the exposure to a certain factor, such 
as the average ESG score, market capitalization, beta, 
or book-to-market values of the portfolio.

We consider the case of a single constraint, A(x) � x′, 
for simplicity. In this case, the Lagrange multiplier is a 
scalar, which leads to the following result.

Proposition 6 (Factor Exposure). Under Assumptions 1, 2
(or 2′), and 3, and assuming without loss of generality that 
the cross-sectional average factor value X̄ � 0, the expected 
return of the optimal portfolio with a factor exposure con-
straint can be decomposed into

E[v∗′r |x] � 1
γ

m′XS�1m+
x′S�1m

x′S�1x
(b� x′S�1m=γ)

+
ρσr

σx
(b� x′S�1m=γ), (26) 

if the constraint is binding. In the case of a nonbinding 
inequality constraint, the Lagrange multiplier λ∗ � 0 and (26) 
reduces to E[v∗′r |x] � m′XS�1m=γ.

If the moments of returns in Proposition 6 are replaced 
by their counterparts from the predictive distribution, 
we derive the same decomposition for the expected 
return of the predictive distribution.

There is no information contribution when the con-
straint is not binding in the case of an inequality con-
straint. When the constraint is binding, the information 
component depends on the correlation, ρ, between 
returns and asset characteristics. In addition, x′S�1m 
is the characteristic value of the unconstrained MVO 
portfolio, so b� x′S�1m measures the constrained char-
acteristic value b relative to the unconstrained MVO 
portfolio. If a particular asset characteristic, for example, 
ESG, is positively correlated with returns (ρ > 0), a posi-
tive desired ESG level relative to the unconstrained 
MVO portfolio (b� x′S�1m > 0) adds value to expected 
returns. However, if ESG is negatively correlated with 
returns (ρ < 0), the same constraint hurts expected 
returns. This simple intuition informs the selection of 
constraints using our framework: pick constraints with 
a positive correlation, ρ, with the predictive returns. We 
demonstrate this further with the following simulation.

Simulation. We consider a world with 10 assets in 
which investors adopt a certain Bayesian method to 
account for estimation risk and derive the predictive 
density of returns. The expected predictive returns are 
generated from a normal distribution µ̃i ~ N(0:05, 0:052)
for i � 1, 2, : : : , 10. The covariance matrix, S̃ � (σi, j)10×10, 

is generated by using the algorithm of Davies and 
Higham (2000)—implemented by scipy.stats.ran-
dom_correlation in Python—which generates a ran-
dom correlation matrix given a set of eigenvalues. We 
set the 10 eigenvalues to range from 0.9 to 1.1 and then 
multiply the correlation matrix by 0.1 to get S̃.13

Investors solve the following optimization problem 
with two constraints on factor exposures:

max
v

v′m̃ �
γ

2 v′S̃v

s:t: v′x ≥ 0:5 and v′y ≥ 0:5:
(27) 

Here, x and y represent two characteristics such as 
an ESG score and return momentum. They are both 
10-dimensional N(0, 1) random vectors that are IID 
over time. We denote the correlations between asset 
returns and these two characteristics by ρ1 ≡ Corr(x, r̃)
and ρ2 ≡ Corr(y, r̃).

Figure 2 shows the attribution of expected returns fol-
lowing Proposition 6. Figure 2(a) shows the expected 
return of the constrained portfolio, which ranges 
between 1.6 and 3.0 as ρ1 and ρ2 vary between –0.8 and 
0.8. Figure 2(b) shows the expected return of the uncon-
strained MVO portfolio, which is a constant value 
around 2.5 regardless of the values of ρ1 and ρ2.

The source of the difference in expected returns 
between the unconstrained MVO portfolio and the con-
strained portfolio becomes clear in Figure 2, (c)–(f). 
Figure 2, (c) and (d), shows the expected returns attrib-
utable to the two constraints, respectively, as if they are 
static. They each contribute to the expected returns 
with a negative constant value of around –0.1. Figure 
2(e) shows the expected returns attributable to infor-
mation in the first constraint, which increase as ρ1 
increases but remains constant as ρ2 varies. Figure 2(f)
shows the expected returns attributable to information 
in the second constraint, which increase as ρ2 increases 
but remains constant as ρ1 varies. Similar patterns are 
seen in decomposing expected utility as shown in 
Figure B.1 in Online Appendix B.5.

Overall, these results demonstrate how to under-
stand the expected return and utility of a constrained 
portfolio by decomposing them into an unconstrained 
MVO portfolio, static constraints, and information in 
each constraint. In particular, when the information in 
constraints is sufficiently positively correlated with 
returns, they can lead to higher expected returns and 
utilities for the constrained portfolio.

4.2. Exclusionary Investing
Another common form of constraint in portfolio con-
struction is the exclusionary constraint, in which assets 
are excluded from the portfolio based on certain crite-
ria, such as a minimum ESG score or the particular 
industry in which a firm operates.

Lo and Zhang: Performance Attribution for Portfolio Constraints 
12 Management Science, Articles in Advance, pp. 1–23, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

24
01

:c
e0

0:
c8

1f
:4

d0
a:

fc
d1

:2
f7

4:
a9

5:
28

67
] 

on
 2

7 
D

ec
em

be
r 

20
24

, a
t 2

0:
06

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



For convenience, we introduce some new notation. 
Suppose that assets are excluded based on the ranking 
of a characteristic x. We use the notation x1:N < x2:N <

xN:N to denote the ranked values of x or their order sta-
tistics. We then denote by r[i:N] the return associated 
with the ith order statistic, xi:N. This return is called the 
ith induced order statistic in the literature to emphasize 
the fact that its ranking is determined not by its own 

value, but by the value of x (David 1973). For simplic-
ity, we also use the subscript [N] to denote a vector or a 
matrix that is reordered based on values of x. For exam-
ple, v[N] represents the vector of weights for assets that 
are reordered based on values of x.

Investors solve the following optimization problem 
in which the top N0 assets ranked by x are allowed to 
enter the portfolio, whereas the bottom N�N0 assets 

Figure 2. (Color online) Decomposition of Expected Return for the Optimization Problem in (27) with Two Constraints That 
Depend on Random Characteristics as Correlations (ρ1 and ρ2) Between Random Characteristics and Asset Returns Vary 

Note. The expected return of the constrained portfolio (a) is decomposed into components corresponding to the unconstrained MVO portfolio 
(b), static constraints (c and d), and information in the constraints (e and f).

Lo and Zhang: Performance Attribution for Portfolio Constraints 
Management Science, Articles in Advance, pp. 1–23, © 2024 INFORMS 13 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

24
01

:c
e0

0:
c8

1f
:4

d0
a:

fc
d1

:2
f7

4:
a9

5:
28

67
] 

on
 2

7 
D

ec
em

be
r 

20
24

, a
t 2

0:
06

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



are excluded:

min
v[N]

v′[N]m[N]�
γ

2 v′[N]S[N]v[N]

s:t: ω[i:N] � 0 for i ≤ N�N0:

(28) 

The optimal portfolio for (28) is simply the optimal 
portfolio restricted to N0 assets. Therefore, the optimal 
portfolio weights are given by v∗N0

� S�1
N0

mN0
.

If x is a vector of continuous random variables, the 
expected return of the optimal portfolio with an exclu-
sionary constraint can be decomposed by (17) in Propo-
sition 4. If x is a vector of binary random variables, as is 
the case for exclusion based on industry or sin stock 
labels, the following result provides a more intuitive 
form of attribution for the expected return of this 
portfolio.

Proposition 7 (Exclusion Based on Binary Characteristic). 
Under Assumptions 1, 2 (or 2′), and 3, if x is a vector of 
binary random variables and xi follows a Bernoulli distribu-
tion, the expected return of the optimal portfolio with an 
exclusionary constraint in (28) can be decomposed into

E[v∗′r |x] � m′x, N0
v∗N0
� m′xvMVO + m′vCSTR

+ ρσr(x ⊙ u� (1� x) ⊙ v)′vCSTR, (29) 

where

u �

ffiffiffiffiffiffiffiffiffiffiffi
ψx1�0
ψx1�1

s

, : : : ,

ffiffiffiffiffiffiffiffiffiffiffiffi
ψxN�0
ψxN�1

s !′

and

v �

ffiffiffiffiffiffiffiffiffiffiffi
ψx1�1
ψx1�0

s

, : : : ,

ffiffiffiffiffiffiffiffiffiffiffiffi
ψxN�1
ψxN�0

s !′

are two vectors of the odds ratio (that is, the relative chance) 
of each asset being excluded from the portfolio, ψxi�0 ≡ P 
(xi � 0), ψxi�1 ≡ P(xi � 1), and ⊙ represents element-wise 
multiplication of two vectors.

If the return moments in Proposition 7 are replaced 
by their counterparts from the predictive distribution, 
we derive the same decomposition for the expected 
return of the predictive distribution. Proposition 7
shows that the component attributable to information 
depends on the correlation, ρ, between returns and 
characteristics x, and the chance of being excluded 
from the portfolio, 

ψxi�0
ψxi�1

.

Simulation. We consider a world with 10 assets, and as 
before, investors adopt a certain Bayesian method to 
account for estimation risk and derive the predictive 
density of returns. The expected predictive return, m̃, 
and covariance matrix, S̃, are generated in the same 
way as in Section 4.1.

Investors solve the following problem:

max
v

v′m̃ �
γ

2 v′S̃v

s:t: ω[i:10] � 0, for i ≤ N �N0 assets
ordered by x:

(30) 

Here, x represents the asset characteristic that is 
used to exclude assets (e.g., minimum ESG score), a 
10-dimensional N(0, 1) random vector that is IID over 
time. We denote the correlations of the asset character-
istics with returns by ρ ≡ Corr(x, r̃).

Figure 3 shows the attribution of expected returns 
following Proposition 7 with ρ�varying between –0.8 
and 0.8 and the number of excluded assets varying 
between one and nine. Figure 3(a) shows the expected 
return of the constrained problem, which varies from a 
low of –0.2 to a high of 3.0 as ρ�and the number of 
excluded assets vary. Figure 3(b) shows the expected 
return of the unconstrained MVO portfolio, which has 
a constant value of around 2.5.

The source of the difference in expected returns 
between the unconstrained MVO and the constrained 
portfolio becomes clear in Figure 3, (c) and (d). Figure 
3(c) shows the expected returns attributable to the con-
straints as if they are static. As more assets are excluded, 
the contributions from static constraints also increase. 
However, this component remains unchanged as the 
correlation, ρ, varies. Figure 3(d) shows the expected 
returns attributable to the information in the constraint, 
which increase as ρ�increases. This result highlights a 
trade-off when a greater number of assets are excluded: 
when the correlation, ρ, is nonzero, excluding more 
assets implies that only assets with positive or negative 
returns are included in the portfolio, but excluding too 
many assets allows the portfolio too little choice in the 
universe of available assets. As a result, the highest 
returns are achieved when an intermediate number of 
assets are excluded, given a positive correlation ρ. Simi-
larly, the lowest returns are achieved with an intermedi-
ate number of assets given a negative correlation. These 
results are consistent with Proposition 7.

Similarly, Figure B.2 in Online Appendix B.5 demon-
strates the attribution of expected utility. The patterns 
are similar to those in Figure 3.

Overall, these results demonstrate how to under-
stand the expected return and utility of an exclusionary 
portfolio by decomposing them into an unconstrained 
MVO portfolio, static constraints, and information in 
each constraint.

4.3. Selection of Constraints
These examples highlight how investors can use our 
framework to select constraints that help improve 
performance ex ante. If investors can select one or sev-
eral constraints from a collection of factor exposure 
constraints, they should select the binding constraint(s) 

Lo and Zhang: Performance Attribution for Portfolio Constraints 
14 Management Science, Articles in Advance, pp. 1–23, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

24
01

:c
e0

0:
c8

1f
:4

d0
a:

fc
d1

:2
f7

4:
a9

5:
28

67
] 

on
 2

7 
D

ec
em

be
r 

20
24

, a
t 2

0:
06

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



with information that is sufficiently positively corre-
lated with returns because they can lead to higher 
expected returns and utilities for the constrained port-
folio as demonstrated by the simulation in Section 4.1.

The analysis in Section 4.2 demonstrates that, with 
exclusionary investing, to decide which characteristic 
to use and how many assets to include, investors 
should select the characteristic with the highest correla-
tion with returns and the optimal number of assets to 
exclude. The latter depends on the correlation of the 
specific characteristic and may lie between zero and N, 
reflecting a trade-off between information and diversi-
fication. As a result, the best performance is achieved 
when an intermediate number of assets is excluded.

Our empirical analysis in Section 5.4 demonstrates an 
example with real data in which different forms of ESG 
constraints lead to different impact on performance.

5. Empirical Analysis
In this section, we apply our framework to real-world 
data sets and consider an example of ESG investing in 

which the average portfolio ESG score is required to be 
above a certain threshold. In Online Appendix B.6.4, 
we also consider exclusionary investing, excluding sin 
stocks and stranded assets.

5.1. Data
Returns. We obtain daily return data for all U.S. stocks 
from 2001 to 2020 from the Center for Research in Secu-
rity Prices (CRSP) available through Wharton Research 
Data Services. The CRSP data set also contains basic 
firm characteristics, such as market capitalization. We 
obtain the daily Fama–French factor data from Kenneth 
French’s website.14

Because the ESG data are updated annually, we 
require that a stock has at least 10 years of valid return 
data to be included in our analysis. For each stock, we 
estimate a Fama–French five-factor model (Fama and 
French 2015) based on daily returns:

Ri, t � αi + βi, 1(RM, t � Rf , t) + βi, 2SMBt + βi, 3HMLt

+ βi, 5RMWt + βi, 6CMAt + ɛi, t: (31) 

Figure 3. (Color online) Decomposition of Expected Return for the Problem in (30) with One Exclusionary Constraint That 
Depends on Random Characteristics as the Number of Excluded Assets (nExclude) and the Correlation (ρ) Between the Random 
Characteristic and Asset Returns Vary 

Note. The expected return of the constrained portfolio (a) is decomposed into components corresponding to the unconstrained MVO portfolio 
(b), static constraints (c), and information in the constraints (d).
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We follow the common practice in the empirical asset 
pricing literature of winsorizing the raw returns used in 
the regression at 2.5% on both sides for each stock in 
each year in order to mitigate the impact of extreme out-
liers on the regression results. We then use the residual 
returns ri, t ≡ αi + ɛi, t as the main target of interest in our 
analysis. We summarize the residual returns annually 
to match the frequency of the ESG data.

ESG. We merge the CRSP data set with the MSCI KLD 
ESG data set, which contains yearly environmental, 
social, and governance ratings of roughly 3,000 large 
U.S. publicly traded companies from 2003 to 2018. It is 
used in numerous studies examining the effect of ESG 
ratings on firm performance.15 We follow Lins et al. 
(2017) to aggregate the raw data into an ESG score, and 
details are provided in Online Appendix B.6.1.

5.2. Descriptive Statistics
Table 1 shows, for each year, the number of firms in 
our data set, the summary statistics of its annualized 
residual returns, and the summary statistics of the 
aggregate ESG score we construct lagged by one year.

Figure 4 shows the year-over-year cross-sectional 
correlations between the residual returns and lag-1 
ESG scores.16 The correlations are generally negative 
before 2007, implying that high ESG stocks, on average, 
delivered lower excess returns, consistent with equilib-
rium theories of ESG returns (Pástor et al. 2021, Peder-
sen et al. 2021). After 2008, the correlations fluctuate 
around zero and are positive in certain years, reflecting 
increasing attention toward ESG and climate-related 
issues, an effect consistent with the Pástor et al. (2022) 
and Lo et al. (2022) findings.

Although the magnitude of the correlations—between 
2% and 10%—may not seem large, they can still have a 
nonnegligible impact on asset prices. In fact, as shown by 
Lo and MacKinlay (1990) and Lo and Zhang (2024), the 
correlation between stock alphas and firm characteristics 
such as beta, size, or the ESG score of a firm also ranges 
from 2% to 20% depending on the year. Yet they can have 
significant implications for tests of asset-pricing models or 
yield portfolios with significant alphas. In fact, our empiri-
cal analysis that follows shows that even a seemingly low 
level of correlation can still contribute to the performance 
of a portfolio by a significant amount. This is precisely 
what we hope to highlight using our framework.

We also emphasize that our intention is not to find 
the best ESG score or to provide a comprehensive 
study of whether ESG delivers positive or negative 
excess returns. Whereas Berg et al. (2022) show that 
there exists substantial noise in ESG measures and ESG 

Table 1. Summary Statistics of the Annualized Residual Returns (in Percentage) from the Fama–French Five-Factor Model 
and the Aggregate ESG Score Lagged by One Year

Year #firms

Annualized residual return, % ESG score (lag one year)

Mean Std Dev Min 25% 50% 75% Max Mean Std Dev Min 25% 50% 75% Max

2004 1,246 4.9 30.0 �69.1 �12.6 1.9 16.9 330.3 �0.1 0.5 �3.4 �0.3 0.0 0.1 2.9
2005 1,344 4.0 29.0 �64.0 �14.1 �0.3 17.6 156.5 �0.1 0.7 �3.0 �0.6 �0.2 0.2 2.2
2006 1,305 3.3 27.2 �74.4 �13.1 �0.1 15.5 234.1 �0.3 0.6 �3.3 �0.5 �0.2 0.0 2.5
2007 1,383 8.1 43.1 �81.3 �17.0 1.4 23.0 511.0 �0.3 0.6 �3.7 �0.7 �0.2 0.0 3.0
2008 1,487 �0.7 51.3 �95.3 �32.7 �7.5 24.2 647.1 �0.3 0.6 �3.5 �0.7 �0.3 0.0 3.4
2009 1,614 13.1 75.4 �98.0 �20.5 1.5 27.9 1,768.7 �0.3 0.6 �3.6 �0.7 �0.3 0.0 2.8
2010 1,611 5.5 35.6 �86.0 �13.9 0.8 18.3 549.0 �0.3 0.6 �3.5 �0.7 �0.3 0.0 2.8
2011 1,710 2.3 30.4 �96.5 �15.5 1.7 18.4 202.9 �0.4 0.7 �2.8 �0.7 �0.6 0.0 3.9
2012 1,643 2.3 31.0 �81.6 �13.0 �1.0 13.0 407.6 �0.4 0.8 �2.7 �0.9 �0.6 �0.2 4.2
2013 1,573 3.7 31.0 �92.1 �13.5 0.5 16.0 456.9 0.1 0.7 �2.3 �0.3 0.0 0.5 3.8
2014 1,621 1.1 23.9 �93.4 �12.4 1.0 14.2 142.6 0.1 0.8 �2.4 �0.3 0.0 0.3 3.2
2015 1,330 2.7 28.3 �86.4 �14.2 3.9 19.8 194.9 0.1 0.5 �3.7 0.0 0.0 0.3 3.2
2016 1,374 2.7 27.6 �82.2 �12.3 0.4 14.7 245.4 0.2 0.6 �2.6 �0.1 0.1 0.5 3.3
2017 1,320 4.0 27.3 �83.0 �10.7 2.0 16.0 216.5 0.2 0.7 �2.4 0.0 0.1 0.5 3.1
2018 1,440 1.0 26.0 �71.9 �15.6 �0.5 15.2 130.0 0.2 0.7 �2.9 0.0 0.2 0.6 4.1
2019 1,476 8.0 26.5 73.8 �6.8 7.8 20.9 259.8 0.7 0.8 �2.3 0.1 0.5 1.0 4.7

Note. #firms, number of firms; Std Dev, standard deviation; Min, minimum; Max, maximum.

Figure 4. (Color online) Cross-Sectional Correlations 
Between Asset Returns and Lag-1 ESG Scores Each Year 
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scores from different data providers may lead to very 
different correlations, Berg et al. (2024) further show 
that aggregating individual ESG ratings improves port-
folio performance, and there exists a significant signal 
in ESG rating scores that can be used for portfolio con-
struction despite their noisy nature. What we hope to 
demonstrate in this article is that, given any ESG score, 
it is possible to attribute portfolio performance metrics 
to different constraints and to the information in those 
constraints, and we use the MSCI KLD ESG data set as 
an illustrative example.

5.3. Performance Attribution
5.3.1. Portfolio Construction. We consider investors 
who construct portfolios each year by solving the fol-
lowing problem:

max
v

v′m�
γ

2 v′Sv

s:t: v′1 � 1 and v′xESG ≥ b:
(32) 

The first constraint implies that the portfolio is fully 
invested, allowing for both long and short positions in 
individual assets. The second constraint imposes a 
minimum level of portfolio ESG score. In our example, 
we set b � 1 and γ�� 5.

To construct these portfolios, investors need to esti-
mate the expected residual return, m, and the covari-
ance matrix of the residual returns, S, each year. We 
consider the two sets of estimators discussed in Section 
3, both of which account for estimation risk. The goal of 
our analysis is not to exhaustively compare different 
portfolio rules and find the best one in terms of its 
ability to account for estimation risk, but rather to dem-
onstrate how to attribute performance to constraints 
given any such portfolio rules.

In our empirical analysis, we implement two portfo-
lio rules. The first is Jorion’s (1986) portfolio rule, which 
is also summarized in Avramov and Zhou (2010). In 
each period t, the predictive mean and covariance 
matrix of returns are given by

m̂Jorion
t � (1� ξ1)m̂s + ξ1m̂g1 and

ŜJorion
t � 1 + 1

T + ξ2

� �

S̄ +
ξ2

T(T + 1 + ξ2)1′S̄�11
11′,

(33) where

ξ1 �
N + 2

(N + 2) + T(m̂s � m̂g1)′S̄�1
(m̂s � m̂g1)

,

ξ2 �
N + 2

(m̂s � m̂g1)′S̄�1
(m̂s � m̂g1)

, S̄ �
T

T �N � 2 Ŝs, 

m̂s, and Ŝs are the sample mean and sample covariance 
matrix of returns over the last T periods, respectively, 
and m̂g � 1′S̄�1m̂s=1′S̄�11 is the estimated return of 
the global minimum variance portfolio.17

The second is the 1=N rule, which is extensively 
studied by DeMiguel et al. (2009a). As discussed in Sec-
tion 3, the 1=N rule can be interpreted as a Bayesian 
approach with an appropriate prior. We specify the 
predictive mean and covariance matrix of returns so 
that they are consistent with an unconstrained optimal 
portfolio vMVO � 1=N:

m̂
Equal
t �

γ

N
1 and Ŝ

Equal
t � I: (34) 

Combining (32) and the estimators in (33) or (34), we 
can solve for the optimal constrained portfolios. Online 
Appendix B.6.2 shows the decomposition of portfolio 
holdings based on Proposition 1.

5.3.2. Expected Return and Utility Decomposition. 
Figure 5 demonstrates the decomposition of the expected 
return and utility of the portfolio into different compo-
nents for Jorion’s (1986) rule as an example. The upper 
panel of Figure 5(a) shows that the expected utility of the 
optimal portfolio is generally negative in the first half of 
our sample period and starts to turn positive toward 
the second half. In the lower panel, this expected utility 
is decomposed into three components using (18) in 
Proposition 4 and its predictive return version in Online 
Appendix B.2.2.18 The expected utility of the uncon-
strained MVO portfolio is positive over the 16 years in 
our sample. As the conventional wisdom of constrained 
optimization suggests, the expected utility contribution 
of the two constraints (CstrJoint), treated as static, is 
indeed negative.

However, the expected utility contribution from the 
information contained in the constraints (Info) varies 
over time. During the first four years in our period, the 
expected utility contribution from information is nega-
tive. After 2008, it alternates in sign, with 2008, 2011, 
2014, 2016, 2017, and 2018 being positive years in infor-
mation. This pattern coincides with the signs of correla-
tions between asset returns and ESG scores in Figure 4. 
The magnitude of the information contribution, how-
ever, differs from the patterns of correlations because 
the former is jointly determined by several terms as 
shown in Propositions 3 and 4.

This example vividly demonstrates that, whereas 
constraints must decrease the overall expected utility 
of a portfolio when treated as static, they can some-
times increase the expected utility relative to a passive 
benchmark, depending on the information contained 
in the constraints.

Figure 5(b) shows the expected return of the opti-
mal portfolio and its decomposition based on (17) in 
Proposition 4 and its predictive return version in 
Online Appendix B.2.2. Whereas the two constraints 
(FullInvest and CharConstraint) can contribute either 
positively or negatively to the expected returns,19 the 
main source of contribution in terms of expected 
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return is from the information in the constraints (Info). 
As is the expected utility decomposition, the expected 
return contribution from information is strongly nega-
tive between 2004 and 2007 and is strongly positive in 
2008 and 2014.

5.3.3. Realized Return Decomposition. Figure 6 shows 
the realized returns of the optimal portfolio for both 
Jorion’s (1986) rule and the 1=N rule as the uncon-
strained MVO portfolio.

The upper panel of Figure 6(a) shows that, for Jor-
ion’s (1986) rule, the realized residual returns in excess 
of the Fama–French five-factor model of the constrained 
portfolio is generally positive over the 16 years in our 
sample except in 2008.

The lower panel decomposes the realized return of 
the constrained portfolio based on Proposition B.6 in 
Online Appendix B.4. The full investment constraint 
generally contributes positively to the returns. This is 
consistent with the fact that the average residual returns 

during these years are positive as shown in Table 1. The 
contribution of the ESG constraint, treated as static, also 
varies over time. In contrast, the information component 
contributes negatively to realized returns before 2007 
and positively in certain years after 2008. Notably, in 
2008, the information component from the ESG con-
straint contributed positively to the large negative 
returns from the unconstrained portfolio. These patterns 
are consistent with results in Online Proposition B.6 and 
the correlations between asset returns and ESG scores 
shown in Figure 4. Overall, these components explain 
the difference in residual returns between the uncon-
strained MVO and the constrained portfolio.

Figure 6(b) shows parallel results, this time with the 
1=N rule as the unconstrained MVO portfolio. The real-
ized residual returns for both the unconstrained and the 
constrained portfolio are much more stable over time. 
The decomposition is also similar to the case of Jorion’s 
(1986) rule except that the contributions from the infor-
mation in the constraints, in relative terms, are bigger. 

Figure 5. (Color online) Expected Return and Utility and Their Decomposition for the Portfolio in (32) with a Constraint on the 
Average Portfolio Characteristic Value (v′xESG ≥ 1:0) and Jorion’s (1986) Estimates of Predictive Moments 

Notes. In (a), the top panel shows the expected utility of the constrained portfolio and the bottom panel shows its decomposition into compo-
nents corresponding to the unconstrained MVO portfolio (MVO), all constraints treated as static (CstrJoint), and the information from the ESG 
constraint (Info). In (b), the top panel shows the expected return in excess of the Fama–French five-factor model of the constrained portfolio and 
the bottom panel shows its decomposition into components corresponding to the unconstrained MVO portfolio (MVO), the full investment con-
straint (FullInvest), the ESG constraint (v′xESG ≥ 1:0) treated as static (CharConstraint), and the information from the ESG constraint (Info).
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For example, the negative residual returns before 2007 
were primarily driven by the negative contribution from 
the ESG constraints.

5.4. Other Portfolios and Selection of Constraints
The portfolio given by (32) is one way to construct ESG 
portfolios. In practice, investors need to determine the 
threshold, b. In addition, they may face long-only con-
straints, and we demonstrate how to decompose the 
performance of these portfolios using our framework 
in Online Appendix B.6.3.

Whereas the choice of the specific form of constraints 
depends on many factors such as the regulatory 
requirements and other business considerations, here, 
we show how to use our framework to compare the 
impact of different forms of ESG constraints purely 
from the perspective of financial performance.

We consider 32 portfolios with different constraints, 
including the factor exposure constraint in (32) with 
b � 0, 0:1, : : : , 2 and the factor exposure constraint and 
long-only constraint in (B.45) in Online Appendix B.6.3 
with b � 0, 0:1, : : : , 1. We use a rolling window of three 

years to estimate the financial performance of these 
portfolios and select constraints for the next year based 
on their expected utilities with and without the infor-
mation component.

Table 2 summarizes the key out-of-sample perfor-
mance metrics and their decomposition averaged over 
13 years in our sample. For portfolios that allow short 
positions (first two columns) and long-only portfolios 
(last two columns), we compare the performance of 
portfolios whose constraints are selected based on their 
estimated expected utilities with and without the infor-
mation component. For both Jorion’s (1986) rule and 
the 1=N rule, if the information component is ignored, 
investors achieve a lower average ESG score, lower 
expected utility, and lower realized return. In other 
words, if the information in constraints is not properly 
accounted for, investors may select constraints that are 
more detrimental to performance, leading to subopti-
mal portfolios.

Overall, these comparisons demonstrate how to use 
our framework to select constraints and the importance 
of accounting for information in the constraints. In 

Figure 6. (Color online) Realized Return for the Portfolio Defined in (32) with a Constraint on the Average Portfolio Characteris-
tic Value (v′xESG ≥ 1:0) 

Notes. Panel (a) corresponds to Jorion’s (1986) estimates of predictive moments in (33), and (b) corresponds to predictive moments consistent with 
the 1=N rule in (34). In each subfigure, the top panel shows the realized return in excess of the Fama–French five-factor model of the constrained 
portfolio, and the bottom panel shows its decomposition into components corresponding to the unconstrained MVO portfolio (MVO), the full invest-
ment constraint (FullInvest), the ESG constraint (v′xESG ≥ 1:0) treated as static (CharConstraint), and the information from the ESG constraint (Info).
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this example, the ESG constraints are detrimental (ben-
eficial) to the financial performance of the portfolio 
because the ESG scores are negatively (positively) cor-
related with residual returns in 7 (6) out of the 13 years 
in our out-of-sample period (see Figure 4). Because 
there is substantial noise in the ESG measures (Berg 
et al. 2022), the specific numbers of our empirical exam-
ple should be taken with a grain of salt. Nonetheless, 
this example demonstrates that there exists a signifi-
cant signal in ESG scores that may be used for portfolio 
construction despite their noisy nature, which is consis-
tent with the Berg et al. (2024) findings, and adequately 
accounting for information in the constraints is impor-
tant for the performance attribution of a portfolio.

More generally, in other applications in which con-
straints contain information that is positively corre-
lated with returns, investors miss out on gains from 
information if they are not properly accounted for. 
Examples include other company sustainability mea-
sures that may provide material information to the 
operations and risks of the company (Khan et al. 2016), 
and proprietary constraints that may contain private 
information about future returns.

6. Conclusion
Constraints are an integral part of the portfolio- 
construction process, and they have become particularly 
relevant as investors and regulators debate whether 

investing with ESG constraints or excluding stranded 
assets is to the benefit or detriment of investors. We pro-
pose a framework for constraint attribution that decom-
poses portfolio holdings, expected returns, variance, 
expected utilities, and realized returns into components 
attributable to each constraint and the information con-
tained in each constraint.

Our framework provides a quantifiable and easily 
implementable measure of the information content 
from constraints when they are stochastic and poten-
tially correlated with asset returns. The correlation 
between characteristics that form constraints and the 
individual asset returns plays a key role in determining 
the sign and magnitude of the excess return and vari-
ance from information. Constraints serve as an indirect 
mechanism for incorporating this information into the 
portfolio that is otherwise unavailable to investors.

We demonstrate that our methodology can accom-
modate estimation risk in parameter values of the 
portfolio construction process using Bayesian portfolio 
analysis, which provides the same decomposition of 
performance out-of-sample and a method to select con-
straints that improve—or are least detrimental to— 
portfolio performance ex ante.

Our framework can be applied to common examples 
of constraints, including the level of a characteristic, 
such as ESG scores, and exclusion constraints, such 
as divesting from sin stocks and energy stocks. Our 
results show that these constraints can contribute 

Table 2. Out-of-Sample Performance Metrics of ESG Portfolios with Different Criteria to Select Constraints for 
Jorion’s (1986) Rule and the 1=N Rule

Selection criteria

Allowing short positions Long-only

Exp util Exp util w/o info Exp util Exp util w/o info

Panel A: Jorion’s (1986) rule
ESG ṽ∗ 0.33 0.13 0.15 0.11
Expected utility ṽMVO 17.16 17.16 17.16 17.16

ṽCSTR (static) �1.45 21.15 �9.60 29.51
ṽCSTR (info) 0.72 �1.39 21.04 �1.33
ṽ∗ 16.43 14.62 6.49 6.29

Realized return ṽMVO 1.59 1.59 1.59 1.59
ṽCSTR (static) 1.52 1.68 1.67 1.67
ṽCSTR (info) 0.07 �0.14 20.11 �0.14
ṽ∗ 3.17 3.13 3.16 3.12

Panel B: 1=N rule
ESG ṽ∗ 0.52 0.13 0.33 0.13
Expected utility ṽMVO 0.17 0.17 0.17 0.17

ṽCSTR (static) �0.23 20.02 �0.09 20.02
ṽCSTR (info) 1.64 �0.36 0.63 �0.36
ṽ∗ 1.58 �0.21 0.71 �0.21

Realized return ṽMVO 4.03 4.03 4.03 4.03
ṽCSTR (static) 0.00 0.00 �0.07 20.03
ṽCSTR (info) 0.36 �0.14 0.11 �0.14
ṽ∗ 4.39 3.89 4.07 3.86

Notes. The portfolio with a better performance metric in each comparison is bolded. ṽ∗, the optimal constrained portfolio; ṽMVO, 
the unconstrained MVO portfolio; ṽCSTR (static), the component attributable to constraints treated as static; ṽCSTR (info), the 
information component in constraints.
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positively (or negatively) to portfolio performance 
compared with a passive benchmark when the infor-
mation contained in the constraints is not accounted 
for in the passive benchmark but is sufficiently posi-
tively (or negatively) correlated with asset returns.
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Endnotes
1 This is a key distinction from the literature that shows constraints 
may improve out-of-sample performance because of the parameter 
estimation risk in portfolio construction. We provide more details 
in the related literature.
2 For example, on August 4, 2022, a letter signed by 19 attorneys 
general was sent to BlackRock expressing concern over its ESG poli-
cies, stating in part, “BlackRock’s actions on a variety of governance 
objectives may violate multiple state laws. … BlackRock has a pri-
vate motivation that differs from its public commitments and state-
ments. This is likely insufficient to satisfy state laws requiring a sole 
focus on financial return.” See https://www.texasattorneygeneral. 
gov/sites/default/files/images/executive-management/BlackRock 
\%20Letter.pdf (accessed December 15, 2022).
3 We follow the common convention that all vectors are column 
vectors, and all vectors and matrices are boldface.
4 We are comparing unconstrained and constrained portfolios in 
the same context, that is, with or without a risk-free asset for both 
portfolios.
5 This decomposition is known in the literature; see, for example, 
Stubbs and Vandenbussche (2010), Menchero and Davis (2011), and 
Kan et al. (2022).
6 When the optimization problem in (1) contains inequality con-
straints, the Lagrange multipliers l∗ ≥ 0 satisfy the complementary 
slackness condition: (bi �A′i v∗)λ

∗
i � 0 for i � 1, 2, : : : , J.

7 If one compares the performance of the constrained portfolio with 
the mean-variance optimal portfolio using the conditional moments, 
mX and SX, one recovers the classic result that constraints must 
decrease the expected utility of the optimal portfolio with respect to 
mX and SX. However, this comparison is not very realistic because, 
in practice, investors often need to understand the impact of a man-
aged portfolio relative to simple and passive benchmarks to which 
they have easy access rather than to a hypothetical portfolio that is 
optimal with respect to the conditional mean and variance with full 
information in X.

8 To see this, imagine a set of N hypothetical assets whose returns, 
s, have a covariance matrix S�SX. We have Cov(v′SHRs, v′CSTRs) �
v′SHRCov(s,s)vCSTR �v′SHR(S�SX)vCSTR. We show in Section 2.3
and Online Appendix B.1 that S�SX is always positive semidefi-
nite under certain distributional assumptions of r and X.
9 This is true for Bayesian portfolios with common choices of priors 
as shown in Section 3.2.
10 Pástor (2000) and Harvey et al. (2010) provide examples of using 
Monte Carlo simulation to obtain Bayesian portfolio weights. Tu 
and Zhou (2010) suggest using Monte Carlo simulation to derive 
the relationship between expected return and optimal Bayesian 
portfolio weights for non–mean-variance utility functions.
11 In addition to the studies mentioned above, see, for example, Bro-
die et al. (2009) and Fan et al. (2012a, b) as well as combinations of 
different portfolio rules, such as Kan and Zhou (2007), Tu and Zhou 
(2011), Kan et al. (2022), and Kan and Wang (2023).
12 For example, as a sanity check, l̃1, PR vanishes if the unconstrained 
optimal portfolio under r̃ ~ N m1, 1+ 1

τ

� �
S

� �
already satisfies the con-

straint: A 1
γ 1+ 1

τ

� �
S

� ��1
m1 � b. Similarly, l̃1, DT vanishes if the opti-

mal portfolio under the plug-in mean, r̃ ~ N(m̂, S), already satisfies 
the constraint A

�
1
γS�1m̂

�
� b.

13 Results are not sensitive to the specific parameterization of S̃ as 
long as it is positive definite.
14 See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ 
data_library.html. Accessed July 20, 2022.
15 See, for example, Hong and Kostovetsky (2012), Lins et al. (2017), 
and Berg et al. (2022). Makridis and Simaan (2023) use Refinitiv 
ESG data to compare the performance of different shrinkage estima-
tors of the covariance matrix and different ESG-based rules.
16 The ESG scores are available from 2003 to 2018, so the correla-
tions are computed from 2004 to 2019.
17 We encounter the high-dimensional problem in our analysis 
whereby the total number of assets, N, in the portfolio—typically 
between 1,000 to 4,000—is larger than the number of daily, T, in 
a year. Therefore, we use the shrinkage covariance estimator of 
Chen et al. (2010), implemented by sklearn.covariance.OAS in 
Python, multiplied by a constant factor (100) to replace Σ̄�in order 
to ensure numerical stability.
18 We estimate the correlations, ρ, between lagged ESG values and 
residual returns rather than predictive returns because the 1=N rule 
implies constant predictive returns for all assets which lead to a 
trivial decomposition.
19 The sign is determined by the correlation between the holdings 
of the MVO portfolio and the coefficients of the constraint. See the 
remarks after Proposition 1.
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