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Supplementary Materials
This electronic companion contains additional technical details and formal proofs of all results.

EC.1. Technical Appendix
EC.1.1. Combining Impact and Passive Portfolios

For impact investors who care about both passive and active returns, the raw return of the impact
portfolio, instead of the residual return, needs to be taken into consideration. This appendix estab-
lishes a connection between the optimal weights derived from optimizing the residual return and
those derived from optimizing the raw return. We accomplish this by briefly reviewing the portfolio
theory and applying it specifically to the context of impact investing.

Under the linear multi-factor model in (1), one can define the expectation and covariance matrix
of the raw returns of the N ranked assets as:

µ̃≡BµΛ +µ, Σ̃≡BΣΛB
⊤ +Σ, (EC.1)

respectively, where µΛ and ΣΛ are the expectation and covariance matrix of (Λ1,Λ2, . . . ,ΛK)⊤, B is
an N ×K matrix whose (i, k)-th entry is the beta of the i-th ranked asset on the k-th factor, and µ

and Σ are defined as in (7). Then the expectation and variance of the portfolio’s raw return, rp, are:

E(rp) =w⊤µ̃, Var(rp) =w⊤Σ̃w. (EC.2)

As in Proposition 1, for impact investors who optimize the Sharpe ratio or the mean–variance
utility of raw return, the following proposition characterizes the corresponding optimal portfolios.

Proposition EC.1. Under the multi-factor model of (1), if investors construct portfolios based
on N assets with frictionless borrowing and lending at the risk-free rate, and they maximize the
Sharpe ratio of raw returns, SR = E(rp)/

√
Var(rp), or the mean–variance utility of raw returns,

E(rp)−0.5λVar(rp), with a constant risk-aversion parameter λ> 0, the optimal portfolio weights and
the optimal Sharpe ratio are given by:

w∗ ∝ Σ̃−1µ̃, and SR∗ =
√
µ̃⊤Σ̃−1µ̃. (EC.3)

Proposition 1 gives the optimal weights for investors who only care about active returns, and
Proposition EC.1 gives the optimal weights for investors who optimize for the overall risk-adjusted
returns. Both sets of weights have the same mathematical form, albeit with different covariance
matrices and expectation vectors. In fact, the two sets of weights are closely related, as demonstrated
in the following results under a single-factor model setting.
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Proposition EC.2. Consider the single-factor model:

ri = βirM + θi, i= 1,2, . . . ,N, (EC.4)

where rM is the return (beyond the risk-free rate) of a single factor (e.g., the market portfolio).
The optimal weight of maximizing the Sharpe ratio of raw returns, SR = E(rp)/

√
Var(rp), or the

mean–variance utility of raw returns, E(rp)− 0.5λVar(rp), with a constant risk-aversion parameter
λ> 0, is:

w∗ ∝ Σ̃−1µ̃=
µM −σ2

Mβ⊤Σ−1µ

1+σ2
Mβ⊤Σ−1β

Σ−1β

︸ ︷︷ ︸
passive component

+ Σ−1µ︸ ︷︷ ︸
active component

,

where µM ≡ E(rM), σ2
M ≡ Var(rM), and β is the vector of βi ranked by the impact factor X. In

addition, the squared optimal Sharpe ratio is:

SR∗2 = µ̃⊤Σ̃−1µ̃=
µ2
Mβ⊤Σ−1β+2µMβ⊤Σ−1µ−σ2

M(β⊤Σ−1µ)2

1+σ2
Mβ⊤Σ−1β︸ ︷︷ ︸

passive component

+ µ⊤Σ−1µ︸ ︷︷ ︸
active component

.

Proposition EC.2 demonstrates that, under the single-factor framework, the optimal weights for
maximizing the Sharpe ratio can be regarded as the optimal weights of maximizing the information
ratio (Σ−1µ) plus a passive component which is proportional to Σ−1β. The corresponding optimal
Sharpe ratio can also be decomposed into the optimal information ratio and a passive component.

So far, we have characterized the optimal impact portfolios constructed based on the impact factor,
X. Moreover, one can combine the impact portfolio with any other portfolio. For example, we can
add the impact portfolio to the suite of portfolios mimicking more traditional asset pricing factors
such as value, size, and momentum. However, perhaps the most natural application is to combine
the impact portfolio with a passive index fund such as the market portfolio, which we demonstrate
under the single factor model, (EC.4). In particular, under the single factor model, we can define the
expectation and covariance matrix of the N + 1 assets (including N ranked assets and the market
portfolio, rM) as:

µ̂≡
(

µ̃
µM

)
=

(
µMβ+µ

µM

)
, Σ̂≡

(
Σ̃ σ2

Mβ
σ2
Mβ⊤ σ2

M

)
=

(
σ2
Mββ⊤ +Σ σ2

Mβ
σ2
Mβ⊤ σ2

M

)
, (EC.5)

where µM ≡ E(rM), σ2
M ≡ Var(rM), β is the vector of βi ranked by the impact factor X, and µ

and Σ are defined as in (7). Denote by wM the weight on the market portfolio, and ŵ≡
(

w
wM

)
the

weights on the N + 1 assets. Then, under the single factor model, (EC.4), the expected value and
variance of the return of the combined portfolio, r̂p, are:

E(r̂p) = ŵ⊤µ̂, Var(r̂p) = ŵ⊤Σ̂ŵ. (EC.6)

The following proposition characterizes the optimal combined portfolio.
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Proposition EC.3. Under the single-factor model (EC.4) with frictionless borrowing and lending
at the risk-free rate, if investors maximize the combined portfolio’s Sharpe ratio of raw returns,
SR = E(r̂p)/

√
Var(r̂p), or the mean–variance utility of raw returns, E(r̂p) − 0.5λVar(r̂p), with a

constant risk-aversion parameter λ> 0, the optimal weights of the N assets and the market portfolio,
and the squared optimal Sharpe ratio are given by:

ŵ∗ =

(
w∗

w∗
M

)
∝ Σ̂−1µ̂=

(
Σ−1µ

µM
σ2M

−β⊤Σ−1µ

)
, SR∗2 =

µ2
M

σ2
M︸︷︷︸

passive component

+ µ⊤Σ−1µ︸ ︷︷ ︸
active component

.

When maximizing the Sharpe ratio of the combined portfolio, the optimal weights on the N assets,
w∗, are still proportional to Σ−1µ. This is the same as the result of Proposition 1, which maximizes
the information ratio of residual return. In other words, in the single-factor world with N +1 assets,
maximizing the Sharpe ratio is equivalent to maximizing the information ratio. In addition, the
optimal Sharpe ratio can be decomposed into the optimal information ratio (the active component)
and the Sharpe ratio of the market portfolio (the passive component). Proposition EC.3 reduces to
the special case of Treynor and Black (1973) if Σ is diagonal.
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EC.1.2. Gaussian Optimal Impact Portfolios

In this appendix, we consider the case where the impact factors and residual returns are jointly
normally distributed, i.e., the F in (3) is a bivariate normal distribution, and explicitly construct
optimal impact portfolios and analyze their performance metrics. In particular, we assume that a
special case of Assumption 1 holds:

Assumption EC.1 (Bivariate Normality). The impact factors, Xi, and the residual returns, θi,
i= 1,2, . . . ,N , are drawn from the following bivariate normal distribution:

(
X1

θ1

)
,

(
X2

θ2

)
, . . . ,

(
XN

θN

)
IID∼ N

((
µX

µθ

)
,

(
σ2
X ρσXσθ

ρσXσθ σ2
θ

))
,

where µX , µθ and σX > 0,σθ > 0 are the expectations and standard deviations of Xi and θi, respec-
tively, and ρ∈ (−1,1) is the correlation between Xi and θi.

Assumption EC.1 requires that (Xi,θi)⊤, i = 1,2, . . . ,N are IID jointly normally distributed. We
relax the assumption of independence in Appendix EC.1.2.4.

EC.1.2.1. Moments of Impact Returns The following proposition characterizes the distri-
bution of θ[X] using the representation theorem, Theorem 1.

Proposition EC.4. Under Assumption EC.1, we have:

(θ[1:N ], . . . ,θ[N :N ])
d
=
(
σθ
(
ρY1:N +

√
1− ρ2Z1

)
+µθ, . . . ,σθ

(
ρYN :N +

√
1− ρ2ZN

)
+µθ

)
, (EC.7)

where Z1,Z2, . . . ,ZN
IID∼ N (0,1), Y1:N ≤ Y2:N ≤ · · ·≤ YN :N are the order statistics of Y1, Y2, . . . , YN

IID∼

N (0,1), and random variables {Yi}Ni=1 and {Zi}Ni=1 are mutually independent. In particular, for
i, j = 1,2, . . . ,N , and i ̸= j, we have:

E(θ[i:N ]) = σθ · ρ ·E(Yi:N)+µθ, (EC.8)

Var(θ[i:N ]) = σ2
θ · (1− ρ2 + ρ2 ·Var(Yi:N)), (EC.9)

Cov(θ[i:N ],θ[j:N ]) = σ2
θ · ρ2 ·Cov(Yi:N , Yj:N). (EC.10)

Equation (EC.7) shows that, under the joint normality assumption, the representation given by
Theorem 1 reduces to a linear combination of order statistics of normal random variables, Yi:N , and
IID normal noise, Zi. The weights of the two components are ρ and

√
1− ρ2 respectively, which

implies that a stronger dependence between the impact and residual returns (a higher |ρ|) leads to a
larger weight on the order statistic component, Yi:N , and a weaker dependence (a lower |ρ|) leads to
a larger weight on the noise component, Zi. This linear representation allows us to straightforwardly
analyze the moments of induced order statistics.
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Equation (EC.8) represents the expectation of θ[i:N ] in excess of the cross-sectional average residual
return µθ as the product of three terms: the cross-sectional standard deviation of residual returns, σθ,
the correlation between residual returns and impact factors, ρ, and a score representing the impact
of the i-th asset relative to other assets, E(Yi:N). This is consistent with Grinold’s (1994) insight that
the alpha of active portfolio management equals “volatility times information coefficient (IC) times
score,” where the information coefficient represents the correlation between the active investment
factor and the active return.

Equations (EC.9) and (EC.10) give the variances and covariances of induced order statistics. The
variance of θ[i:N ] is proportional to 1 − ρ2 + ρ2 · Var(Yi:N) and σ2

θ . The correlation ρ determines
the influence of the variance of order statistic, Var(Yi:N), on the variance of θ[i:N ]. When ρ = 0,
the variance reduces to σ2

θ for any i. The covariance between θ[i:N ] and θ[j:N ] is proportional to
Cov(Yi:N , Yj:N) and σ2

θ · ρ2.
The moments of induced order statistics in Proposition EC.4 depend on E(Yi:N), Var(Yi:N), and

Cov(Yi:N , Yj:N), which do not have explicit expressions. Therefore we use Figure EC.1 to illustrate
the results in Proposition EC.4 using a numerical example with 50 assets. Figure EC.1a and Figure
EC.1b show the expected residual returns. When the correlation between the impact factor and
residual return is positive (ρ > 0), the expected value increases as the order i increases; when the
correlation is negative (ρ < 0), the expected value decreases as the order i increases. We prove a
generalization of this result in Section EC.1.4.1. The dispersion in expected residual returns across
assets is larger when σθ is larger. Different values of µθ lead to parallel shifts in the expected residual
returns.

Figure EC.1c shows the variances of residual returns, which are primarily determined by the cross-
sectional standard deviation of residual returns (σθ). In addition, stronger signals in the impact factor
(as measured by higher values in |ρ|) lead to lower variances in residual returns. It is also worth noting
that the variance as a function of order i is quite flat. Figure EC.1d shows the covariance matrix of
the residual returns across all assets. The covariances between the residual returns of different assets,
after ranking by the impact factor, are very close to zero.

There are two notable symmetries in the results of Proposition EC.4 and Figure EC.1. First,
all quantities are symmetric for correlation coefficients with opposite signs (ρ and −ρ). Second,
these quantities are also symmetric with respect to the median asset. We show that both of these
symmetries hold under more general distributional conditions, in Appendices EC.1.4.4 and EC.1.5.2,
respectively.

The following proposition provides the asymptotic distribution of θ[X] under the joint normality
assumption, Assumption EC.1. This is a corollary of the asymptotic version of the representation
theorem, Theorem 3.



ec6 e-companion to Lo, Wu, Zhang, and Zhao: Optimal Impact Portfolios with General Dependence and Marginals

(a) Expectations, µθ = 0. (b) Expectations, σθ = 10%.

(c) Variances, µθ = 0. (d) Covariance matrix, ρ= 20%, σθ = 10%.

Figure EC.1 Expectations, variances, and covariances of θ[1:N ],θ[2:N ], . . . ,θ[N :N ] under Assumption EC.1. We set
N = 50 for illustrative purposes.

Proposition EC.5. Under Assumption EC.1, we have:

(θ[i1(N):N ], . . . ,θ[im(N):N ])
d→

(
σθ
√
1− ρ2Z1 +σθ · ρ ·Φ−1(ξ1)+µθ, . . . ,σθ

√
1− ρ2Zm +σθ · ρ ·Φ−1(ξm)+µθ

)
, (EC.11)

where Z1,Z2, . . . ,ZN
IID∼ N (0,1), Φ is the distribution function of N (0,1), and other notations are

the same as in Theorem 3. In other words, θ[ik(N):N ] converge in distribution to mutually independent
normally distributed random variables with mean µ(ξk) and variance σ2(ξk), where

µ(ξk)≡ σθ · ρ ·Φ−1(ξk)+µθ, (EC.12)

σ2(ξk)≡ σ2
θ · (1− ρ2). (EC.13)

The asymptotic result is consistent with the finite sample results. First, the asymptotic expectation
of residual returns, µ(ξk), increases as the rank of asset, ξk, increases. Second, the asymptotic variance,
σ2(ξk), is a constant that does not depend on ξk, which is consistent with our observation in Figure
EC.1c. Third, the induced order statistics are asymptotically independent, which implies that the
covariance matrix is approximately diagonal (Figure EC.1d).
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EC.1.2.2. Characterization of Optimal Impact Portfolios Under Assumption EC.1, the
explicit formulas for the moments of θ[X] given by Proposition EC.4 allow us to investigate the
weights and performance of optimal impact portfolios.

We begin by examining the optimal weights numerically. Figure EC.2 shows the optimal portfolio
weights in terms of maximizing the information ratio. The weights are jointly determined by the
expected residual returns and their variances, as in (9). When the correlation between the impact
factor and residual return is positive (ρ> 0), assets with higher values of impact factor have higher
weights; when the correlation is negative (ρ < 0), assets with higher values of impact factor have
lower (negative) weights. The dispersion in optimal weights across assets decreases as σθ increases.
In addition, different values of µθ lead to shifts in the optimal weights.

(a) Weights, µθ = 0. (b) Weights, σθ = 10%.

Figure EC.2 Optimal impact portfolio weights under Assumption EC.1. We set N = 50 for illustrative purposes.

Now we study the optimal information ratio given by Proposition 1, which depends on the expected
value and covariance matrix of residual returns after ranking based on the impact factor (see (9)). The
explicit formulas for the moments of residual returns from Proposition EC.4 allow us to characterize
the optimal information ratio.

Theorem EC.1 (Optimal Performance). Under Assumption EC.1, if |ρ|≤
√
2/2≈ 70.71%, the

optimal information ratio of the impact portfolio, IR∗, as given in (9), satisfies the following bounds:
√

ρ2q(N)+
µ2
θ

σ2
θ

·N ≤ IR∗ ≤

√
ρ2q(N)+ (µ2

θ/σ
2
θ) ·N

1− 2ρ2
, (EC.14)

where
q(N) =

N∑

i=1

[E(Yi:N)]
2, (EC.15)

and Y1:N ≤ Y2:N ≤ · · ·≤ YN :N are the order statistics of Y1, Y2, . . . , YN
IID∼ N (0,1).
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Theorem EC.1 provides lower and upper bounds for IR∗. In practice, the correlation between the
impact factor and residual returns, |ρ|, is usually small (Grinold 1989), which makes the bound in
(EC.14) relatively tight. The technical condition |ρ|≤

√
2/2 not only ensures that the square root

on the right-hand side of (EC.14) is well defined, but also aligns with Grinold’s (1989) assumption
that |ρ| is small.

The following proposition shows a property of q(N) defined in (EC.15):

Proposition EC.6. For q(N) defined in (EC.15) and N ≥ 1, we have

lim
N→+∞

q(N)

N
= 1. (EC.16)

Equation (EC.16) indicates that q(N)≈N when N is sufficiently large. Appendix EC.1.2.5 shows
that this approximation is very good when N is greater than 100. Therefore, the bounds for IR∗

given in (EC.14) can be approximated by:

√
ρ2 +µ2

θ/σ
2
θ ·

√
N ! IR∗ !

√
ρ2 +µ2

θ/σ
2
θ ·

√
N√

1− 2ρ2
. (EC.17)

This approximation implies that the optimal information ratio of the impact portfolio is typically
determined by three components: the correlation between the impact factor and residual returns, ρ,
the inherent information ratio of the assets, µθ/σθ, and the number of assets included in the portfolio,
N . In other words, impact investors can improve their portfolio performance by using impact factors
with stronger signals (higher ρ), investing in more profitable assets (higher µθ/σθ), and including
more assets in the portfolio (higher N).

When µθ = 0 and ρ is small, (EC.17) reduces to

IR∗ ≈ |ρ| ·
√
N. (EC.18)

This is closely related to the characterization of optimal active investments, which Grinold (1989)
terms the “Fundamental Law of Active Management (FLAM).”[23] The FLAM provides a simple
approximation of the information ratio of an active portfolio using the product of the information
coefficient (ρ in our notation) and the square root of the breadth of a strategy. In Grinold’s (1989)
framework, breadth is defined as the number of independent bets of a strategy in a given year. In
our context, breadth is determined by the number of available assets in the universe.

Theorem EC.1 can be regarded as a generalization of the original FLAM in three aspects. First, the
impact portfolio is constructed using only the ranking information of the impact factor, as opposed
to the actual signal values in the FLAM. Second, the original FLAM is derived under the assumption
that |ρ| is small, while we provide bounds in (EC.14) for the optimal information ratio for the more
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general case of |ρ| ≤
√
2/2, which shrinks toward the original FLAM when |ρ| is small. Third, we

allow for nonzero expected residual returns, µθ, while the original FLAM assumes µθ = 0.

Theorem EC.1 characterizes the performance of an optimal impact portfolio that invests in all

N assets in the universe. However, in reality, impact investors may face a tradeoff between the

performance and the impact of their portfolios. If an investor desires a higher level of impact, or

is restricted to investing in certain assets with low impact scores (also known as negative filtering),

she may not be able to realize the optimal performance derived in Theorem EC.1. We discuss this

performance–impact tradeoff in Appendix EC.1.2.6.

Furthermore, we generalize Theorem EC.1 in two ways. In Appendix EC.1.2.3, we extend our

static framework to a dynamic one by analyzing the optimal impact portfolio performance with a

time-varying ρ. In Appendix EC.1.2.4, we relax the IID assumption in Assumption EC.1 and allow

for dependence between the N assets.

EC.1.2.3. Optimal Performance with Time-Varying Correlation Theorem EC.1 quan-

tifies the performance of impact portfolios with respect to ρ, which it regards as a constant that

measures the strength of the impact factor as a signal for residual returns. In practice, the strength

of this signal can change over time, and we extend our static framework into a dynamic one by ana-

lyzing performance with a time-varying ρ in this appendix. We add the subscript t to the correlation,

ρt, which is modeled as a random variable, and make the following assumption, which generalizes

Assumption EC.1 to allow for time-varying correlations.

Assumption EC.2 (Time-Varying Correlation). The correlations, ρt, between impact factors,
Xit, and residual returns, θit, over time t = 1,2, . . . , T , are IID random variables with a mean of
ρ and a variance of σ2

ρ. Given time t, Xit and θit are drawn from the following bivariate normal
distribution across i= 1,2, . . . ,N :

(
X1t

θ1t

)
,

(
X2t

θ2t

)
, . . . ,

(
XNt

θNt

)∣∣∣ ρt
IID∼ N

((
µX

µθ

)
,

(
σ2
X ρt ·σX ·σθ

ρt ·σX ·σθ σ2
θ

))
,

where µX , µθ and σX > 0,σθ > 0 are the expectations and standard deviations of Xit and θit, respec-
tively.

The following result characterizes the optimal performance of the impact portfolio when correla-

tions, ρt, vary over time. To derive this result, we need to first characterize the moments of the residual

returns under Assumption EC.2. These details are given by Lemma EC.8 in Appendix EC.3.1.
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Theorem EC.2 (Optimal Performance with Time-Varying Correlation). Under Assump-
tion EC.2, if

√
ρ2 +σ2

ρ ≤
√
2/2 ≈ 70.71%, the optimal information ratio of the impact portfolio,

IR∗
TimeVary, as given in (9), will satisfy the following bounds:
√

ρ2

1/q(N)+σ2
ρ

+
µ2
θN

σ2
θ

≤ IR∗
TimeVary ≤

√
ρ2

[1− 2 · (ρ2 +σ2
ρ)]/q(N)+σ2

ρ

+
µ2
θN

σ2
θ

[
1− 2 · (ρ2 +σ2

ρ)
] ,

(EC.19)

where q(N) is defined in (EC.15).

Using Proposition EC.6, when N is sufficiently large, the bounds for IR∗
TimeVary given in (EC.19)

can be approximated by:
√

ρ2

1/N +σ2
ρ

+
µ2
θN

σ2
θ

! IR∗
TimeVary !

√
ρ2

[1− 2 · (ρ2 +σ2
ρ)]/N +σ2

ρ

+
µ2
θN

σ2
θ

[
1− 2 · (ρ2 +σ2

ρ)
] . (EC.20)

In particular, when ρ and σρ are relatively small and µθ = 0, this approximation further reduces to:

IR∗
TimeVary ≈

|ρ|√
1/N +σ2

ρ

. (EC.21)

Comparing this with the static case given by (EC.18), we have:

IR∗
TimeVary ≈

|ρ|√
1/N +σ2

ρ

< |ρ| ·
√
N ≈ IR∗,

as long as ρt is not a constant (σ2
ρ > 0). In other words, the variability in ρt leads to a lower information

ratio than that from a constant ρ. When σ2
ρ = 0, Theorem EC.2 reduces to Theorem EC.1.

These results are also closely related to the literature on active portfolio management. The approx-
imation given by (EC.21) is consistent with Ding and Martin (2017). Furthermore, when N increases
without bound, (EC.21) converges to:

IR∗
TimeVary ≈

|ρ|
σρ

,

which is the average correlation divided by its standard deviation. This is consistent with the approx-
imation first proposed by Qian and Hua (2006). Our results show that these approximations hold
under weaker conditions where investors only use the rank information—not the value—of the under-
lying signal (in our case, the impact factor).

EC.1.2.4. Optimal Performance with Cross-Sectional Dependence The optimal perfor-
mance of impact portfolios given by Theorem EC.1 holds under Assumption EC.1, which requires that
(Xi,θi)⊤, i = 1,2, . . . ,N are drawn IID from a bivariate normal distribution. However, in practice,
the impact factors, Xi, and the residual returns, θi, for different assets may be correlated, especially
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for firms in the same industry. In addition, the impact factor of asset i, Xi, may be correlated with
not only the residual return of asset i, θi, but also that of other assets, θj , where j ̸= i. Therefore, in
this appendix, we consider the case when (Xi,θi)⊤ is not IID, and make the following assumption,
which is a generalization of Assumption EC.1 from a cross-sectional dependence perspective:

Assumption EC.3 (Cross-Sectional Dependence). The impact factors, Xi, and the residual
returns, θi, i= 1,2, . . . ,N , follow the following bivariate normal distribution:

(
X1

θ1

)
,

(
X2

θ2

)
, . . . ,

(
XN

θN

)
∼ N

((
µX

µθ

)
,

(
σ2
X ρσXσθ

ρσXσθ σ2
θ

))
,

where µX , µθ and σX > 0,σθ > 0 are the expectations and standard deviations of Xi and θi, respec-
tively. In addition, for i ̸= j, the equicorrelated cross-sectional dependence is described by ρX ≡
corr(Xi,Xj), ρθ ≡ corr(θi,θj), ρ̃≡ corr(Xi,θj), and ρ≡ corr(Xi,θi).

The following result characterizes the optimal performance of the impact portfolio with cross-
sectional dependence in (Xi,θi)⊤. The moments of the residual returns under Assumption EC.3 are
given by Lemma EC.9 in Appendix EC.3.1.

Theorem EC.3 (Optimal Performance with Cross-Sectional Dependence). Under
Assumption EC.3, if

(1− ρθ)(1− ρX)− 2(ρ− ρ̃)2 ≥ 0, (EC.22)

the optimal information ratio of the impact portfolio, IR∗
Dependence, as given in (9), will satisfy the

following bounds:
√

(ρ− ρ̃)2q(N)

(1− ρθ)(1− ρX)
+

µ2
θ/σ

2
θ

(1− ρθ)/N + ρθ
≤ IR∗

Dependence

≤

√
(ρ− ρ̃)2q(N)

(1− ρθ)(1− ρX)− 2(ρ− ρ̃)2
+

µ2
θ/σ

2
θ

[(1− ρθ)(1− ρX)− 2(ρ− ρ̃)2]/[(1− ρX)N ] + ρθ
, (EC.23)

where q(N) is defined in (EC.15).

Using Proposition EC.6, when N is sufficiently large, the bounds for IR∗
Dependence given in (EC.19)

can be approximated by:
√

(ρ− ρ̃)2N

(1− ρθ)(1− ρX)
+

µ2
θ/σ

2
θ

(1− ρθ)/N + ρθ
! IR∗

Dependence

!
√

(ρ− ρ̃)2N

(1− ρθ)(1− ρX)− 2(ρ− ρ̃)2
+

µ2
θ/σ

2
θ

[(1− ρθ)(1− ρX)− 2(ρ− ρ̃)2]/[(1− ρX)N ] + ρθ
.

In particular, when µθ = 0, this further reduces to

|ρ− ρ̃|√
(1− ρθ)(1− ρX)

·
√
N ! IR∗

Dependence !
|ρ− ρ̃|√

(1− ρθ)(1− ρX)− 2(ρ− ρ̃)2
·
√
N. (EC.24)
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With cross-sectional dependence specified in Assumption EC.3, in (EC.24), taking the lower bound
as an example, the term |ρ−ρ̃|√

(1−ρθ)(1−ρX )
replaces the simple correlation in (EC.18). We define this

quantity as the “adjusted correlation”:

ρadj ≡
ρ− ρ̃√

(1− ρθ)(1− ρX)
. (EC.25)

In this sense, the optimal information ratio can still be approximated by the simple form:

IR∗
Dependence ≈

|ρ− ρ̃|√
(1− ρθ)(1− ρX)

·
√
N = |ρadj| ·

√
N.

When ρ̃= ρθ = ρX = 0, we have ρadj = ρ, which reduces to (EC.18).
This result provides several intuitive relationships for how the optimal performance depends on

the parameters in Assumption EC.3. First, a larger correlation between the impact and the residual
return of the same asset, ρ = corr(Xi,θi), leads to a better performance, because it measures the
strength of the i-th asset’s signal on its residual returns. Second, a larger cross-stock correlation,
ρ̃ = corr(Xi,θj), leads to a lower information ratio. This can be rationalized if we view the cross-
stock correlation as a measure of the degree of “signal leak” from the impact factor. Third, the
cross-sectional correlations of both the impact factor, ρX = corr(Xi,Xj), and the residual returns,
ρθ = corr(θi,θj), contribute positively to portfolio performance, which can be explained by realizing
that the cross-sectional dependence implies more signal sources and can provide more information.

EC.1.2.5. Optimal Portfolio Performance for a Small Investable Universe Theorems
EC.1, EC.2, and EC.3 provide the approximate optimal portfolio performance when the number of
assets, N , is large, using Proposition EC.6. In fact, this approximation, q(N)≈N , is biased because

q(N)

N
=

∑N
i=1[E(Yi:N)]2

N
<

∑N
i=1E[(Yi:N)2]

N
=

E[
∑N

i=1(Yi:N)2]

N
=

E[
∑N

i=1 Y
2
i ]

N
=

∑N
i=1EY 2

i

N
= 1,

where the “<” holds due to Jensen’s inequality. However, this approximation is very good when N

is greater than 100. More precisely, Table EC.1 gives the smallest N such that the value of q(N)/N

is greater than a given threshold. For instance, to reach q(N)/N ≥ 0.95, at least 52 assets should be
included in the portfolio, and to reach q(N)/N ≥ 0.99, at least 298 assets should be included.

Table EC.1 The smallest N such that q(N)/N ≥ c.

c 0.5 0.6 0.7 0.8 0.9 0.95 0.99
Smallest N 4 5 7 11 24 52 298
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EC.1.2.6. Tradeoff Between Performance and Impact Impact investors may face a tradeoff
between the performance and the impact of their portfolios. The optimal impact portfolio we derived
so far implies a particular level of impact, defined as the average impact score for all assets weighted
by their portfolio weights. If an investor desires a higher level of impact, or is restricted to investing
in certain assets with low impact scores (also known as negative filtering), she may not be able to
realize the optimal performance derived in Theorem EC.1.

In this appendix, we provide the optimal information ratio for investors that are restricted to
investing in a subset of all assets, and explicitly derive the tradeoff between a portfolio’s investment
performance and impact. See the following proposition.

Proposition EC.7. Under Assumption EC.1, assume that µθ = 0. Consider an investor who only
invests in assets with impact scores Xi ranking within the (ξ1, ξ2)× 100 percentile, where 0≤ ξ1 <

ξ2 ≤ 1. If N is sufficiently large and we approximate the moments of θ[X] using Proposition EC.5,
the maximum information ratio for her portfolio can be approximated by:

IR≈ |ρ| ·
√
N√

1− ρ2
·
√(

ξ2 −Φ−1(ξ2)ϕ
(
Φ−1(ξ2)

))
−
(
ξ1 −Φ−1(ξ1)ϕ

(
Φ−1(ξ1)

))
, (EC.26)

and its corresponding average impact, X̄ = E
[(∑N

i=1wiXi:N

)
/
(∑N

i=1 |wi|
)]

, can be approximated
by:

X̄ ≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

sign(ρ) ·
µX

[
ϕ
(
Φ−1(ξ1)

)
−ϕ
(
Φ−1(ξ2)

)]
+σX

[(
ξ2−Φ−1(ξ2)ϕ

(
Φ−1(ξ2)

))
−
(
ξ1−Φ−1(ξ1)ϕ

(
Φ−1(ξ1)

))]

∣∣∣∣ϕ
(
Φ−1(ξ2)

)
−ϕ
(
Φ−1(ξ1)

)∣∣∣∣
ξ2 ≤ 0.5 or ξ1 ≥ 0.5,

sign(ρ) ·
µX

[
ϕ
(
Φ−1(ξ1)

)
−ϕ
(
Φ−1(ξ2)

)]
+σX

[(
ξ2−Φ−1(ξ2)ϕ

(
Φ−1(ξ2)

))
−
(
ξ1−Φ−1(ξ1)ϕ

(
Φ−1(ξ1)

))]

2ϕ(0)−ϕ
(
Φ−1(ξ2)

)
−ϕ
(
Φ−1(ξ1)

)

ξ1 < 0.5< ξ2,
(EC.27)

where Φ and ϕ are the distribution function and the density function of N (0,1), respectively.

As a comparison, we also derive the same set of results for equal-weighted portfolios.

Proposition EC.8. Under Assumption EC.1, assume that µθ = 0. Consider an investor who only
invests in assets with impact scores Xi ranking within the (ξ1, ξ2)×100 percentile, where 0≤ ξ1 < ξ2 ≤

1, and the investor is long only and puts equal weights on these assets. If N is sufficiently large and
we approximate the moments of θ[X] using Proposition EC.5, the information ratio of the portfolio
can be approximated by:

IR≈ ρ ·
√
N√

1− ρ2
·
ϕ
(
Φ−1(ξ1)

)
−ϕ

(
Φ−1(ξ2)

)
√
ξ2 − ξ1

, (EC.28)
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and its corresponding average impact, X̄ = E
[(∑N

i=1wiXi:N

)
/
(∑N

i=1 |wi|
)]

, can be approximated
by:

X̄ ≈ µX +σX ·
ϕ
(
Φ−1(ξ1)

)
−ϕ

(
Φ−1(ξ2)

)

ξ2 − ξ1
, (EC.29)

where Φ and ϕ are the distribution function and the density function of N (0,1), respectively.

(a) IR, ρ= 20%. (b) Average impact factors, ρ= 20%.

(c) IR, ρ=−20%. (d) Average impact factors, ρ=−20%.

Figure EC.3 Information ratio (IR) and average impact scores, X̄, for ten decile portfolios (with impact factors
from the lowest to the highest). Blue bars are results for portfolios with optimal IR, and orange bars
are results for portfolios with equal weights on assets within the decile. We set µθ = 0%, µX = 0%,
and σX = 20%.

Proposition EC.7 and Proposition EC.8 provide the information ratio and the impact score for
portfolios constructed from subsets of the universe of all assets. We apply these results to decile
portfolios formed by dividing assets into ten deciles based on their impact scores. Figure EC.3 shows
the information ratio (IR) and the average impact score of the IR-maximized portfolios and equal-
weighted long-only portfolios when µθ = 0%, µX = 0%, and σX = 20%.

A performance–impact tradeoff is crucial for impact investors. Figure EC.3a and Figure EC.3b
show the results when ρ= 20%. These figures imply that impact investors can reach a win–win on
both information ratio and impact scores when they invest in assets within the top deciles. However,
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Figure EC.3c and Figure EC.3d show the results when ρ=−20%. Unlike the case for a positive ρ,
if an impact investor invests in top decile assets when ρ = −20% and maximizes the IR, she can
earn a positive IR but a negative impact, while if she constructs an equal-weighted portfolio, she
receives a positive impact but has to endure a negative IR. In other words, when the impact factor
is negatively correlated with the residual return (ρ< 0), earning a better portfolio performance (as
measured through IR) contradicts the goal of having a greater impact.

We further study the performance–impact tradeoff for a common impact investing strategy—
negative screening. Negative screening investors exclude companies with low impact factors from the
universe to form portfolios. Specifically, we assume that impact investors exclude assets with the
lowest L values of impact factors. Figure EC.4 shows the IR and the average impact score of the
IR-maximized portfolios and equal-weighted long-only portfolios as functions of L when ρ = 20%,
µθ = 0%, µX = 0%, and σX = 20%.

(a) IR. (b) Average impact factors.

Figure EC.4 Information ratio (IR) and average impact scores, X̄, for portfolios constructed using assets exclud-
ing those with the bottom L impact scores. Blue lines are results for portfolios with optimal IR,
and orange lines are results for portfolios with equal weights on assets included in the portfolio. We
set ρ= 20%, µθ = 0%, µX = 0%, and σX = 20%.

Figure EC.4 demonstrates that, for IR-maximized portfolios, as the number of bottom assets
excluded from the universe, L, increases, the optimal IR decreases (Figure EC.4a), and the average
impact score increases (Figure EC.4b). Therefore, impact investors face a tradeoff between perfor-
mance and impact. For equal-weighted portfolios, the IR initially increases and then decreases as L

increases. This pattern arises because buying the bottom assets decreases the IR, while buying the
top assets increases the IR. In addition, the IR-maximized portfolios achieve both higher IR and
higher average impact scores, implying a win–win situation for impact investors.
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EC.1.3. Generalized Versions of the Representation Theorem

In our main article, we present the representation theorem under smoothness conditions (Theorem
1) as well as its generalized version (Theorem 2). In Appendix EC.1.3.1, we provide a more in-depth
discussion of the technical details related to Theorem 2. Appendix EC.1.3.2 further extends the
representation theorem to allow for cross-sectional heterogeneity.

EC.1.3.1. Additional Technical Details for the Representation Theorem Under Gen-
eral F This appendix provides technical details for Theorem 2 in our main paper.

When Fθ is not continuous, we need to clarify the definition of the inverse function, F−1
θ (·), in the

mixture function given by (12). We adopt the following definition of the inverse function without loss
of generality:

Definition EC.1 (Inverse Function). For any non-decreasing function f(x), the inverse func-
tion of f is defined as f−1(y) = inf{x : f(x)≥ y}.

When C is non-differentiable, the function gu(·) in (12), which is the inverse of v -→ ∂C
∂u

(u, v), is not
well defined. To address this issue, we introduce the concept of the modified partial Dini derivative
proposed by Fang et al. (2020).

Definition EC.2 (Modified Partial Dini Derivative, (Fang et al. 2020)). The modified
partial Dini derivative (MPDD) of a copula C(u, v) with respect to u, denoted by D1C(u, v), is a
bivariate function [0,1]×R→ [0,1] defined as

D1C(u, v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

infy>v D
+
1 C(u, y), u∈ [0,1), v ∈ [0,1),

infy>v D
−
1 C(1, y), u= 1, v ∈ [0,1),

0, u∈ [0,1], v ∈ (−∞,0),

1, u∈ [0,1], v ∈ [1,+∞),

(EC.30)

where D+
1 C(u, v) and D−

1 C(u, v) are the partial right upper and left upper Dini derivatives of C(u, v)

with respect to u:

D+
1 C(u, v) = limsup

h→0+

C(u+h, v)−C(u, v)

h
, D−

1 C(u, v) = limsup
h→0+

C(u, v)−C(u−h, v)

h
. (EC.31)

Remark EC.1. The MPDD is pointwisely defined for any copula. Fang et al. (2020, Theorem 2.1)
demonstrate that D1C(u, v) defined by (EC.30) is a regular conditional distribution function of
C(u, v) given u. In other words, it satisfies:

(i) For any u∈ [0,1], v -→D1C(u, v) is a distribution function;
(ii) For any v ∈ [0,1], u -→D1C(u, v) is Lebesgue measurable and

∫ a

0
D1C(u, v)du=C(a, v) for any

a∈ [0,1].
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Therefore, we can define P(V ≤ v|U = u) =D1C(u, v). The subscript of D1 represents that the MPDD
is calculated with respect to the first dimension, u. Fang et al. (2020, Theorem 2.1) also demonstrate
that, when C has a density, we have D1C(u, v) = ∂C

∂u
(u, v), in which case the MPDD reduces to the

simple partial derivative.

Finally, when FX is not continuous, we demonstrate that the representation holds only when the
copula of F is “linearly interpolating”; see Definition 1. The following result not only guarantees the
existence and uniqueness of the linearly interpolating copula but also provides an explicit method
for its construction.

Proposition EC.9. For any bivariate distribution F , there exists a copula of F that satisfies (13)
on Rc

X ×Rθ. In addition, the copula is unique on [0,1]×Rθ. The construction of this copula is given
in the proof.

The linearly interpolating copula defined by Definition 1 plays a crucial role in the representation
theorem. To build intuition, we provide examples to illustrate the linearly interpolating copula.

Example EC.1. Consider the case where both the marginal distributions of X and θ, FX and Fθ,
have discontinuity points. In particular, we assume that RX = [0,0.3] ∪ [0.7,1] and Rθ = [0,0.2] ∪
[0.5,1], which implies that Rc

X = (0.3,0.7) and Rc

θ = (0.2,0.5). Figure EC.5 visualizes the linearly
interpolating copula between X and θ. According to Sklar’s theorem, the copula is uniquely deter-
mined in the purple regions: [0,0.3]× [0,0.2], [0,0.3]× [0.5,1], [0.7,1]× [0,0.2], and [0.7,1]× [0.5,1],
and undetermined in the yellow regions: (0.3,0.7)× [0,0.2], (0.3,0.7)× [0.5,1], and [0,1]× (0.2,0.5).
According to Definition 1, we say that a copula C(u, v) is linearly interpolating on Rc

X ×Rθ with
respect to u, indicating that it is linearly interpolating on (0.3,0.7)× [0,0.2] and (0.3,0.7)× [0.5,1]

along u∈Rc

X . This is illustrated in Figure EC.5 by green solid straight lines. After linearly interpo-
lating, the copula is determined on [0,1]×Rθ but remains undetermined on [0,1]×Rc

θ.

Let us now consider a simpler example.

Example EC.2. Assume that X reduces to a constant, c, i.e., Xi ≡ c, and that θi IID∼ N (0,1). Then
we have RX = {0,1} and Rθ = [0,1]. By Sklar’s theorem, the copula C is uniquely determined only
on {0,1}× [0,1] by:

C(0, v) = 0, C(1, v) = v, v ∈ [0,1]. (EC.32)

In fact, (EC.32) holds for any copula, so any copula can be considered as a copula between X and θ

satisfying (10). However, a copula that is linearly interpolating on Rc

X ×Rθ = (0,1)× [0,1] is unique
and given by:

C(u, v) = uv, u∈ [0,1], v ∈ [0,1].

This is the independence copula defined by Definition EC.5 in Appendix EC.1.4.3.
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Figure EC.5 Illustration of a linear interpolating copula.

EC.1.3.2. Representation Theorem with Heterogeneous Distributions In practice, the
joint distribution of the impact factor and residual returns may vary cross-sectionally. For example,
brown stocks may have higher variances in returns than green assets due to regulatory uncertainty.
In this part, we allow the impact factor, Xi, and residual returns, θi, to have heterogeneous cross-
sectional distributions. We provide a version of the representation theorem with cross-sectional het-
erogeneity, discuss an application to markets with heterogeneous groups representing, for example,
different industries, and illustrate the impact of heterogeneity on the optimal impact portfolio using
numerical examples.

In particular, we assume that:

Assumption EC.4. Bivariate vectors (X1,θ1)⊤, (X2,θ2)⊤, . . . , (XN ,θN)⊤ are mutually independent
and satisfy (

X1

θ1

)
∼ F1(·, ·),

(
X2

θ2

)
∼ F2(·, ·), . . . ,

(
XN

θN

)
∼ FN(·, ·), (EC.33)

where F1(·, ·),F2(·, ·), . . . ,FN(·, ·) are (potentially different) bivariate distribution functions with den-
sities.

We define the following notations:
• For i= 1,2, . . . ,N , the marginal distributions of Xi and θi are FX,i(·) and Fθ,i(·), respectively;
• For i= 1,2, . . . ,N , the marginal densities of Xi and θi are fX,i(·) and fθ,i(·), respectively;
• For i= 1,2, . . . ,N , the copula of Fi(·, ·) is Ci(·, ·);
• For any permutation (i1, i2, . . . , iN) of 1,2, . . . ,N , let pi1,i2,...,iN = P(Xi1 ≤Xi2 ≤ · · ·≤XiN ).
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Theorem EC.4 (The Representation Theorem, Heterogeneous Distribution). Under
Assumption EC.4, we have:

(θ[1:N ],θ[2:N ], . . . ,θ[N :N ])
d
= (h1(Π,M1, V1), h2(Π,M2, V2), . . . , hN(Π,MN , VN)) , (EC.34)

where “ d
=” denotes equality in distribution. Here:

• The random vector Π is a random permutation of {1,2, . . . ,N} satisfying

P (Π= (i1, i2, . . . , iN)) = pi1,i2,...,iN

for any permutation (i1, i2, . . . , iN) of {1,2, . . . ,N};
• Given Π, the random vector (M1,M2, . . . ,MN)|Π= (i1, i2, . . . , iN) has a joint density of

mi1,i2,...,iN (x1, x2, . . . , xN) =
1

pi1,i2,...,iN
·

N∏

k=1

fX,ik(xk) ·1{x1≤x2≤···≤xN}; (EC.35)

• The random variables V1, V2 . . . , VN satisfy V1, V2 . . . , VN
IID∼ Uniform(0,1) and are independent

of Π,M1,M2, . . . ,MN ;
• For k= 1,2, . . . ,N , function hk is defined as

hk(π, x,w)≡ F−1
θ,ik

◦hik
FX,ik

(x)(w) (EC.36)

for any permutation π= (i1, i2, . . . , iN) of {1,2, . . . ,N}, and “◦” represents function composition;
• For u∈ [0,1] and i= 1,2, . . . ,N , function hi

u(w) is the inverse function of v -→ ∂Ci
∂u

(u, v).

Intuition and Implications. We make a few remarks about the representation theorem with
heterogeneous distribution.

First, Theorem EC.4 reveals a similar representation to that in Theorem 1 because the distribution
of induced order statistics, θ[X], is a mixture of three components: a random permutation (Π), a set
of random variables analogous to order statistics (Mi), and uniform noise (Vi). In comparison with
Theorem 1, an additional random permutation component, Π, is required here. We refer to random
variables Mi as “order statistics” because, by definition, they always satisfy M1 ≤M2 ≤ · · ·≤MN .
In addition, if X1,X2, . . . ,XN have the same marginal densities, i.e., fX,1 = fX,2 = · · · = fX,N , one
can easily verify that (EC.35) reduces to the density of order statistics of X1,X2, . . . ,XN . Therefore,
although Mi are not order statistics of a series of random variables themselves, they resemble the
order statistics component in Theorem 1.

Second, because of the heterogeneity, the mixture functions defined by (EC.36), hk, are different
for k = 1,2, . . . ,N . In addition, all three components of Fi—FX,i, Fθ,i, and Ci—contribute to the
mixture function, hk. This is different from Theorem 1 in which the mixture function g in (12)
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depends only on the marginal distribution of θ and the copula. This is because Theorem EC.4 allows
for heterogeneous distributions cross-sectionally and, therefore, the marginal distribution of Xi is
also crucial for the mixture.

Third, the representation in Theorem EC.4 can be simplified when F1(·, ·), . . . , FN(·, ·) are homo-
geneous cross-sectionally. In particular, one can easily verify that:

(i) If Fθ ≡ Fθ,1 = Fθ,2 = · · ·= Fθ,N , the mixture function (EC.36) reduces to

hk(π, x,w) = F−1
θ ◦hik

FX,ik
(x)(w);

(ii) If FX ≡ FX,1 = FX,2 = · · ·= FX,N , the representation (EC.34) reduces to

(θ[1:N ],θ[2:N ], . . . ,θ[N :N ])
d
= (h1(Π,U1:N , V1), h2(Π,U2:N , V2), . . . , hN(Π,UN :N , VN)) ,

where U1:N ≤U2:N ≤ · · ·≤UN :N and V1, V2, . . . , VN are defined as in Theorem 1, and the mixture
function (EC.36) reduces to

hk(π, x,w) = F−1
θ,ik

◦hik
x (w);

(iii) If C ≡C1 =C2 = · · ·=CN , the mixture function (EC.36) reduces to

hk(π, x,w) = F−1
θ,ik

◦hFX,ik
(x)(w),

where hu(w) is the inverse function of v -→ ∂C
∂u

(u, v);
(iv) If Fθ ≡ Fθ,1 = Fθ,2 = · · ·= Fθ,N , FX ≡ FX,1 = FX,2 = · · ·= FX,N , and C ≡ C1 = C2 = · · ·= CN ,

the representation (EC.34) reduces to (11).
Therefore, the representation theorem presented in the main paper can be regarded as a reduced
form of Theorem EC.4 under the IID assumption.

Finally, like the IID version, the heterogeneous version allows us to efficiently compute the moments
of θ[X] through numerical integration. In particular, the first two moments of θ[X] are given by the
following proposition:

Proposition EC.10. Under the assumptions of Theorem EC.4, we have:

E(θ[i:N ]) =
N∑

k=1

∫ 1

0

∫ 1

0

h̃k(u,w)H
i
k(u)dudw, (EC.37)

E(θ[i:N ]
2) =

N∑

k=1

∫ 1

0

∫ 1

0

[
h̃k(u,w)

]2
H i

k(u)dudw, (EC.38)

E(θ[i:N ]θ[j:N ]) =
N∑

k=1

N∑

l=1,l ̸=k

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

h̃k(u,w)h̃l(z, s)J
i,j
k,l(u, z)dzdudwds, (EC.39)
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for i, j = 1,2, . . . ,N and i < j, where functions h̃k(·, ·), H i
k(·), and J i,j

k,l(·, ·) are defined by:

h̃k(u,w) =F−1
θ,k ◦hk

u(w), (EC.40)

H i
k(u) =P

(
ξ[−k]
i−1:N−1 ≤ F−1

X,k(u)
)
−P

(
ξ[−k]
i:N−1 ≤ F−1

X,k(u)
)
, (EC.41)

J i,j
k,l(u, z) =P

(
η[−k,l]
i−1:N−2 ≤ F−1

X,k(u),η
[−k,l]
j−2:N−2 ≤ F−1

X,l(z)
)
−P

(
η[−k,l]
i:N−2 ≤ F−1

X,k(u),η
[−k,l]
j−2:N−2 ≤ F−1

X,l(z)
)

−P
(
η[−k,l]
i−1:N−2 ≤ F−1

X,k(u),η
[−k,l]
j−1:N−2 ≤ F−1

X,l(z)
)
+P

(
η[−k,l]
i:N−2 ≤ F−1

X,k(u),η
[−k,l]
j−1:N−2 ≤ F−1

X,l(z)
)
.

(EC.42)

Here, hk
u(w) is defined in Theorem EC.4, ξ[−k]

1:N−1 ≤ ξ[−k]
2:N−1 ≤ · · · ≤ ξ[−k]

N−1:N−1 are order statistics
of {Xs}Ns=1,s ̸=k, η[−k,l]

1:N−2 ≤ η[−k,l]
2:N−2 ≤ · · · ≤ η[−k,l]

N−2:N−2 are order statistics of {Xs}Ns=1,s ̸=k,s ̸=l, ξ
[−k]
0:N−1 =

η[−k,l]
0:N−2 =−∞, and ξ[−k]

N :N−1 = η[−k,l]
N−1:N−2 = η[−k,l]

N :N−2 =+∞.

Functions h̃k, H i
k, and J i,j

k,l are entirely determined by the distributions of X and θ, and they can be
computed using existing results of order statistics in, for example, Bapat and Beg (1989). Therefore,
given the distributions of X and θ, we can use Proposition EC.10 to calculate the moments of θ[X]

through numerical integration.
Computational Cost. In comparison to the IID version (see Proposition 2), when considering

X and θ with completely different cross-sectional distributions, the computational cost increases
because the summations in (EC.37)–(EC.39) imply that we need to calculate N double integrals
for the expected value, N double integrals for the variance, and N(N − 1) quadruple integrals for
covariances of θ[i:N ]. This is not surprising because, in the most general case, each asset can have its
own unique distribution without any cross-sectional structure.

An alternative to computing the moments of θ[i:N ] using numerical integrals in Proposition EC.10
is to use Monte Carlo simulation. One can start by simulating random samples of X and θ, sort
θ according to X to obtain the induced order statistics, θ[X], and finally estimate their moments
numerically using these samples. Computing moments using Proposition EC.10 may lead to smaller
estimation errors and require less time especially when N is small.

We conduct numerical experiments to illustrate the computational performance of Proposi-
tion EC.10 when N is small. Under Assumption EC.4 and assuming that F1,F2, . . . ,FN are all
bivariate normal distributions:

(
Xi

θi

)
∼N

((
µX,i

µθ,i

)
,

(
σ2
X,i ρiσX,iσθ,i

ρiσX,iσθ,i σ2
θ,i

))
, i= 1,2, . . . ,N,

where for all i = 1,2, . . . ,N , ρi = 20%, σX,i = 20%, µθ,i = 0%, and parameters µX,i and σθ,i take
values in Table EC.2, in which the N stocks all have different marginal distributions, and green
stocks (stocks with higher expected values of X) have lower variances in residual returns than brown
stocks (stocks with higher expected values of X).
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Table EC.2 Simulation setups for computing numerical integrals using Proposition EC.10 and Monte Carlo
simulations.

N µX,1 µX,2 µX,3 µX,4 µX,5 σθ,1 σθ,2 σθ,3 σθ,4 σθ,5

2 -30.0% 30.0% - - - 40.0% 10.0% - - -
3 -30.0% 0.0% 30.0% - - 40.0% 25.0% 10.0% - -
4 -30.0% -10.0% 10.0% 30.0% - 40.0% 30.0% 20.0% 10.0% -
5 -30.0% -15.0% 0.0% 15.0% 30.0% 40.0% 32.5% 25.0% 17.5% 10.0%

We compute the expected value, variance, and optimal weights using two methods: (a) the rep-
resentation theorem (calculating numerical integrals using Proposition EC.10) and (b) Monte Carlo
simulations. We perform these computations using parameter values in Table EC.2, and record the
errors and CPU times. The error is defined as

∑N
i=1(ŵi −w∗

i )
2, where (w∗

1,w
∗
2, . . . ,w

∗
N)

⊤ is the true
optimal weights for the N assets given by (9),[24] and (ŵ1, ŵ2, . . . , ŵN)⊤ is the optimal weights com-
puted using either Method (a) or Method (b). The CPU time for Method (a) is the total time cost to
calculate the numerical integrals for expectations and (co)variances, and obtain the optimal weights
given by (9). The CPU time for Method (b) is the total time cost to simulate the random samples
of induced order statistics, estimate the sample averages and (co)variances, and obtain the optimal
weights.

The error and CPU time of both methods depend on the chosen degree of accuracy. In general,
a higher degree of accuracy implies a lower error but requires a higher CPU time. For Method (a),
the degree of accuracy is determined by the number of subintervals partitioned from the original
interval for numerical integration, while for Method (b), it is determined by the number of random
samples used in Monte Carlo simulations. We choose different degrees of accuracy for both methods
and record their respective errors and CPU times. All experiments are conducted on a laptop with
an Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz.

Figure EC.6 shows the relationship between the error and the CPU time. The blue lines are results
obtained using Method (a) (the representation theorem), and the orange lines are results obtained
using Method (b) (Monte Carlo). Different dots on each line correspond to results obtained under
different degrees of accuracy. We make the following observations from Figure EC.6.

First, there is a negative relationship between the error and the CPU time, which reflects the
tradeoff between error and computational cost as the level of accuracy increases in both methods.

Second, blue lines generally lie on the lower left-hand side of orange lines, which indicates that
Method (a), the representation theorem, achieves a given level of error with lower computational
costs than Method (b), Monte Carlo simulations.

Third, the blue lines shift upwards as the number of assets, N , increases. This illustrates that the
CPU time for the representation theorem increases as N grows.
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Figure EC.6 Errors and CPU times for computing optimal weights by numerical integrals using Proposition
EC.10 and Monte Carlo simulations under parameter values in Table EC.2.

Finally, the errors in weights are much more stable when using the representation theorem, whereas
the lines for Monte Carlo are noisier due to the random nature of simulations.

These observations demonstrate the computational effectiveness of the representation theorem,
Proposition EC.10, especially when N is small. When N is large, we consider the following group
structure which is more practically relevant.

Cross-Sectional Heterogeneity with Group Structure. In practice, one may model the
market as the mixture of several groups with heterogeneity between groups but homogeneity within
a group. The number of groups, denoted by G, is typically much smaller than the number of assets,
N . For example, one may assume that all assets are divided into two groups: one “green” group with
a higher expected value of impact factor and another “brown” group with a lower expected value of
impact factor.

In general, we consider the following assumption, which is a special case of Assumption EC.4:

Assumption EC.5. Bivariate vectors (X1,θ1)⊤, (X2,θ2)⊤, . . . , (XN ,θN)⊤ are mutually independent
and satisfy

(
X1

θ1

)
,

(
X2

θ2

)
, . . . ,

(
XN1

θN1

)
IID∼ F(1)(·, ·),

(
XN1+1

θN1+1

)
,

(
XN1+2

θN1+2

)
, . . . ,

(
XN1+N2

θN1+N2

)
IID∼ F(2)(·, ·),

...(
XN1+···+NG−1+1

θN1+···+NG−1+1

)
,

(
XN1+···+NG−1+2

θN1+···+NG−1+2

)
, . . . ,

(
XN1+···+NG−1+NG

θN1+···+NG−1+NG

)
IID∼ F(G)(·, ·), (EC.43)
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where Nk ≥ 1 for k = 1,2, . . . ,G, N1 +N2 + · · ·+NG = N , and F(1)(·, ·),F(2)(·, ·), . . . ,F(G)(·, ·) are
(different) bivariate distribution functions with densities.

Assumption EC.5 separates all N assets into G groups, with assets in each group following the same
distribution. Under this more practically relevant setup, one only needs to model the distributions
for the G groups, F(1),F(2), . . . ,F(G), instead of the distributions of all N assets individually. This
reduces the computational cost of calculating numerical integrals using Proposition EC.10, as shown
in the following corollary.

Corollary EC.1. Under Assumption EC.5, we have:

E(θ[i:N ]) =
G∑

k=1

Nk

∫ 1

0

∫ 1

0

h̃(k)(u,w)H
i
(k)(u)dudw, (EC.44)

E(θ[i:N ]
2) =

G∑

k=1

Nk

∫ 1

0

∫ 1

0

[
h̃(k)(u,w)

]2
H i

(k)(u)dudw, (EC.45)

E(θ[i:N ]θ[j:N ]) =
G∑

k=1

G∑

l=1,l ̸=k

NkNl

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

h̃(k)(u,w)h̃(l)(z, s)J
i,j
(k),(l)(u, z)dzdudwds

+
G∑

k=1

Nk(Nk − 1)

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

h̃(k)(u,w)h̃(k)(z, s)J
i,j
(k),(k)(u, z)dzdudwds, (EC.46)

for i, j = 1,2, . . . ,N and i < j, where functions h̃(k)(·, ·), H i
(k)(·) and J i,j

(k),(l)(·, ·) are defined by:

h̃(k)(u,w) =F−1
θ,(k) ◦h

(k)
u (w), (EC.47)

H i
(k)(u) =P

(
ξ[−(N1+···+Nk)]
i−1:N−1 ≤ F−1

X,(k)(u)
)
−P

(
ξ[−(N1+···+Nk)]
i:N−1 ≤ F−1

X,(k)(u)
)
, (EC.48)

J i,j
(k),(l)(u, z) =P

(
η[−(N1+···+Nk),(N1+···+Nl)]
i−1:N−2 ≤ F−1

X,(k)(u),η
[−(N1+···+Nk),(N1+···+Nl)]
j−2:N−2 ≤ F−1

X,(l)(z)
)

−P
(
η[−(N1+···+Nk),(N1+···+Nl)]
i:N−2 ≤ F−1

X,(k)(u),η
[−(N1+···+Nk),(N1+···+Nl)]
j−2:N−2 ≤ F−1

X,(l)(z)
)

−P
(
η[−(N1+···+Nk),(N1+···+Nl)]
i−1:N−2 ≤ F−1

X,(k)(u),η
[−(N1+···+Nk),(N1+···+Nl)]
j−1:N−2 ≤ F−1

X,(l)(z)
)

+P
(
η[−(N1+···+Nk),(N1+···+Nl)]
i:N−2 ≤ F−1

X,(k)(u),η
[−(N1+···+Nk),(N1+···+Nl)]
j−1:N−2 ≤ F−1

X,(l)(z)
)
.

(EC.49)

Here, ξ[−(N1+···+Nk)]
k:N−1 and η[−(N1+···+Nk),(N1+···+Nl)]

k:N−2 are defined in Proposition EC.10, h(k)
u (w) is the

inverse function of v -→ ∂C(k)

∂u
(u, v), C(k) is the copula of F(k), and FX,(k) and Fθ,(k) are marginal

distributions of F(k).

Corollary EC.1 allows us to efficiently compute the moments of θ[X] and construct optimal port-
folios using numerical integrals because the number of heterogeneous groups, G, is usually limited.
In particular, only G double integrals are required for the expected value and variance, and G2

quadruple integrals for the covariances of θ[i:N ]. It is important that the computational cost increases
linearly (quadratically) in the number of groups G—not the number of assets N—for the expected
value and variance (covariances).
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Numerical Examples. We use two examples, one with two groups and another with ten groups,
to investigate how heterogeneity affects the moments of induced order statistics and the optimal
weights of impact portfolios.

Example EC.3. Consider N = 50 assets in a universe divided into two groups: Group 1 with N1 =

25 assets and Group 2 with N2 = 25 assets. We further assume that

Group 1:
(
X1

θ1

)
,

(
X2

θ2

)
, . . . ,

(
X25

θ25

)
IID∼ N

((
µ−
X

0

)
,

(
σ2
X ρ ·σX ·σ−

θ

ρ ·σX ·σ−
θ (σ−

θ )
2

))
,

Group 2:
(
X26

θ26

)
,

(
X27

θ27

)
, . . . ,

(
X50

θ50

)
IID∼ N

((
µ+
X

0

)
,

(
σ2
X ρ ·σX ·σ+

θ

ρ ·σX ·σ+
θ (σ+

θ )
2

))
,

where ρ = 20%, σX = 20%, and parameters µ−
X , µ+

X , σ−
θ , and σ+

θ take the following five different
setups:

1. Homogeneous F : µ−
X = µ+

X = 0%, σ−
θ = σ+

θ = 20%;
2. Different FX : µ−

X =−10%, µ+
X = 10%, σ−

θ = σ+
θ = 20%;

3. Different Fθ: µ−
X = µ+

X = 0%, σ−
θ = 30%, σ+

θ = 10%;
4. Low Green Volatility: µ−

X =−10%, µ+
X = 10%, σ−

θ = 30%, σ+
θ = 10%;

5. High Green Volatility: µ−
X =−10%, µ+

X = 10%, σ−
θ = 10%, σ+

θ = 30%.
Here Setup 1 is the homogeneous baseline which implies that (Xi,θi)⊤ are IID cross-sectionally.

Setup 2 assumes that Group 2 has a higher expected value (+10%) of impact factors (“green stocks”),
while Group 1 has a negative expected value (−10%, “brown stocks”). The marginal distributions of
θi are the same for both groups. Setup 3 considers two groups with the same marginal distributions
of Xi but different marginal distributions of θi. Setup 4 assumes that green stocks (Group 1) have
a lower variance in residual returns than brown stocks (Group 2), and Setup 5 considers the reverse
case.

Figure EC.7 shows the expected value, variance, and optimal weights for the two groups of stocks
under these setups using Corollary EC.1. First, because the impact factor is positively correlated
with residual returns (ρ> 0), the optimal weight increases as i increases. Second, the expected value,
variance, and optimal weights are symmetric with respect to the median asset for Setups 1, 2, and 3.

Third, the heterogeneity in cross-sectional distributions can lead to lower optimal weights compared
to the homogeneous case. By comparing Setups 1 and 2, we observe that heterogeneity in the marginal
distribution of X may reduce the magnitude of expected impact returns (Figure EC.7a), leading to
lower magnitudes in optimal weights (Figure EC.7c). By comparing Setups 1 and 3, we find that
heterogeneity in the marginal distribution of θ may increase the variance of impact returns (Figure
EC.7b), also resulting in lower magnitudes in optimal weights (Figure EC.7c).

Fourth, in contrast to Setup 1, the results of Setups 4 and 5 with heterogeneous return volatility
show different patterns. Taking Setup 4 (Low Green Volatility) as an example, the expected impact



ec26 e-companion to Lo, Wu, Zhang, and Zhao: Optimal Impact Portfolios with General Dependence and Marginals

(a) Expectations. (b) Variances.

(c) Weights.

Figure EC.7 Expectations, variances, and optimal weights for two groups of stocks.

returns for green stocks are lower than the negative expected impact returns for brown stocks (Figure
EC.7a). In addition, the variances for green stocks are also much lower (Figure EC.7b), resulting in
higher optimal weights (in absolute value) for green stocks compared to brown stocks (Figure EC.7c).
The patterns are reserved for Setup 5, not surprisingly.

Example EC.4. Consider N = 50 assets in a universe divided into ten groups with each group
containing N1 =N2 = · · ·=N10 = 5 assets (Groups 1 to 10, respectively). We further assume that

Group 1:
(
X1

θ1

)
,

(
X2

θ2

)
, . . . ,

(
X5

θ5

)
IID∼ N

((
µ(1)
X

0

)
,

(
σ2
X ρ ·σX ·σ(1)

θ

ρ ·σX ·σ(1)
θ (σ(1)

θ )2

))
,

Group 2:
(
X6

θ6

)
,

(
X7

θ7

)
, . . . ,

(
X10

θ10

)
IID∼ N

((
µ(2)
X

0

)
,

(
σ2
X ρ ·σX ·σ(2)

θ

ρ ·σX ·σ(2)
θ (σ(2)

θ )2

))
,

...

Group 10:
(
X46

θ46

)
,

(
X47

θ47

)
, . . . ,

(
X50

θ50

)
IID∼ N

((
µ(10)
X

0

)
,

(
σ2
X ρ ·σX ·σ(10)

θ

ρ ·σX ·σ(10)
θ (σ(10)

θ )2

))
,

where ρ= 20%, σX = 20%, and parameters µ(j)
X and σ(j)

θ take the following five different setups. For
j = 1,2, . . . ,10,

1. Homogeneous F : µ(j)
X = 0%, σ(j)

θ = 20%;
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2. Different FX : µ(j)
X =−90%+(j− 1)× 20%, σ(j)

θ = 20%;
3. Different Fθ: µ(j)

X = 0%, σ(j)
θ = 29%− (j− 1)× 2%;

4. Low Green Volatility: µ(j)
X =−90%+(j− 1)× 20%, σ(j)

θ = 29%− (j− 1)× 2%;
5. High Green Volatility: µ(j)

X =−90%+(j− 1)× 20%, σ(j)
θ = 11%+(j− 1)× 2%.

These setups are similar to those in Example EC.3, which represent various scenarios of cross-sectional
heterogeneity. Setup 1 assumes a homogeneous cross-section. Setup 2 assumes that the distributions
of Xi are different cross-sectionally, with expected values of −90%,−70%, . . . ,70%,90% for the ten
groups, respectively. Setup 3 assumes that the distributions of θi are different cross-sectionally, with
idiosyncratic volatilities taking values of 11%,13%, . . . ,27%,29%, respectively. Setup 4 assumes that
greener stocks have lower idiosyncratic volatilities than browner stocks, and Setup 5 considers the
reverse case.

Figure EC.8 shows the expected value, variance, and optimal weights for the ten groups of stocks
under these setups using Corollary EC.1. The results are similar to those for Example EC.3 in Figure
EC.7. In particular, the cross-sectional heterogeneity leads to lower magnitudes of optimal weights.
In addition, lower volatilities in greener stocks tend to yield higher optimal weights for them. By
comparing Figure EC.8 with Figure EC.7, we can also find that the weights are flatter and closer to
zero around the median asset as more groups are formed (Figure EC.8c).

In summary, these results extend the representation theorem to accommodate cross-sectional het-
erogeneity, and the moments and optimal weights can be calculated efficiently, particularly when
assets are divided into several groups.



ec28 e-companion to Lo, Wu, Zhang, and Zhao: Optimal Impact Portfolios with General Dependence and Marginals

(a) Expectations. (b) Variances.

(c) Weights.

Figure EC.8 Expectations, variances, and optimal weights for ten groups of stocks.
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EC.1.4. More Results for General Dependence via Copulas

This appendix is an extension of Section 4 and provides additional results regarding the influence of
the copula on the impact returns.

EC.1.4.1. Moments of Impact Returns In this part, we study the moments of impact
returns, θ[X], under a general dependence structure, C. As observed in Figures EC.1a and EC.1b,
under the joint normality assumption, the expectation of θ[i:N ] increases with the rank of the asset
when the correlation between impact factor and asset returns, ρ, is positive, and decreases with the
rank when ρ is negative. To demonstrate that this result holds for a general dependence structure,
we need to generalize the concept of the positivity/negativity of ρ to a general copula.

Definition EC.3 (Stochastic Monotonicity (Nelsen 2007)). A copula C(u, v) is stochas-
tically increasing in u if D1C(u, v) is a non-increasing function of u ∈ [0,1] for all v ∈ [0,1], and is
stochastically decreasing in u if D1C(u, v) is a non-decreasing function of u ∈ [0,1] for all v ∈ [0,1].
Here, D1C(u, v) is defined by (EC.30).

Remark EC.2. Let (U,V ) be a bivariate random vector with joint distribution function C. Because
D1C(u, v) is a regular conditional distribution function of C(u, v) given u (Remark EC.1), we can
define P(V ≤ v|U = u) =D1C(u, v). Therefore, a stochastically increasing C implies that, for a given
v, P(V ≤ v|U = u) is a non-increasing function of u. In other words, P(V > v|U = u) is a non-
decreasing function of u. This implies that a larger value of U corresponds to a higher probability
that V also takes a larger value. Similarly, if C is stochastically decreasing, a larger value of U

corresponds to a higher probability that V takes a lower value.

The concept of stochastic monotonicity in Definition EC.3 generalizes the notion of positiv-
ity/negativity of ρ for the bivariate normal distribution. A stochastically increasing copula implies a
“positive dependence” in the distribution, indicating that large values of one variable tend to occur
with large values of the other, while a stochastically decreasing copula implies a “negative depen-
dence.” For example, the copula for a bivariate normal distribution (the Gaussian copula, as we
discuss in Section 4.1) is stochastically increasing if ρ> 0, and stochastically decreasing if ρ< 0. See
Nelsen (2007, Section 5.2.3) for more discussions.

The following theorem characterizes the relationship between the stochastic monotonicity of the
copula and the monotonicity of odd-order moments of θ[i:N ] with respect to the rank of the asset.

Theorem EC.5. Under Assumption 1, assume that C is a copula of F . Then, for any k= 0,1, . . . ,
if C(u, v) is stochastically increasing in u, we have:

E
(
θ2k+1
[1:N ]

)
≤E

(
θ2k+1
[2:N ]

)
≤ · · ·≤E

(
θ2k+1
[N :N ]

)
,
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and if C(u, v) is stochastically decreasing in u, we have:

E
(
θ2k+1
[1:N ]

)
≥E

(
θ2k+1
[2:N ]

)
≥ · · ·≥E

(
θ2k+1
[N :N ]

)
.

Theorem EC.5 demonstrates that, the odd-order moments of θ[i:N ] increase with i if the copula is
stochastically increasing, and decrease with i if the copula is stochastically decreasing. In particular,
when k= 0, this theorem gives the ranking of the expectations of induced order statistics. This implies
that, if an impact investor forms portfolios only based on the expectation of impact returns, she may
put higher weights on assets with higher values of the impact factor (larger i) when the impact factor
has a positive dependence with residual returns. These findings explain our observations in Figures
EC.1a and EC.1b under the joint normality assumption.

EC.1.4.2. Impact Portfolios Under Gumbel Copula In Section 4.2 of our main paper, we
study the impact returns when the copula is a Clayton copula. In contrast to the Clayton copula,
which characterizes lower tail dependence, the Gumbel copula characterizes upper tail dependence
between X and θ.

Definition EC.4 (Gumbel Copula). The Gumbel copula with parameter γ ∈ [1,+∞) is defined
as an Archimedean copula with generator function

ψGu
γ (u)≡ (− lnu)γ , u∈ [0,1]. (EC.50)

By replacing the generator function ψGu
γ of the Gumbel copula into Proposition 5, we can derive

the corresponding distribution of the induced order statistics, θ[X] (for brevity, we write the i-th
entry only):

θ[i:N ]
d
= F−1

θ

[
exp

(
−
[
(φGu

γ )
′−1

(
−1

γ
Ui:NVi(− lnUi:N)

1−γ
)
− (− lnUi:N)

γ

]1/γ)]
, (EC.51)

where φGu
γ (x) = (ψGu

γ )−1(x) = exp(−x1/γ) for x≥ 0.[25]

By taking the limits of (EC.51) with respect to γ, we can show that the right-hand side of (EC.51)
converges to F−1

θ (Ui:N) as γ increases without bound, and converges to F−1
θ (Vi) as γ approaches 1.

Therefore, like the Clayton copula, the parameter γ in the Gumbel copula determines the relative
importance of the order statistics, Ui:N , and the uniform noise, Vi.

We then construct the optimal impact portfolios under the Gumbel copula using (EC.51) and
Proposition 2. Figure EC.9 adopts the same parameter configurations as Figure 1, except that the
copula is Gumbel rather than Clayton. Like the results for the Clayton copula, assets with higher
impact factors have higher expectations (Figure EC.9a), which is consistent with Theorem EC.5,
while the variances do not show monotonicity (Figure EC.9b). Assets with higher impact factors
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generally have higher optimal weights (Figure EC.9c). In addition, as the parameter γ increases,
the dispersion of expected residual returns across assets increases (Figure EC.9a), and the level of
variance decreases (Figure EC.9b). Together, this lead to more dispersed optimal weights for larger
values of γ (Figure EC.9c).

(a) Expectation. (b) Variance. (c) Weight.
Figure EC.9 Expectations and variances of θ[X], and optimal weights assuming a Gumbel copula. The marginal

distribution of θ is N (0,σ2
θ) with σθ = 10%. We set N = 50 for illustrative purposes.

Figure EC.9 also implies an asymmetric distribution of residual returns and optimal weights.
However, compared to the results for the Clayton copula, the asymmetry is reversed—under the
Gumbel copula, the magnitudes of weights for short positions are lower than those for long positions.
This is consistent with the fact that the Gumbel copula characterizes upper tail dependence, meaning
that the dependence between the impact factor and residual returns will be higher for assets with
higher impact factors. As expected, this effect is opposite to the results for the Clayton copula.

EC.1.4.3. Impact Portfolios Under Fundamental Copula Yang et al. (2006) show that a
bivariate copula can be decomposed into a convex combination of three fundamental copulas and
an indecomposable part. These three fundamental copulas, namely the comonotonicity copula, the
countermonotonicity copula, and the independence copula, are defined as follows.

Definition EC.5 (Fundamental Copulas). The comonotonicity copula, countermonotonicity
copula, and independence copula are defined as:

C+(u, v)≡min{u, v}, C−(u, v)≡max{u+ v− 1,0}, C⊥(u, v)≡ uv,

for u, v ∈ [0,1], respectively.

Remark EC.3. Assume that (U,V ) is a bivariate random vector with both U and V uniformly
distributed on (0,1). One can verify that, if U ≡ V , (U,V ) follows a comonotonicity copula; if U ≡
−V , (U,V ) follows a countermonotonicity copula; and if U is independent of V , (U,V ) follows an
independence copula. Therefore, these three fundamental copulas correspond to three extreme cases:
perfect positive correlation, perfect negative correlation, and independence.
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The following proposition gives the distribution of θ[X] under the three fundamental copulas using
the representation theorem.

Proposition EC.11. Under Assumption 1, if FX is continuous, the distributions of θ[X] are as
follows for the three fundamental copulas:
(a) For the comonotonicity copula, (θ[1:N ],θ[2:N ], . . . ,θ[N :N ])

d
= (θ1:N ,θ2:N , . . . ,θN :N);

(b) For the countermonotonicity copula, (θ[1:N ],θ[2:N ], . . . ,θ[N :N ])
d
= (θN :N ,θN−1:N , . . . ,θ1:N);

(c) For the independence copula, (θ[1:N ],θ[2:N ], . . . ,θ[N :N ])
d
= (θ1,θ2, . . . ,θN).

Proposition EC.11 is intuitive. When X and θ are independent, ranking by X does not affect the
order of θ. If X and θ are comonotonic, ranking by X is the same as ranking by θ, and if X and θ

are countermonotonic, ranking by X is opposite to ranking by θ.
Although the fundamental copulas themselves are too extreme to be directly used in practice, they

offer insights from two perspectives. First, they represent extreme cases of many widely used copulas.
For example, the Gaussian copula converges to the comonotonicity (countermonotonicity) copula as
ρ approaches +1 (−1), and reduces to an independence copula when ρ = 0. Second, because any
bivariate copula can be decomposed into a convex combination of the three fundamental copulas
and an indecomposable part (Yang et al. 2006), in practice, we can approximate any dependence
structure between X and θ by combining the three fundamental copulas and use the representation
theorem to approximate the distribution of θ[X].

EC.1.4.4. Impact Portfolios Under Elliptical Copula The elliptical copula is a generaliza-
tion of the Gaussian copula.

Definition EC.6 (Elliptical Copula). The bivariate elliptical copula with generator Ψρ and
parameter ρ∈ (−1,1) is defined as

CEl
Ψρ

(u, v)≡Ψρ

(
Ψ−1(u),Ψ−1(v)

)
,

where Ψ is the marginal distribution function of Ψρ, and Ψρ is the joint distribution function of a
bivariate elliptical distribution with density

fΨρ(x1, x2)≡ c · f
(
x2
1 +x2

2 − 2ρx1x2

1− ρ2

)
, x1, x2 ∈R,

where c > 0 is the normalizing constant and function f(x) satisfies f(x)≥ 0 for all x.

Remark EC.4. Many commonly used copulas are elliptical. For example, when Ψρ is the joint
distribution function of a bivariate normal distribution, CEl

Ψρ
is a Gaussian copula; and when Ψρ is the

joint distribution function of a bivariate t-distribution, CEl
Ψρ

is a t-copula. Parameter ρ characterizes
the strength of dependence between X and θ.
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The following proposition characterizes the distribution of θ[X] when the copula is elliptical and
the parameter ρ takes opposite signs.

Proposition EC.12. Consider two sets of IID bivariate random vectors, (X(1)
i ,θ(1)i ) and

(X(2)
i ,θ(2)i ), i= 1,2, . . . ,N . Assume that the marginal distributions of X(1)

i and X(2)
i are continuous.

Denote their copulas and the marginal distributions of θ(j)i by C(j) and F (j)
θ , respectively, for j = 1,2.

Given ρ∈ (−1,1), if F (1)
θ = F (2)

θ , C(1) =CEl
Ψρ

, and C(2) =CEl
Ψ−ρ

, we have:
(
θ(1)[1:N ],θ

(1)
[2:N ], . . . ,θ

(1)
[N :N ]

)
d
=
(
θ(2)[N :N ],θ

(2)
[N−1:N ], . . . ,θ

(2)
[1:N ]

)
, (EC.52)

where (θ(j)[1:N ],θ
(j)
[2:N ], . . . ,θ

(j)
[N :N ]) are the induced order statistics of θ(j)1 ,θ(j)2 , . . . ,θ(j)N ranked by

X(j)
1 ,X(j)

2 , . . . ,X(j)
N , for j = 1,2. Furthermore, the optimal weights of maximizing the information

ratio under the two setups, (w∗(j)
1 ,w∗(j)

2 , . . . ,w∗(j)
N ), j = 1,2, satisfy:

(w∗(1)
1 ,w∗(1)

2 , . . . ,w∗(1)
N )∝ (w∗(2)

N ,w∗(2)
N−1, . . . ,w

∗(2)
1 ). (EC.53)

Proposition EC.12 implies that, when the dependence structure between X and θ is elliptical,
reversing the sign of the parameter ρ leads to a reversal in the distribution of residual returns and
the optimal weights for the N ranked assets. This symmetry, as demonstrated in Figures EC.1 and
EC.2, highlights that the distribution of residual returns and the optimal weights are symmetric with
respect to ±ρ. In particular, when ρ is negative, the optimal strategy for maximizing the information
ratio is to go long on the assets with low impact factors, contradicting the goal of impact investing.
Investors face a tradeoff between portfolio performance and impact when ρ< 0.
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EC.1.5. More Results for General Return Distributions

This appendix is an extension of Section 5 and provides additional results regarding the influence of
the marginal distribution of residual returns on the impact returns.

EC.1.5.1. Numerical Example for Skewed Returns To validate the theoretical results pre-
sented in Proposition 6 for skewed distributions, we consider one commonly used skewed distribution
family, the skew-normal distribution (Azzalini and Capitanio 1999), which is defined as follows.

Definition EC.7 (Scaled-Skew-Normal Distribution). A random variable θ follows a
scaled-skew-normal distribution with parameters (α,σθ) if θ d

= σθ · [S−E(S)]/
√
Var(S), where σθ > 0,

the random variable S follows the skew-normal distribution with density function:

fS(x) = 2ϕ(x)Φ(αx), x∈R,

and ϕ and Φ are the density function and distribution function of the standard normal distribution,
respectively. We denote this by θ∼ ScaleSkewNorm(α,σθ).

Figure EC.10a and Figure EC.10b are the Q–Q plot and the density function of the scaled-skew-
normal distribution, respectively. The Q–Q plot is asymmetric on both tails for α ̸= 0. Figure EC.10b
demonstrates that α parameterizes the skewness. The distribution is positively skewed when α> 0,
and negatively skewed when α< 0. When α= 0, by definition, it reduces to the normal distribution.

Figure EC.10c and Figure EC.10d show the expectations and variances of the induced order statis-
tics, θ[X], and Figure EC.10e shows the optimal weights, with the number of assets N = 50. The
copula is set to be a Gaussian copula with parameter ρ= 50%, and θ is scaled-skew-normally dis-
tributed. In particular, Figure EC.10e demonstrates that, when α> 0 (positively skewed), the optimal
weights are smaller for top-ranking assets, and when α< 0 (negatively skewed), the optimal weights
are smaller for bottom-ranking assets. This finding is consistent with Proposition 6.

Furthermore, Figure EC.10c implies that the expectations of θ[X] vary slightly for different α, but
from Figure EC.10d, we find that different α leads to a strong dispersion in variances across assets,
and the variances on the more skewed tail are larger. Therefore, the asymmetry of optimal weights
is mainly driven by the dispersion in variance (risk), rather than the expectation.

EC.1.5.2. Impact Portfolios Under Symmetric Returns In practice, practitioners often
use symmetric distributions, such as the normal distribution or the t-distribution, to model asset
returns, which implies a skewness of zero. This section studies the distribution of θ[X] and the optimal
impact portfolio construction when the marginal distribution of θ is symmetric.

The following proposition provides a sufficient condition under which the distribution of θ[X] and
the optimal weights are symmetric, given a symmetrically distributed θ.
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(a) Q–Q plots. (b) Density functions.

(c) Expectations. (d) Variances. (e) Weights.
Figure EC.10 Figure EC.10a and Figure EC.10b are the Q–Q plot and density function of ScaleSkewNorm(α,σθ).

Figures EC.10c–EC.10e are expectations, variances of θ[X], and the optimal weights under
Assumption 1. The copula is Gaussian with parameter ρ, and the marginal distribution of θ is
ScaleSkewNorm(α,σθ). We set N = 50, ρ= 50%, and σθ = 10% for illustrative purposes.

Proposition EC.13. Under Assumption 1, assume that both FX and Fθ are continuous functions,
and C is a copula of F with a density. Further assume that Fθ is symmetric with respect to µθ:

Fθ(µθ+x) = 1−Fθ(µθ−x), ∀x∈R, (EC.54)

and the copula C of F is radially symmetric:

C(u, v) = u+ v− 1+C(1−u,1− v), u, v ∈ [0,1]. (EC.55)

Then the induced order statistics, θ[X], satisfy:

(θ[1:N ] −µθ,θ[2:N ] −µθ, . . . ,θ[N :N ] −µθ)
d
= (µθ− θ[N :N ], µθ− θ[N−1:N ], . . . , µθ− θ[1:N ]).

Furthermore, the optimal weights to maximize the information ratio, (w∗
1,w

∗
2, . . . ,w

∗
N), satisfy:

(w∗
1,w

∗
2, . . . ,w

∗
N)

⊤ +(w∗
N ,w

∗
N−1, . . . ,w

∗
1)

⊤ ∝ 2µθΣ
−11,

where Σ is the covariance matrix of θ[X], and 1 is an all-one vector. In particular, if µθ = 0, we have:

(w∗
1,w

∗
2, . . . ,w

∗
N)

⊤ =−(w∗
N ,w

∗
N−1, . . . ,w

∗
1)

⊤.
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Remark EC.5. If the joint distribution of a random vector (U,V ) follows a radially symmetric
copula, for any u and v in [0,1], the probabilities of (U,V ) being in the regions [0, u]× [0, v] and
[1−u,1]× [1− v,1] are always equal. By definition, all elliptical copulas (e.g., the Gaussian copula,
See Appendix EC.1.4.4) are radially symmetric. See Nelsen (2007).

Proposition EC.13 implies that the distribution of θ[X] and the optimal weights are symmetric
with respect to its long and short positions, when both the marginal distribution of θ is symmetric
and the copula is radially symmetric. The case of joint normality discussed in Section EC.1.2 is a
special case of Proposition EC.13, and the symmetry of the distribution of θ[X] and the optimal
weights is illustrated in Figures EC.1 and EC.2. However, this symmetry does not hold when θ is
symmetrically distributed and the copula is not radially symmetric, as shown in Figures 1 and EC.9
for the Clayton and Gumbel copulas.
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EC.2. Empirical Study
In this appendix, we use real data to demonstrate that asset returns and impact factors are both
highly non-normal in practice, and that accounting for general marginal distributions and depen-
dences using our framework can achieve superior impact portfolio performance.

EC.2.1. Data

Our study relies on two types of data: stock returns and Fama–French factor returns, and various
measures of carbon emission for individual companies. The latter is an important subject of interest
in the rapidly growing literature on climate finance (Bolton and Kacperczyk 2021, 2023) as well as
a major component in ESG scores (Pástor et al. 2022).

The measures of carbon emission for individual companies come from the Trucost Environmental
dataset.[26] It includes data for 3,969 US companies from 2005 to 2020, offering one of the most
extensive historical datasets in this domain. Table EC.3 shows the number of covered companies
each year, in which a sharp increase occurred in 2016 (from 1,066 to 2,894) due to the expansion
in coverage from only large-cap companies before 2016 to more small- and mid-cap companies after
2016.

Table EC.3 The number of covered companies each year.
Year 2005 2006 2007 2008 2009 2010 2011 2012

Number 956 957 953 959 978 966 957 956
Year 2013 2014 2015 2016 2017 2018 2019 2020

Number 1,061 1,085 1,066 2,894 2,928 2,920 2,937 3,286

We use two categories of annual carbon emission measures included in the Trucost Environmental
data: (1) the total level (in tons of CO2) and (2) the intensity (the ratio of total emissions to
revenue). Both (1) and (2) are further classified into three different sources of emissions according
to the Greenhouse Gas Protocol—Scopes 1, 2, and 3.[27] Nearly 100% company–years in our sample
have valid values for all of these measures.[28] To mitigate the impact of outliers, we follow Bolton
and Kacperczyk (2021) and Lo et al. (2022) to winsorize (2) at the 2.5% level and take the natural
logarithm of (1) to obtain the log level of carbon emission.

We obtain monthly dividend-adjusted return data for US companies from 2006 to 2021 from the
CRSP dataset,[29] which covers monthly returns for US stocks listed on the NYSE, AMEX, and
NASDAQ. We obtain monthly Fama–French five-factor (Fama and French 2015) data from Kenneth
R. French’s website,[30] which includes the time series of the market factor, the size factor (Small
Minus Big, i.e., SMB), the value factor (High Minus Low, i.e., HML), the profitability factor (Robust
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Minus Weak, i.e., RMW), and the investment factor (Conservative Minus Aggressive, i.e., CMA).
The risk-free rate is also provided.

The datasets we use in this appendix are also used by recent studies in this literature (Bolton
and Kacperczyk 2021, Lo et al. 2022, Pástor et al. 2022). In particular, Lo et al. (2022) form green
portfolios using the bivariate normality framework of Lo and Zhang (2023). The framework in this
study allows for much more general distributions of the impact factor and residual returns. The
following sections illustrate how this increased flexibility enables us to better fit real data and achieve
higher risk-adjusted impact returns.

EC.2.2. Distribution of Impact Factor and Residual Returns

Here we demonstrate that the distribution of (Xi,θi)⊤ is highly non-normal, which motivates our
framework to allow for general distributions and dependences. We use each measure of carbon emis-
sion as the impact factor, X. The residual return of each stock, θi, is estimated by a rolling-window
Fama–French five-factor regression using its monthly returns in the previous five years.

For each sample (Xi,θi)⊤ in a particular year t, Xi is the value of the impact factor at the end of
year t− 1 and θi is the residual return in year t.[31] The one-year lag of the impact factor, X, is to
make sure that portfolios are constructed using information available in the previous year, because
the impact factors, X, in the Trucost Environmental data are updated annually.

Figure EC.11 and Figure EC.12 show histograms and Q–Q plots (with respect to the standard
normal distribution) for the log levels and intensities of carbon emissions across the three scopes,
respectively. In both figures, each sample corresponds to a company–year. The solid lines in all figures
are the densities and Q–Q plots of normal distributions fitted using the samples.

Figures EC.11 and EC.12 reveal that the distributions of neither log carbon emissions nor carbon
intensity follow a normal distribution. The distribution of log carbon emissions deviates from the
normal distribution considerably at both tails. The distribution of carbon intensity departs even
more significantly from the normal distribution.

Figure EC.13 shows the histogram and Q–Q plot of monthly residual returns, with each sample
corresponding to a company–month. The solid lines represent the density and Q–Q plot of the normal
distribution fitted using the data. The figure demonstrates that the residual returns have much
heavier tails compared to the normal distribution. This is consistent with empirical findings in the
literature; see, for example, Cont (2001).

Table EC.4 shows the summary statistics for the impact factors, X, and residual returns, θ, includ-
ing the average value, standard deviation, minimum value, 25th percentile, median (50th percentile),
75th percentile, maximum value, skewness, and kurtosis (in excess of the kurtosis of a normal distri-
bution). We also conduct the Kolmogorov–Smirnov (KS) normality test for the marginal distributions
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(a) Scope 1, histogram. (b) Scope 1, Q–Q plot.

(c) Scope 2, histogram. (d) Scope 2, Q–Q plot.

(e) Scope 3, histogram. (f) Scope 3, Q–Q plot.

Figure EC.11 Histograms and Q–Q plots for log levels of carbon emissions. Solid lines are the densities and Q–Q
plots of normal distributions fitted using the samples.

of the impact factor and residual returns. The test statistics and associated p-values are reported in
the last two rows. The results indicate that the null hypothesis of normality is significantly rejected
for all impact factors and residual returns in our sample.

To further confirm that the impact factor and residual returns, (Xi,θi)⊤, are not jointly normally
distributed throughout our entire sample period, we perform the Henze–Zirkler test (Henze and
Zirkler 1990) for each month, where each sample corresponds to a company. Figure EC.14 shows the
monthly time series of the test statistics and p-values.
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(a) Scope 1, histogram. (b) Scope 1, Q–Q plot.

(c) Scope 2, histogram. (d) Scope 2, Q–Q plot.

(e) Scope 3, histogram. (f) Scope 3, Q–Q plot.

Figure EC.12 Histograms and Q–Q plots for carbon emission intensity. Solid lines are the densities and Q–Q
plots of normal distributions fitted using the samples.

We have three observations. First, at a 5% significance level, (Xi,θi)⊤ is not normally distributed
for all months in our sample and for all impact factors. Second, the test statistic tends to be higher
when X represents carbon intensity measures compared to when X represents log levels of carbon
emissions. This observation aligns with the findings from Figures EC.11–EC.12 and Table EC.4,
which indicate that carbon intensity measures deviate further from the normal distribution than the
log levels of carbon emissions. Third, the test statistic experiences a sharp increase from 2016 to
2017. This can be attributed to the inclusion of small- and mid-cap companies in the dataset after
2016 (see Table EC.3).
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(a) Histogram. (b) Q–Q plot.

Figure EC.13 Histogram and Q–Q plot for residual returns. Solid lines are the density and Q–Q plot of the
normal distribution fitted using the samples.

Table EC.4 Summary statistics and normality tests for impact factors, X, and residual returns, θ. For X, each
sample corresponds to a company–year; for θ, each sample corresponds to a company–month.

Log Carbon Emission Carbon Emission Intensity Residual ReturnScope 1 Scope 2 Scope 3 Scope 1 Scope 2 Scope 3
average 9.92 10.07 11.79 80.47 27.75 131.38 0.24%

std 3.07 2.52 2.45 240.70 28.61 119.38 10.86%
min -2.43 -1.81 -1.19 0.47 1.02 22.43 -353.53%

25th percentile 7.92 8.64 10.19 4.26 8.26 38.94 -4.04%
median 9.91 10.31 11.99 13.87 17.46 87.50 0.04%

75th percentile 11.78 11.76 13.52 29.17 40.36 181.85 4.10%
max 18.86 16.63 19.03 2391.61 177.69 576.48 674.78%

skewness 0.08 -0.49 -0.49 5.38 2.06 1.41 6.25
ex. kurtosis 0.18 0.42 0.68 34.04 5.31 1.32 287.39
KS statistic 0.99 0.99 1.00 0.81 0.92 1.00 0.40

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(a) Henze–Zirkler test statistics. (b) p-values.

Figure EC.14 Time series of the statistics and p-values of the Henze–Zirkler test.

EC.2.3. Performance of Impact Portfolios

We use both the log levels and intensities of carbon emissions for scopes 1, 2, and 3 to form impact
portfolios, respectively. The negative values of each measure are used as the impact factor, X,
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because lower levels of carbon emissions correspond to greener companies. We consider the following
long/short portfolios.

Equal-Weighted Portfolios. In each year, we simply go long the top 50% of stocks with equal
weights and short the bottom 50% of stocks with equal weights.

Bivariate Normality Portfolios. We assume that the joint normality assumption (Assumption
EC.1) holds. If the estimated correlation ρ> 0, we use the optimal weights given by (9). Otherwise,
we go long the top 50% of stocks with equal weights, and short the bottom 50% of stocks with equal
weights, which reduces to the Equal-Weighted portfolio.

Gaussian Copula Portfolios. We assume that the general assumption (Assumption 1) holds with a
Gaussian copula, and Fθ is a scaled-t-distribution with parameters (1,σθ). If the estimated parameter
of the Gaussian copula ρ> 0, we use the optimal weights given by (9). Otherwise, we go back to the
Equal-Weighted portfolio.

Clayton Copula Portfolios. We assume that the general assumption (Assumption 1) holds with a
Clayton copula, and Fθ is a scaled-t-distribution with parameters (1,σθ). If the estimated parameter
of the Clayton copula γ > 0, we use the optimal weights given by (9). Otherwise, we go back to the
Equal-Weighted portfolio.

Gumbel Copula Portfolios. We assume that the general assumption (Assumption 1) holds with a
Gumbel copula, and Fθ is a scaled-t-distribution with parameters (1,σθ). If the estimated parameter
of the Gumbel copula γ > 1, we use the optimal weights given by (9). Otherwise, we go back to the
Equal-Weighted portfolio.

Empirical Portfolios. We assume that the general assumption (Assumption 1) holds. Both the
copula, C, and the marginal distribution, Fθ, are estimated nonparametrically using empirical dis-
tributions.[32]

Out of these six portfolios, the Equal-Weighted Portfolio and the Bivariate Normality Portfolio
based on the joint normality assumption in Lo and Zhang (2023) serve as baselines. The Gaussian,
Clayton, and Gumbel Copula Portfolios capture more general dependence structures and allow for
heavy-tailed marginal distributions. The Empirical Portfolios are more flexible because they use the
empirical marginal distributions and copulas and avoid choosing between various parametric copulas.

Next, we describe the procedure for estimating the parameters required for constructing the port-
folios described above.[33] For the first five portfolios with parametric copulas, in each month, we
calculate the maximum likelihood estimation of the parameters (for example, the correlation coeffi-
cient for the Bivariate Normality Portfolio, ρ) using the cross-sectional data, (Xi,θi)⊤, i= 1,2, . . . ,N .
Then, for each year, we use the average estimated parameters over the previous five years to construct
portfolios. For Empirical Portfolios, in each year, we use all cross-sectional data over the previous
five years to estimate the empirical marginal distribution and the empirical copula. In addition, after
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determining the optimal weights, for each long/short portfolio, we standardize the optimal weights
by requiring that

∑N
i=1 |wi|= 1 to ensure the same level of leverage across portfolios.

We test the profitability of all strategies from 2011 to 2021.[34] Tables EC.5 and EC.6 summarize
the performance of portfolios constructed using the log levels and intensities of carbon emissions,
respectively. In particular, we report their annualized raw return (return), standard deviation (std.),
Sharpe ratio (SR), alpha from the Fama–French five-factor model (FF5 α), volatility of residual
returns (σ(θp)), information ratio (IR), and annual turnover.[35] Note that we report metrics related
to both raw returns (return, std., and SR) and residual returns (FF5 α, σ(θp), and IR).[36] In addition
to these performance metrics, Figure EC.15 visualizes the cumulative residual returns for these
portfolios.

Table EC.5 Performance of impact portfolios constructed using the log levels of carbon emissions. All metrics
in this exhibit are annualized.

Equal-Weight Bivariate Normality Gaussian Copula Clayton Copula Gumbel Copula Empirical
Scope 1

return 0.75% 1.03% 15.79% 3.27% 14.75% 15.97%
std. 3.17% 4.54% 18.96% 5.14% 19.16% 18.42%
SR 0.20 0.20 0.83 0.61 0.76 0.86

FF5 α 1.78% 2.38% 3.61% 2.39% 3.51% 2.85%
σ(θp) 2.13% 3.06% 5.41% 3.03% 5.86% 4.47%

IR 0.83 0.78 0.67 0.79 0.60 0.64
turnover 43.99% 41.72% 36.00% 39.12% 96.11% 35.18%

Scope 2
return 0.56% 0.66% 16.01% 1.31% 15.32% 15.79%

std. 3.02% 4.36% 19.05% 4.05% 19.19% 18.49%
SR 0.15 0.12 0.83 0.29 0.79 0.85

FF5 α 1.81% 2.39% 4.09% 1.85% 4.57% 2.88%
σ(θp) 1.82% 2.67% 5.89% 2.26% 6.49% 4.60%

IR 0.99 0.89 0.69 0.82 0.70 0.63
turnover 46.16% 50.57% 44.08% 50.27% 97.67% 37.16%

Scope 3
return -0.26% 0.28% 15.28% 0.72% 15.71% 14.96%

std. 2.93% 4.52% 19.43% 4.21% 20.01% 18.78%
SR -0.13 0.04 0.78 0.14 0.78 0.79

FF5 α 0.73% 1.46% 2.73% 1.15% 4.06% 1.81%
σ(θp) 1.73% 2.93% 6.31% 2.60% 7.47% 4.65%

IR 0.42 0.50 0.43 0.44 0.54 0.39
turnover 44.58% 50.56% 43.14% 49.85% 95.03% 36.07%

Table EC.5 shows that, for impact portfolios constructed using the log levels of carbon emissions,
the Equal-Weighted Portfolio generally underperforms other portfolios in terms of annualized return,
Sharpe ratio, and active α for all three scopes. This illustrates the superiority of our impact investing
theory based on induced order statistics over the traditional Equal-Weighted Portfolio.
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Table EC.6 Performance of impact portfolios constructed using carbon emission intensities. All metrics in this
exhibit are annualized.

Equal-Weight Bivariate Normality Gaussian Copula Clayton Copula Gumbel Copula Empirical
Scope 1

return 0.51% 0.49% 14.94% 5.75% 14.21% 15.73%
std. 2.77% 4.00% 17.22% 5.42% 17.14% 17.50%
SR 0.14 0.09 0.86 1.04 0.82 0.89

FF5 α 0.94% 1.31% 2.12% 2.72% 1.97% 2.02%
σ(θp) 2.55% 3.68% 3.40% 3.64% 3.80% 3.57%

IR 0.37 0.36 0.62 0.75 0.52 0.57
turnover 41.95% 45.81% 36.01% 41.23% 96.50% 30.91%

Scope 2
return 0.21% 0.49% 14.78% 5.09% 13.14% 15.44%

std. 2.51% 3.60% 16.57% 4.60% 16.22% 17.17%
SR 0.04 0.10 0.88 1.08 0.80 0.89

FF5 α 1.04% 1.96% 2.70% 2.40% 2.78% 2.12%
σ(θp) 2.12% 3.14% 3.69% 3.14% 3.91% 3.32%

IR 0.49 0.62 0.73 0.76 0.71 0.64
turnover 43.01% 45.79% 34.69% 41.14% 102.47% 31.63%

Scope 3
return 0.28% -0.09% 14.60% 3.09% 13.07% 15.50%

std. 2.90% 3.34% 17.10% 3.97% 18.08% 17.33%
SR 0.06 -0.06 0.85 0.75 0.72 0.89

FF5 α 0.86% 1.39% 2.70% 1.88% 2.71% 1.94%
σ(θp) 2.63% 2.89% 3.97% 3.42% 5.16% 3.97%

IR 0.33 0.48 0.68 0.55 0.52 0.49
turnover 39.57% 48.91% 38.91% 46.08% 100.12% 27.76%

Table EC.5 also demonstrates that, when using the log levels of carbon emissions, the Gaussian
Copula, Clayton Copula, Gumbel Copula, and Empirical Portfolios outperform the Bivariate Nor-
mality Portfolio in many cases in terms of annualized return, Sharpe ratio, and active α. This suggests
that extending Lo and Zhang’s (2023) joint normality assumption (Assumption EC.1) to a general
distribution assumption (Assumption 1) may lead to higher risk-adjusted returns. However, we also
acknowledge that in many cases, the Bivariate Normality Portfolio can achieve similar or higher
information ratios compared to other portfolios. This can be attributed to the fact that the log levels
of carbon emissions do not deviate from the normal distribution strongly enough (see Figure EC.11),
and there, non-normal portfolios may not consistently improve performance.

On the other hand, when considering the performance of impact portfolios constructed using carbon
intensity measures in Table EC.6, we find that the Gaussian Copula, Clayton Copula, Gumbel Copula,
and Empirical Portfolios consistently and strongly outperform the Equal-Weighted Portfolio and the
Bivariate Normality Portfolio in terms of annualized return, Sharpe Ratio, active α, and information
ratio. For example, for Scope 1, the Equal-Weighted Portfolio and the Bivariate Normality Portfolio
earn information ratios of 0.37 and 0.36, respectively, while the Gaussian Copula, Clayton Copula,
Gumbel Copula, and Empirical Portfolios earn 0.62, 0.75, 0.52, and 0.57, respectively.
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(a) Log level of carbon emission, Scope 1. (b) Carbon emission intensity, Scope 1.

(c) Log level of carbon emission, Scope 2. (d) Carbon emission intensity, Scope 2.

(e) Log level of carbon emission, Scope 3. (f) Carbon emission intensity, Scope 3.

Figure EC.15 Cumulative residual returns for impact portfolios.

It is also worth noting that the Empirical Portfolio generally outperforms the Equal-Weighted
Portfolio and the Bivariate Normality Portfolio in terms of the active α and information ratio, and has
a competitive—but not necessarily better—performance compared to the Gaussian Copula, Clayton
Copula, and Gumbel Copula Portfolios. Using empirical distributions does eliminate the need to
choose a specific type of parametric copula, which is a desired property in practice. But we would also
like to point out that it requires more data to estimate these nonparametric distributions well. In this
sense, using specific parametric forms of copula can be regarded as a way to regularize nonparametric
estimations especially when data is scarce. In practice, investors should weigh the pros and cons of
nonparametric and parametric methods given the amount of data available in the specific application.

Overall, by allowing for a more flexible distributional assumption in our framework, impact
investors can achieve much improved risk-adjusted returns. As Figure EC.12, Table EC.4, and Fig-
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ure EC.14 demonstrate, the carbon intensity measures strongly deviate from a normal distribution.
Although the marginal distribution of X does not affect the distribution of induced order statistics
given the copula (see Theorem 1), it does affect the empirical estimation of the dependence between
X and θ. In particular, when X significantly deviates from the normal distribution, the framework
of Lo and Zhang (2023) is inadequate in describing this dependence using a single correlation ρ of
the bivariate normal distribution. As a result, the portfolios constructed using the framework in this
article are able to outperform significantly.

In summary, our empirical study demonstrates that, by extending the joint normality assumption
to the general case (Assumption 1), impact investors can achieve higher profits, excess returns, Sharpe
ratios, and information ratios, especially when the impact factor and residual returns deviate from
the normal distribution significantly. This underscores the effectiveness of our general framework in
practice.

Our empirical analysis is related to the growing literature on measuring the association between
asset returns and sustainability. Bolton and Kacperczyk (2021, 2023) and Bolton et al. (2022) find
that higher stock returns and lower P/E and market-to-book ratios are associated with higher levels
and growth rates of carbon emissions, both in the US and internationally. On the other hand, several
studies find the opposite results. Görgen et al. (2020) find an insignificantly negative carbon premium
when they combine multiple carbon emission-related measures; Cheema-Fox et al. (2021) find that
a portfolio going long in low-carbon intensity sectors and shorting high-carbon sectors delivered a
positive alpha; Aswani et al. (2024) show that Bolton and Kacperczyk’s (2021) carbon premiums
disappear after accounting for disclosed versus estimated emissions; Zhang (2024) finds that Bolton
and Kacperczyk’s (2021) carbon premiums arise from the forward-looking sales information contained
in emissions instead of the carbon risk premium. In the related literature on ESG investing, several
studies find neutral or positive performance for green portfolios (Berg et al. 2021, Lindsey et al. 2021,
Pástor et al. 2021). Pástor et al. (2022) and Ardia et al. (2023) further show that the high returns
for green assets in recent years reflect unexpectedly strong increases in environmental concerns, not
high expected returns.

Our empirical findings are generally consistent with this literature, but may appear at odds with
the findings of Bolton and Kacperczyk (2021, 2023) in the US market. We provide several remarks
on this difference. First and foremost, the focus of our empirical study is primarily to demonstrate
the applicability of our portfolio construction framework using induced order statistics given a mea-
sure of impact, while studies such as Bolton and Kacperczyk (2021, 2023) and Pástor et al. (2021,
2022) focus on estimating the carbon risk premium and greenium in equilibrium using very different
methodologies. For example, Bolton and Kacperczyk (2021, 2023) perform panel regressions of indi-
vidual asset returns on carbon emission measures and a suite of control variables. We use a rolling
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window to estimate the dependence between returns and the impact factor, which can be regarded
as a simple estimate of the dependence between the expected return and the impact factor next year.
In principle, one can apply our framework to more sophisticated estimates of expected returns, such
as the equilibrium model of Pástor et al. (2021), or those in the literature on robust portfolio with
parameter uncertainty (Jorion 1986, Kan and Zhou 2007, DeMiguel et al. 2009, Kan et al. 2022).
However, exploring different estimates of the expected return is beyond the scope of this paper and
is left as future work.

Second, both Aswani et al. (2024) and Zhang (2024) find that the previously documented carbon
premium can be explained, at least partially, by either estimation bias in emissions or forward-looking
sales information contained in emissions.

Third, our results are consistent with Lo et al. (2022), who find a significant greenium in the US
market for a much wider set of non-carbon environmental measures, including water consumption,
waste disposal, land and water pollution, etc.

Finally, our results are in fact also consistent with Pástor et al.’s (2022) empirical findings in a
similar time period. Lo et al. (2022) use the same dataset as ours and find that a significant portion
of the realized greenium in the US market over the past decade can be explained by the unexpected
increase in climate concerns. This is consistent with Pástor et al.’s (2022) findings and offers another
way to reconcile our results with Bolton and Kacperczyk’s (2021) carbon premium.
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EC.3. Lemmas and Proofs
EC.3.1. Lemmas

Lemma EC.1. Let C(u, v) be a copula. Then, the partial Dini derivatives D+
1 C(u, v) and D−

1 C(u, v)

defined by (EC.31) are non-decreasing with respect to v for any u∈ (0,1).

Proof of Lemma EC.1. Because C is a copula, for any v1 < v2 and h> 0, we have C(u+h, v1)−
C(u, v1) ≤ C(u + h, v2) − C(u, v2). Taking the limit superiors of both sides proves the result for
D+

1 C(u, v). Similar arguments apply to D−
1 C(u, v). "

Lemma EC.2. Given a distribution function f :R→ [0,1], define f−1(w) = inf{v : f(v)≥w,v ∈Rθ}
for w ∈ [0,1]. Then, we have:

(i) For any w ∈ [0,1], F−1
θ ◦ f−1(w) = F−1

θ ◦ f−1(w);
(ii) For any v ∈Rθ, {w : f−1(w)≤ v}= {w :w≤ f(v)}.

Proof of Lemma EC.2. By definition, f−1(w)≥ f−1(w). If f−1(w)> f−1(w), we have f−1(w) /∈
Rθ. Therefore, there must exist d ∈ ∆θ such that f−1(w) ∈ (Fθ(d−),Fθ(d)), where ∆θ is the set
of discontinuity points of Fθ. Then, by Definition EC.1, F−1

θ ◦ f−1(w) = d. In addition, we have
f−1(w) = Fθ(d) and, therefore, F−1

θ ◦ f−1(w) = d. This proves Part (i). Part (ii) can be verified by
the definition of f−1(w) and the right continuity of f . "

Lemma EC.3. Let C(u, v) be a copula. For any fixed 0≤ a< b≤ 1 and fixed v ∈ [0,1], define

C∗(u, v) =

{
b−u
b−a

C(a, v)+ u−a
b−a

C(b, v), u∈ (a, b),

C(u, v), u /∈ (a, b).

Then, if C(u, v) is a concave function of u, C∗(u, v) is also a concave function of u.

Proof of Lemma EC.3. We omit the proof because one can easily verify this by the definition of
a concave function. "

Lemma EC.4. Let W1:N ≤W2:N ≤ · · ·≤WN :N be the order statistics of W1,W2, . . . ,WN
IID∼ FW with

density function fW . Then, the density of Wi:N is:

fWi:N
(x) =

N !

(i− 1)!(N − i)!
· fW (x)[FW (x)]i−1[1−FW (x)]N−i,

and the joint density of (Wi1:N ,Wi2:N , . . . ,Wim:N) is:

fWi1:N
,Wi2:N

,...,Wim:N
(x1, x2, . . . , xm) =

N !

(i1 − 1)!(i2 − i1 − 1)! · · · (N − im)!

· [FW (x1)]
i1−1fW (x1)[FW (x2)−FW (x1)]

i2−i1−1fW (x2)

· · · [1−FW (xm)]
N−imfW (xm) ·1{x1<x2<···<xm},

for 1≤ i1 < i2 < · · ·< im ≤N .
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Proof of Lemma EC.4. See David and Nagaraja (2004, Section 2). "

Lemma EC.5. Let Y1:N ≤ Y2:N ≤ · · ·≤ YN :N be the order statistics of Y1, Y2, . . . , YN
IID∼ N (0,1). Then,

for any i, j = 1,2, . . . ,N , we have:
(i) E(Yi:N) =−E(YN+1−i:N);

(ii) Cov(Yi:N , Yj:N) =Cov(YN+1−j:N , YN+1−i:N);
(iii) Φ−1

(
i−1
N

)
≤E(Yi:N)≤Φ−1

(
i
N

)
, where Φ is the distribution function of N (0,1);

(iv) Cov(Yi:N , Yj:N)≥ 0;
(v) Cov

(
Yi:N ,

∑
k ̸=i Yk:N

)
= 1−Var(Yi:N).

Proof of Lemma EC.5. Part (i) and Part (ii) are direct corollaries of Lemma EC.4. Part (iii) is
shown in David and Nagaraja (2004, Section 4.5). Part (iv) is shown in Bickel (1967, Theorem 2.1).
For Part (v), note that

Cov

(
Yi:N ,

∑

k ̸=i

Yk:N

)
=Cov

(
Yi:N ,

N∑

k=1

Yk:N

)
−Var(Yi:N)

=Cov

(
Yi:N ,

N∑

k=1

Yk

)
−Var(Yi:N) =

N∑

k=1

Cov(Yi:N , Yk)−Var(Yi:N) = 1−Var(Yi:N),

where the last equation uses Cov(Yi:N , Yk) =
1
N

(Wang et al. 1996, Theorem 1). "

Lemma EC.6. Let Y1:N ≤ Y2:N ≤ · · · ≤ YN :N be the order statistics of Y1, Y2, . . . , YN
IID∼ N (0,1).

Sequence 1≤ i1(N)< i2(N)≤N satisfies that, as N →+∞, i1(N)/N → ξ1 and i2(N)/N → ξ2 with
constants ξ1 and ξ2 such that 0≤ ξ1 ≤ ξ2 ≤ 1. Then:

(i) limN→+∞

∑i2(N)
i=i1(N)

[E(Yi:N )]2

N
=
(
ξ2 −Φ−1(ξ2)ϕ

(
Φ−1(ξ2)

))
−
(
ξ1 −Φ−1(ξ1)ϕ

(
Φ−1(ξ1)

))
;

(ii) limN→+∞

∑i2(N)
i=i1(N)

|E(Yi:N )|

N
=

{∣∣ϕ
(
Φ−1(ξ2)

)
−ϕ

(
Φ−1(ξ1)

)∣∣ , ξ2 ≤ 0.5 or ξ1 ≥ 0.5,

2ϕ(0)−ϕ
(
Φ−1(ξ2)

)
−ϕ

(
Φ−1(ξ1)

)
, ξ1 < 0.5< ξ2;

(iii) limN→+∞

∑i2(N)
i=i1(N)

E(Yi:N )

N
=ϕ

(
Φ−1(ξ1)

)
−ϕ

(
Φ−1(ξ2)

)
,

where Φ and ϕ are the distribution function and density function of N (0,1), respectively.

Proof of Lemma EC.6. We first prove Part (i). By Part (iii) of Lemma EC.5, E(Yi:N) satisfies
Φ−1

(
i−1
N

)
≤ E(Yi:N) ≤ Φ−1

(
i
N

)
. Further note that Φ−1

(
i−1
N

)
≥ 0 when i > N/2, and Φ−1

(
i
N

)
≤ 0

when i≤N/2. Hence, as N →+∞,
∑i2(N)

i=i1(N)[E(Yi:N)]2

N
=

∑
i1(N)≤i≤i2(N),i≤N/2[E(Yi:N)]2

N
+

∑
i1(N)≤i≤i2(N),i>N/2[E(Yi:N)]2

N

≤
∑

i1(N)≤i≤i2(N),i≤N/2[Φ
−1( i−1

N
)]2

N
+

∑
i1(N)≤i≤i2(N),i>N/2[Φ

−1( i
N
)]2

N

→
∫ ξ2

ξ1

[Φ−1(q)]2dq
x=Φ−1(q)
=======

∫ Φ−1(ξ2)

Φ−1(ξ1)

x2ϕ(x)dx

=−Φ−1(ξ2)ϕ
(
Φ−1(ξ2)

)
+Φ−1(ξ1)ϕ

(
Φ−1(ξ1)

)
+ ξ2 − ξ1,
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where the limit holds because
∑

i1(N)≤i≤i2(N),i≤N/2[Φ
−1((i−1)/N)]2

N
and

∑
i1(N)≤i≤i2(N),i>N/2[Φ

−1(i/N)]2

N
are

both Riemann sums. The same lower bound can also be obtained, and thus, Part (i) holds. Using
similar approaches, we can show that

∑i2(N)
i=i1(N) |E(Yi:N)|

N
→
∫ ξ2

ξ1

|Φ−1(q)|dq x=Φ−1(q)
=======

∫ Φ−1(ξ2)

Φ−1(ξ1)

|x|ϕ(x)dx=

∫ Φ−1(ξ2)

Φ−1(ξ1)

|x|√
2π

e−x2/2dx

and
∑i2(N)

i=i1(N)E(Yi:N)

N
→
∫ ξ2

ξ1

Φ−1(q)dq
x=Φ−1(q)
=======

∫ Φ−1(ξ2)

Φ−1(ξ1)

xϕ(x)dx=

∫ Φ−1(ξ2)

Φ−1(ξ1)

x√
2π

e−x2/2dx

as N →+∞. Calculating the integrals completes the proofs of Parts (ii) and (iii). "

Lemma EC.7. For an N × N matrix S = (Sij)Ni,j=1, the smallest and largest eigenvalues of S,
λmin(S) and λmax(S), have the following bounds respectively:

(i) λmin(S)≥mini=1,2,...,N

[
Sii −

∑
j ̸=i |Sij |

]
;

(ii) λmax(S)≤maxi=1,2,...,N

∑N
j=1 |Sij |.

Proof of Lemma EC.7. This is a corollary of the Gershgorin circle theorem, which states that for
any eigenvalue λ of S, there exists i with 1≤ i≤N such that |λ−Sii|≤

∑
j ̸=i |Sij |. See, for example,

Horn and Johnson (2012, Theorem 6.1.1). "

Lemma EC.8. Denote by θ[1:N ],t,θ[2:N ],t, . . . ,θ[N :N ],t the induced order statistics of θ1t,θ2t, . . . ,θNt

ranked by X1t,X2t, . . . ,XNt. Under Assumption EC.2, the expectation of θ[i:N ],t is:

E(θ[i:N ],t) =E[E(θ[i:N ],t|ρt)] = σθ · ρ ·E(Yi:N)+µθ. (EC.56)

The variance of θ[i:N ],t is:

Var(θ[i:N ],t) =E[Var(θ[i:N ],t|ρt)]+Var[E(θ[i:N ],t|ρt)], (EC.57)

where

E[Var(θ[i:N ],t|ρt)] = σ2
θ · [1− (ρ2 +σ2

ρ)+ (ρ2 +σ2
ρ) ·Var(Yi:N)], (EC.58)

Var[E(θ[i:N ],t|ρt)] = σ2
θ ·σ2

ρ · [E(Yi:N)]
2. (EC.59)

The covariance between θ[i:N ],t and θ[j:N ],t is:

Cov(θ[i:N ],t,θ[j:N ],t) =E[Cov(θ[i:N ],t,θ[j:N ],t|ρt)]+Cov[E(θ[i:N ],t|ρt),E(θ[j:N ],t|ρt)], (EC.60)

where

E[Cov(θ[i:N ],t,θ[j:N ],t|ρt)] = σ2
θ · (ρ2 +σ2

ρ) ·Cov(Yi:N , Yj:N), (EC.61)

Cov[E(θ[i:N ],t|ρt),E(θ[j:N ],t|ρt)] = σ2
θ ·σ2

ρ ·E(Yi:N) ·E(Yj:N). (EC.62)

Here, i, j = 1,2, . . . ,N and i ̸= j; Y1:N ≤ Y2:N ≤ · · ·≤ YN :N are the order statistics of Y1, Y2, . . . , YN
IID∼

N (0,1).
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Proof of Lemma EC.8 Given ρt, using Proposition EC.4, we have

E(θ[i:N ],t|ρt) = σθ · ρt ·E(Yi:N)+µθ,

Var(θ[i:N ],t|ρt) = σ2
θ · (1− ρ2t + ρ2t ·Var(Yi:N)),

Cov(θ[i:N ],t,θ[j:N ],t|ρt) = σ2
θ · ρ2t ·Cov(Yi:N , Yj:N).

Then (EC.56), (EC.57), and (EC.60) hold by the law of iterated expectation, the law of total variance,
and the law of total covariance, respectively. "

Lemma EC.9. Under Assumption EC.3, we have:

E(θ[i:N ]) = σθ ·
ρ− ρ̃√
1− ρX

·E(Yi:N)+µθ, (EC.63)

Var(θ[i:N ]) = σ2
θ ·
(
1− (ρ− ρ̃)2

1− ρX
+

(ρ− ρ̃)2

1− ρX
·Var(Yi:N)

)
, (EC.64)

Cov(θ[i:N ],θ[j:N ]) = σ2
θ ·
(
ρθ+

(ρ− ρ̃)2

1− ρX
·Cov(Yi:N , Yj:N)

)
, (EC.65)

for i, j = 1,2, . . . ,N and i ̸= j. Here, Y1:N ≤ Y2:N ≤ · · · ≤ YN :N are the order statistics of
Y1, Y2, . . . , YN

IID∼ N (0,1).

Proof of Lemma EC.9. See Lee and Viana (1999, Corollary 2.1). "

EC.3.2. Proofs for Section 2

Proof of Proposition 1. For investors to maximize the information ratio, let IR(w) = w⊤µ√
w⊤Σw

.
Then ∂IR

∂w
= (w⊤Σw)·µ−(w⊤µ)·Σw

(w⊤Σw)3/2
, and one can directly check that ∂IR

∂w
= 0 if and only if w∝Σ−1µ. For

investors to maximize the mean–variance utility, let U(w) =w⊤µ− λ
2
w⊤Σw. Then ∂U

∂w
=µ−λΣw,

and thus ∂U
∂w

= 0 if and only if w = 1
λ
Σ−1µ ∝ Σ−1µ. When w ∝ Σ−1µ, we have IR = w⊤µ√

w⊤Σw
=

µ⊤Σ−1µ√
µ⊤Σ−1ΣΣ−1µ

=
√
µ⊤Σ−1µ. This completes the proof. "

EC.3.3. Proofs for Section 3

Proof of Theorem 1. This is a corollary of Theorem 2. "
Proof of Theorem 2. We first prove “if” followed by the proof for “only if.” According to the

footnote at the end of Definition 1, we have Rc

X =
⋃

d∈∆X
(FX(d−),FX(d)).

Proof of “if.” The proof of “if” includes five main steps.
First, we calculate D1C(u, v) on Rc

X ×Rθ. For any d∈∆X and u∈ (FX(d−),FX(d)), the linearly
interpolating property implies that the partial right upper Dini derivative of C(u, v) given by (EC.31)
satisfies D+

1 C(u, v) = C(FX (d),v)−C(FX (d−),v)
FX (d)−FX (d−)

for v ∈Rθ. This allows us to study D1C(u, v).
Let A = {v ∈ Rθ : ∃δ > 0 such that Rθ ∩ (v, v + δ) = ∅}. For any v ∈ Rθ\A, there should exist

a sequence {vn}+∞
n=1 such that vn ∈ Rθ, vn > v, and limn→+∞ vn = v. In addition, Lemma EC.1
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demonstrates that D+
1 C(u, v) is non-decreasing with respect to v. Hence, for any u∈ (FX(d−),FX(d))

and v ∈Rθ\A, we have

D1C(u, v) = inf
y>v

D+
1 C(u, y) = lim

n→+∞
D+

1 C(u, vn)

= lim
n→+∞

C(FX(d), vn)−C(FX(d−), vn)

FX(d)−FX(d−)
=

C(FX(d), v)−C(FX(d−), v)

FX(d)−FX(d−)
, (EC.66)

where the last equality holds because of the continuity of C (Nelsen 2007, Theorem 2.2.4).
For any v ∈ A, Fang et al. (2020, Theorem 2.1) demonstrate that, there exists a set Bv with

Lebesgue measure 0 such that D1C(u, v) = ∂C
∂u

(u, v) for u∈ [0,1]\Bv. In addition, by definition, there
are at most countably infinite elements in A. Therefore, E1 ≡

⋃
v∈ABv has a Lebesgue measure 0,

and D1C(u, v) = ∂C
∂u

(u, v) for any u ∈ [0,1]\E1 and v ∈ A. Hence, (EC.66) holds for any d ∈ ∆X ,
u∈ (FX(d−),FX(d))\E1 and v ∈Rθ.

Second, we define D̃1C(u, v) : [0,1]×R→ [0,1] as follows:

D̃1C(u, v) =

{
C(FX (d),v)−C(FX (d−),v)

FX (d)−FX (d−)
, u= FX(d), d∈∆X , v ∈R,

D1C(u, v), otherwise,
(EC.67)

and build a relationship between functions D̃1C(u, v) and D1C(u, v). For any d ∈ ∆X , u ∈

(FX(d−),FX(d))\E1, and v ∈Rθ, we have

D̃1C
(
FX(F

−1
X (u)), v

)
= D̃1C (FX(d), v) =

C(FX(d), v)−C(FX(d−), v)

FX(d)−FX(d−)
=D1C(u, v), (EC.68)

where the three equalities hold because of FX(F
−1
X (u)) = FX(d) (by Definition EC.1), (EC.67), and

(EC.66), respectively. Meanwhile, for any u /∈
(⋃

d∈∆X
[FX(d−),FX(d)]

)
∪E1 and v ∈Rθ, we have

D̃1C
(
FX(F

−1
X (u)), v

)
= D̃1C (u, v) =D1C(u, v), (EC.69)

where the two equalities hold because of FX(F
−1
X (u)) = u (by Definition EC.1) and (EC.67), respec-

tively. Therefore, by combining (EC.68) and (EC.69), we have

D̃1C
(
FX(F

−1
X (u)), v

)
=D1C(u, v), u∈ [0,1]\E2, v ∈Rθ, (EC.70)

where E2 ≡E1 ∪ {FX(d) : d∈∆X}∪ {FX(d−) : d∈∆X}, which has a Lebesgue measure 0.
Third, we define

g̃(u,w)≡ F−1
θ ◦ g̃u(w), g̃u(w)≡ inf{v : D̃1C(u, v)≥w,v ∈Rθ}, (EC.71)

and build a relationship between g̃(u,w) and g(u,w). Let

g(u,w)≡ F−1
θ ◦ g

u
(w), g

u
(w)≡ inf{v :D1C(u, v)≥w,v ∈Rθ}. (EC.72)
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Thus, by (EC.70), we have g̃FX (F−1
X (u))(w) = g

u
(w) and, therefore, g̃(FX(F

−1
X (u)),w) = g(u,w), when

u ∈ [0,1]\E2 and w ∈ [0,1]. In addition, because v -→ D1C(u, v) is a distribution function (see
Remark EC.1), Part (i) of Lemma EC.2 implies that g

u
(w) = gu(w) and, therefore, g(u,w) = g(u,w)

for any u∈ [0,1] and w ∈ [0,1]. Hence,

g̃
(
FX(F

−1
X (u)),w

)
= g(u,w), u∈ [0,1]\E2,w ∈ [0,1]. (EC.73)

Fourth, we prove that (Xi,θi)
d
=
(
F−1

X (Ui), g̃(FX(F
−1
X (Ui)), Vi)

)
. For any x, y ∈ [0,1], the indepen-

dence between Ui and Vi implies that

P
(
F−1

X (Ui)≤ x, g̃(FX(F
−1
X (Ui)), Vi)≤ y

)
= P

(
Ui ≤ FX(x), g̃(FX(F

−1
X (Ui)), Vi)≤ y

)

=

∫ FX (x)

0

P
(
g̃(FX(F

−1
X (u)), Vi)≤ y

)
du. (EC.74)

Furthermore, by the definition of g̃ in (EC.71) and Part (ii) of Lemma EC.2, we have
∫ FX (x)

0

P
(
g̃(FX(F

−1
X (u)), Vi)≤ y

)
du=

∫ FX (x)

0

P
(
g̃FX (F−1

X (u))(Vi)≤ Fθ(y)
)
du

=

∫ FX (x)

0

P
(
Vi ≤ D̃1C(FX(F

−1
X (u)),Fθ(y))

)
du. (EC.75)

By combining (EC.70), (EC.74), (EC.75), and Remark EC.1, we have

P(F−1
X (Ui)≤ x, g̃(FX(F

−1
X (Ui)), Vi)≤ y) =

∫ FX (x)

0

P
(
Vi ≤ D̃1C(FX(F

−1
X (u)),Fθ(y))

)
du

=

∫ FX (x)

0

D1C(u,Fθ(y))du=C(FX(x),Fθ(y)) = P(Xi ≤ x,θi ≤ y).

Therefore, (Xi,θi)
d
=
(
F−1

X (Ui), g̃(FX(F
−1
X (Ui)), Vi)

)
.

Fifth, we prove that
(
θ[1:N ], . . . ,θ[N :N ]

) d
=
(
g̃(FX(F

−1
X (U1:N)), V1), . . . , g̃(FX(F

−1
X (UN :N)), VN)

)
. (EC.76)

Let Hi ≡ F−1
X (Ui) and Wi ≡ g̃(FX(F

−1
X (Ui)), Vi) = g̃(FX(Hi), Vi), then by the fourth step, we have

(
θ[1:N ], . . . ,θ[N :N ]

) d
=
(
W[1:N ], . . . ,W[N :N ]

)
, (EC.77)

where {W[i:N ]}Ni=1 are induced order statistics of {Wi}Ni=1 ranked by {Hi}Ni=1. We claim that
(
W[1:N ], . . . ,W[N :N ]

) d
= (g̃(FX(H1:N), V1), . . . , g̃(FX(HN :N), VN)) . (EC.78)

To prove this claim, taking the case of H1 ≤ · · ·≤HN as an example, we have

P
(
W[1:N ] ≤ x1, . . . ,W[N :N ] ≤ xN ,H1 ≤ · · ·≤HN

)

=P (W1 ≤ x1, . . . ,WN ≤ xN ,H1 ≤ · · ·≤HN)

=P
(
g̃(FX(F

−1
X (U1)), V1)≤ x1, . . . , g̃(FX(F

−1
X (UN)), VN)≤ xN ,F

−1
X (U1)≤ · · ·≤ F−1

X (UN)
)

=

∫ 1

0

· · ·
∫ 1

0

1{g̃(FX (F−1
X (u1)),w1)≤x1,...,g̃(FX (F−1

X (uN )),wN )≤xN}·

1{F−1
X (u1)≤···≤F−1

X (uN )}du1 · · ·duNdw1 · · ·dwN . (EC.79)
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In addition,

P (g̃(FX(H1:N), V1)≤ x1, . . . , g̃(FX(HN :N), VN)≤ xN ,H1 ≤ · · ·≤HN)

=P (g̃(FX(H1), V1)≤ x1, . . . , g̃(FX(HN), VN)≤ xN ,H1 ≤ · · ·≤HN)

=P
(
g̃(FX(F

−1
X (U1)), V1)≤ x1, . . . , g̃(FX(F

−1
X (UN)), VN)≤ xN ,F

−1
X (U1)≤ · · ·≤ F−1

X (UN)
)

=

∫ 1

0

· · ·
∫ 1

0

1{g̃(FX (F−1
X (u1)),w1)≤x1,...,g̃(FX (F−1

X (uN )),wN )≤xN}·

1{F−1
X (u1)≤···≤F−1

X (uN )}du1 · · ·duNdw1 · · ·dwN , (EC.80)

which is equal to (EC.79). The arguments above hold for any ordering of H1, . . . ,HN . Taking the
summation over all orderings, we obtain

P
(
W[1:N ] ≤ x1, . . . ,W[N :N ] ≤ xN

)
= P (g̃(FX(H1:N), V1)≤ x1, . . . , g̃(FX(HN :N), VN)≤ xN) ,

which proves the claim. In addition, because Hi:N = F−1
X (Ui:N), by combining (EC.77) and (EC.78),

we have (EC.76) holds.
Finally, combining (EC.73) and (EC.76) proves (14).
Proof of “only if.” Let Ĉ be a copula of F linearly interpolating on Rc

X ×Rθ. We aim to prove
that C ≡ Ĉ on [0,1]×Rθ. Let

ĝ(u,w)≡ F−1
θ ◦ ĝu(w), (EC.81)

where ĝu(w) is the inverse function of v -→ D1Ĉ(u, v). Based on the result of Part “if,” we have
θ[N :N ]

d
= ĝ(UN :N , VN). Furthermore, because (14) holds, we have θ[N :N ]

d
= g(UN :N , VN) and, therefore,

ĝ(UN :N , VN)
d
= g(UN :N , VN). Note that for any y ∈R, by Lemma EC.4,

P (ĝ(UN :N , VN)≤ y) =

∫ 1

0

P (ĝ(u,VN)≤ y)NuN−1du=

∫ 1

0

P (ĝu(VN)≤ Fθ(y))NuN−1du

=

∫ 1

0

P
(
VN ≤D1Ĉ(u,Fθ(y))

)
NuN−1du=

∫ 1

0

D1Ĉ(u,Fθ(y))NuN−1du,

and similarly, P (g(UN :N , VN)≤ y) =
∫ 1

0
D1C(u,Fθ(y))NuN−1du. Therefore,

0 = P (ĝ(UN :N , VN)≤ y)−P(g(UN :N , VN)≤ y)

=

∫ 1

0

[
D1Ĉ(u,Fθ(y))−D1C(u,Fθ(y))

]
NuN−1du

holds for any N ≥ 1. Hence,
∫ 1

0

[
D1Ĉ(u,Fθ(y))−D1C(u,Fθ(y))

]
uNdu= 0, ∀N ≥ 0. (EC.82)

Because both D1Ĉ and D1C are regular conditional distribution functions (Remark EC.1), for any
y ∈R, hy(u)≡D1Ĉ(u,Fθ(y))−D1C(u,Fθ(y)) is Lebesgue measurable and bounded. Hence, hy(u)∈
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L2[0,1]. In addition, (EC.82) implies that hy(u) is orthogonal to all polynomials, which are dense in
L2[0,1]. Therefore, by the property of the L2 space, hy(u) = 0 almost everywhere for u ∈ [0,1]. In
other words, for any y ∈R,

D1Ĉ(u,Fθ(y)) =D1C(u,Fθ(y)), almost everywhere, u∈ [0,1].

For any a ∈ [0,1], by integrating the equation above with respect to u from 0 to a, according to
Remark EC.1, we have Ĉ(a,Fθ(y)) = C(a,Fθ(y)). Hence, C ≡ Ĉ holds on [0,1]×Rθ, where Rθ is
the range of Fθ. The continuity of copula (Nelsen 2007, Theorem 2.2.4) further implies that C ≡ Ĉ

holds on [0,1]×Rθ. This completes the proof. "
Proof of Proposition 2. This is a corollary of Theorem 2 given Lemma EC.4. "
Proof of Theorem 3. This is a corollary of Theorem 4. "
Proof of Theorem 4. We first prove “if” followed by the proof for “only if.” For notational sim-

plicity, we abbreviate ik(N) as ik.
Proof of “if.” According to Theorem 2 and Lemma EC.4, for any fixed x1, . . . , xm, we have

P
(
θ[i1:N ] ≤ x1, . . . ,θ[im:N ] ≤ xm

)
= P (g(Ui1:N , Vi1)≤ x1, . . . , g(Uim:N , Vim)≤ xm)

=

∫ 1

0

· · ·
∫ u3

0

∫ u2

0

P (gu1(Vi1)≤ Fθ(x1), . . . , gum(Vim)≤ Fθ(xm))

· u
i1−1
1 (u2 −u1)i2−i1−1 · · · (1−um)N−imN !

(i1 − 1)!(i2 − i1 − 1)! · · · (N − im)!
du1du2 · · ·dum

=

∫ 1

0

· · ·
∫ u3

0

∫ u2

0

m∏

k=1

D1C(uk,Fθ(xk))

· u
i1−1
1 (u2 −u1)i2−i1−1 · · · (1−um)N−imN !

(i1 − 1)!(i2 − i1 − 1)! · · · (N − im)!
du1du2 · · ·dum

=

∫ 1

0

· · ·
∫ u3

0

[∫ u2

0

D1C(u1,Fθ(x1))u
i1−1
1 (u2 −u1)

i2−i1−1 (i2 − 1)!

(i1 − 1)!(i2 − i1 − 1)!
du1

]

·
m∏

k=2

D1C(uk,Fθ(xk)) ·
(u3 −u2)i3−i2−1 · · · (1−um)N−imN !

(i2 − 1)!(i3 − i2 − 1)! · · · (N − im)!
du2 · · ·dum. (EC.83)

Now we study the integral in the square brackets in the equation above. We have
∫ u2

0

D1C(u1,Fθ(x1))u
i1−1
1 (u2 −u1)

i2−i1−1 (i2 − 1)!

(i1 − 1)!(i2 − i1 − 1)!
du1

u1=u2t====== ui2−1
2

∫ 1

0

D1C(u2t,Fθ(x1))t
i1−1(1− t)i2−i1−1 (i2 − 1)!

(i1 − 1)!(i2 − i1 − 1)!
dt. (EC.84)

Let bN(t) = ti1−1(1− t)i2−i1−1 (i2−1)!
(i1−1)!(i2−i1−1)!

, which is the density of a beta distribution. Then, we
have

∫ 1

0
bN(t)dt = 1, and bN(t) increases with t when t ∈ [0, i1−1

i2−2
] and decreases when t ∈ [ i1−1

i2−2
,1].

Let t∗ = ξ1
ξ2

, which satisfies that limN→+∞
i1−1
i2−2

= t∗. Because D1C(u, v) is continuous with respect to
u on [0,1], it is also uniformly continuous. Thus, for any ε> 0, there exists δ > 0 (which does not
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depend on u2, . . . , um) such that |D1C(u2t,Fθ(x1))−D1C(u2t∗,Fθ(x1))|< ε for any u2 ∈ [0,1] and
|t− t∗|< δ. Therefore,

∣∣∣∣
∫ 1

0

D1C(u2t,Fθ(x1))t
i1−1(1− t)i2−i1−1 (i2 − 1)!

(i1 − 1)!(i2 − i1 − 1)!
dt−D1C(u2t

∗,Fθ(x1))

∣∣∣∣

≤
∫ 1

0

|D1C(u2t,Fθ(x1))−D1C(u2t
∗,Fθ(x1))| bN(t)dt

=

∫ t∗−δ

0

· · ·dt+
∫ t∗+δ

t∗−δ
· · ·dt+

∫ 1

t∗+δ
· · ·dt= (I)+ (II)+ (III). (EC.85)

Term (I) satisfies that (I) ≤ 2
∫ t∗−δ
0

bN(t)dt ≤ 2(t∗ − δ)bN(t∗ − δ) ≤ 2bN(t∗ − δ) when N is suffi-
ciently large because of 0≤D1C ≤ 1 (Remark EC.1) and the monotonicity of bN(t). We claim that
limN→+∞ bN(t∗−δ) = 0. To prove this claim, let us consider a random variable ηN following the beta
distribution with density bN(t). For any τ > 0, by Chebyshev’s inequality, we have P(|ηN − t∗| >
τ)≤ P(|ηN −E(ηN)|> τ/2)+P(|E(ηN)− t∗|> τ/2)≤Var(ηN)/(τ/2)2 +P(|E(ηN)− t∗|> τ/2). It is
straightforward to show that Var(ηN)→ 0 and E(ηN)→ t∗ as N →+∞ and, therefore, P(|ηN − t∗|>
τ)→ 0, implying that ηN converges to t∗ in probability. This demonstrates the claim, which implies
that (I)→ 0 as N →+∞. Similarly, we have (III)→ 0. Term (II) satisfies that (II)≤ ε

∫ t∗+δ
t∗−δ bN(t)dt≤

ε
∫ 1

0
bN(t)dt= ε. Therefore, (EC.85) is less than 2ε when N is sufficiently large, and we can estimate

(EC.84) by

(D1C(u2t
∗,Fθ(x1))− 2ε)ui2−1

2 ≤
∫ u2

0

D1C(u1,Fθ(x1))u
i1−1
1 (u2 −u1)

i2−i1−1 (i2 − 1)!

(i1 − 1)!(i2 − i1 − 1)!
du1

≤ (D1C(u2t
∗,Fθ(x1))+ 2ε)ui2−1

2 .

Using similar approaches above, we can deductively derive similar bounds for the iterated integrals
in (EC.83) and conclude that (EC.83) converges to

∏m
k=1 D1C(ξk,Fθ(xk)) as N increases without

bound thanks to the arbitrariness of ε. In addition, we also have

P (g(ξ1, V1)≤ x1, . . . , g(ξm, Vm)≤ xm) = P (gξ1(V1)≤ Fθ(x1), . . . , gξm(Vm)≤ Fθ(xm))

=P (V1 ≤D1C(ξ1,Fθ(x1)), . . . , Vm ≤D1C(ξm,Fθ(xm))) =
m∏

k=1

D1C(ξk,Fθ(xk)).

Therefore, we prove (17).
Proof of “only if.” Let Ĉ be a copula of F linearly interpolating on Rc

X ×Rθ. We aim to
prove that C ≡ Ĉ on [0,1] ×Rθ. Let ĝ(u, v) be defined by (EC.81). Based on the result of Part
“if,” we have θ[ik(N):N ]

d→ ĝ(ξk, Vk) for any k= 1,2, . . . ,m. Furthermore, because (17) holds, we have
θ[ik(N):N ]

d→ g(ξk, Vk). Therefore, ĝ(ξk, Vk)
d
= g(ξk, Vk). Note that for any y ∈R,

P (ĝ(ξk, Vk)≤ y) = P
(
ĝξk(Vk)≤ Fθ(y)

)
= P

(
Vk ≤D1Ĉ(ξk,Fθ(y))

)
=D1Ĉ(ξk,Fθ(y)),
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and similarly, we have P (g(ξk, Vk)≤ y) = D1C(ξk,Fθ(y)). Therefore, because of the arbitrariness of
ξk ∈ (0,1), for any y ∈R, we have

D1Ĉ(ξk,Fθ(y)) =D1C(ξk,Fθ(y)), ∀ξk ∈ (0,1).

For any a ∈ [0,1], by integrating the equation above with respect to ξk from 0 to a, according to
Remark EC.1, we have Ĉ(a,Fθ(y)) = C(a,Fθ(y)). Hence, C ≡ Ĉ holds on [0,1]×Rθ, where Rθ is
the range of Fθ. The continuity of copula (Nelsen 2007, Theorem 2.2.4) further implies that C ≡ Ĉ

holds on [0,1]×Rθ. This completes the proof. "

EC.3.4. Proofs for Section 4

Proof of Proposition 3. This is a corollary of Theorem 2 because of the mixture function
g(u,w) = F−1

θ ◦Φ
(
ρΦ−1(u)+

√
1− ρ2Φ−1(w)

)
and the fact that Φ−1(U) follows N (0,1) if U follows

Uniform(0,1). "
Proof of Proposition 4. This is a corollary of Theorem 4, and the proof is similar to the proof of

Proposition 3. "
Proof of Proposition 5. This is a corollary of Theorem 2 because of the mixture function g(u,w) =

F−1
θ ◦φ

[
φ′−1 [φ′ ◦φ−1(u) ·w]−φ−1(u)

]
. "

EC.3.5. Proofs for Section 5

Proof of Proposition 6. By (20), we have wGa(ξ) =
E
[
Q
(
ρΦ−1(ξ)+

√
1−ρ2Z

)]

Var
[
Q
(
ρΦ−1(ξ)+

√
1−ρ2Z

)] , where Z ∼ N (0,1)

and Q(x) ≡ QSkew
a,b (x) is given by (23). Thus, we need to study the first two moments of

Q
(
ρΦ−1(ξ)+

√
1− ρ2Z

)
.

For notational simplicity, let s≡Φ−1(ξ). The expectation is

E
[
Q
(
ρs+

√
1− ρ2Z

)]

= a

∫ +∞

− ρs√
1−ρ2

(
ρs+

√
1− ρ2x

) e−x2/2

√
2π

dx+ b

∫ − ρs√
1−ρ2

−∞

(
ρs+

√
1− ρ2x

) e−x2/2

√
2π

dx

= aρs+(b− a)

[
ρsΦ

(
−ρs√
1− ρ2

)
−
√

1− ρ2ϕ

(
−ρs√
1− ρ2

)]
,

where ϕ is the density of N (0,1). Therefore, we have

lim
s→+∞

E
[
Q
(
ρs+

√
1− ρ2Z

)]

aρs
= 1, lim

s→−∞

E
[
Q
(
ρs+

√
1− ρ2Z

)]

bρs
= 1. (EC.86)

Similarly, direct calculation shows that the second-order moment is

E
[
Q
(
ρs+

√
1− ρ2Z

)]2

= a2ρ2s2 + a2(1− ρ2)

+ (b2 − a2)

[
(1− ρ2)ζ

(
−ρs√
1− ρ2

)
− 2ρ

√
1− ρ2sϕ

(
−ρs√
1− ρ2

)
+ ρ2s2Φ

(
−ρs√
1− ρ2

)]
,
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where ζ(t) =
∫ t

−∞ x2 e−x2/2
√
2π

dx. Thus,

lim
s→+∞

Var
[
Q
(
ρs+

√
1− ρ2Z

)]

a2(1− ρ2)
= 1, lim

s→−∞

Var
[
Q
(
ρs+

√
1− ρ2Z

)]

b2(1− ρ2)
= 1. (EC.87)

Combining (EC.86) and (EC.87) and replacing s with Φ−1(ξ) completes the proof. "
Proof of Proposition 7. Without loss of generality, we only prove the case of ρ ∈ (0,1). By (20),

we have wGa(ξ) =
E
[
Q
(
ρΦ−1(ξ)+

√
1−ρ2Z

)]

Var
[
Q
(
ρΦ−1(ξ)+

√
1−ρ2Z

)] , where Z ∼N (0,1) and Q(x)≡QHeavyTail
σ,τ,β (x) is given by

(24). Thus, we need to study the first two moments of Q
(
ρΦ−1(ξ)+

√
1− ρ2Z

)
. Since Q is an odd

function, when ξ = 0.5, we have

E
[
Q
(
ρΦ−1(ξ)+

√
1− ρ2Z

)]
=E

[
Q
(√

1− ρ2Z
)]

= 0,

which further implies that wGa(0.5) = 0.
Next, without loss of generality, we prove the results for ξ > 0.5. Let us prove that, for ξ ∈ (0.5,1),

we have wGa(ξ)> 0. For notational simplicity, let hβ(x)≡
{
|x|β, x≥ 0,

−|x|β, x < 0,
and t≡ 1

Φ−1(ξ)
> 0. Then,

E
[
Q
(ρ
t
+
√
1− ρ2Z

)]
=
ρσ

t
+ τ

∫ +∞

−∞
hβ
(ρ
t
+
√
1− ρ2x

) e−x2/2

√
2π

dx

=
ρσ

t
+ τ

(ρ
t

)β ∫ +∞

−∞
hβ

(
1+

√
1− ρ2

ρ
tx

)
e−x2/2

√
2π

dx. (EC.88)

We claim that this expectation is greater than zero. This is true since
∫ +∞

−∞
hβ

(
1+

√
1− ρ2

ρ
tx

)
e−x2/2

√
2π

dx

=

∫ +∞

− ρ

t
√

1−ρ2

∣∣∣∣1+
√
1− ρ2

ρ
tx

∣∣∣∣
β
e−x2/2

√
2π

dx−
∫ − ρ

t
√

1−ρ2

−∞

∣∣∣∣1+
√
1− ρ2

ρ
tx

∣∣∣∣
β
e−x2/2

√
2π

dx

s=1+
√

1−ρ2tx/ρ
============

∫ +∞

0

|s|β e
−(s−1)2c2/2

√
2π

cds−
∫ 0

−∞
|s|β e

−(s−1)2c2/2

√
2π

cds

=

∫ +∞

0

|s|β 1√
2π

c
[
e−(s−1)2c2/2 − e−(−s−1)2c2/2

]
ds=

∫ +∞

0

|s|β 1√
2π

ce−(s2+1)c2/2
(
esc

2
− e−sc2

)
ds > 0,

where c= ρ

t
√

1−ρ2
. Hence, for ξ ∈ (0.5,1), we have wGa(ξ)> 0.

We finally argue that when ξ→ 1−, i.e., t= 1/Φ−1(ξ)→ 0+, we have wGa(ξ)→ 0. Let fβ(t, x) =

hβ

(
1+

√
1−ρ2
ρ

tx

)
e−x2/2
√
2π

and uβ(t) =
∫ +∞
−∞ fβ(t, x)dx. We can easily check that, when β > 2, for any

δ> 0 and t∈ (−δ, δ), the following three properties hold:
(i)
∫ +∞
−∞ |fβ(t, x)|dx<+∞;

(ii) For a fixed x, ∂fβ
∂t

(t, x) is a continuous function of t;
(iii)

∫ +∞
−∞ sups∈[−δ,δ]

∣∣∣∂fβ∂t (s,x)
∣∣∣dx<+∞.
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Therefore, by Durrett (2019, Theorem A.5.3), u′
β(0) = 0. With similar arguments, we can further

show that u′′
β(0) =

1−ρ2
ρ2

β(β − 1). Hence, when β > 2, the second-order Taylor expansion of uβ(t) is
given by:

uβ(t) = 1+
1− ρ2

2ρ2
β(β− 1)t2 + o(t2), t→ 0+. (EC.89)

By combining (EC.88) and (EC.89), we have

E
[
Q
(ρ
t
+
√
1− ρ2Z

)]
=
ρσ

t
+ τ

(ρ
t

)β
[1+ o(1)] , t→ 0+. (EC.90)

Before examining the variance, let us make some more preparations. Let ũβ(t) =
∫ +∞
−∞ |fβ(t, x)|dx.

Using similar approaches, when β > 2, we can show that the second-order Taylor expansion of ũβ(t)
is given by:

ũβ(t) = 1+
1− ρ2

2ρ2
β(β− 1)t2 + o(t2), t→ 0+. (EC.91)

In addition, by direct calculation, we have

u1(t)≡
∫ +∞

−∞
f1(t, x)dx=

∫ +∞

−∞

(
1+

√
1− ρ2

ρ
tx

)
e−x2/2

√
2π

dx= 1. (EC.92)

Hence,

Var
[
Q
(ρ
t
+
√
1− ρ2Z

)]
=Var

[
σ
(ρ
t
+
√
1− ρ2Z

)
+ τhβ

(ρ
t
+
√
1− ρ2Z

)]

= σ2(1− ρ2)+ τ 2Var
[
hβ
(ρ
t
+
√
1− ρ2Z

)]
+2στCov

[(ρ
t
+
√
1− ρ2Z

)
, hβ

(ρ
t
+
√
1− ρ2Z

)]

= σ2(1− ρ2)+ τ 2
(ρ
t

)2β [
ũ2β(t)−uβ(t)

2
]
+2στ

(ρ
t

)β+1

[ũβ+1(t)−u1(t)uβ(t)]

= σ2(1− ρ2)+ τ 2
ρ2β

t2β−2

[
1− ρ2

ρ2
β2 + o(1)

]
+2στ

ρβ+1

tβ−1

[
1− ρ2

ρ2
β+ o(1)

]
, t→ 0+, (EC.93)

where the last equality holds due to (EC.89), (EC.91), and (EC.92). Therefore, by combining (EC.90)
and (EC.93), as t→ 0+, we have

wGa(ξ) =
ρσ
t
+ τ

(
ρ
t

)β
[1+ o(1)]

σ2(1− ρ2)+ τ 2 ρ2β

t2β−2

[
1−ρ2
ρ2

β2 + o(1)
]
+2στ ρ

β+1

tβ−1

[
1−ρ2
ρ2

β+ o(1)
]

=
1
tβ
[ρσtβ−1 + τρβ [1+ o(1)]]

1
t2β−2

[
σ2(1− ρ2)t2β−2 + τ 2ρ2β

[
1−ρ2
ρ2

β2 + o(1)
]
+2στρβ+1tβ−1

[
1−ρ2
ρ2

β+ o(1)
]] → 0.

Hence, when ξ→ 1−, we have t= 1/Φ−1(ξ)→ 0+ and wGa(ξ)→ 0. "

EC.3.6. Proofs for Appendix EC.1.1

Proof of Proposition EC.1. The same as the proof of Proposition 1. "
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Proof of Proposition EC.2. Under the single-factor model, (EC.4), the expectation and covariance
matrix of raw returns, (EC.1), reduce to µ̃= µMβ+µ and Σ̃=Σ+σ2

Mββ⊤. Hence, by the Sherman–
Morrison formula, we have

Σ̃−1µ̃= (Σ+σ2
Mββ⊤)−1(µMβ+µ) =

(
Σ−1 − σ2

MΣ−1ββ⊤Σ−1

1+σ2
Mβ⊤Σ−1β

)
(µMβ+µ)

=
µM −σ2

Mβ⊤Σ−1µ

1+σ2
Mβ⊤Σ−1β

Σ−1β+Σ−1µ.

Furthermore, direct calculation shows that

µ̃⊤Σ̃−1µ̃= (µMβ+µ)⊤
(
µM −σ2

Mβ⊤Σ−1µ

1+σ2
Mβ⊤Σ−1β

Σ−1β+Σ−1µ

)

=
µ2
Mβ⊤Σ−1β+2µMβ⊤Σ−1µ−σ2

M(β⊤Σ−1µ)2

1+σ2
Mβ⊤Σ−1β

+µ⊤Σ−1µ.

This completes the proof. "
Proof of Proposition EC.3. Similar to the proof of Proposition 1, the optimal weight vector for

the N +1 assets is ŵ=

(
w
wM

)
∝ Σ̂−1µ̂, and the optimal Sharpe ratio is

√
µ̂⊤Σ̂−1µ̂, where µ̂ and Σ̂

are given by (EC.5). Note that the inverse of Σ̂ is

Σ̂−1 =

(
σ2
Mββ⊤ +Σ σ2

Mβ
σ2
Mβ⊤ σ2

M

)−1

=

(
Σ−1 −Σ−1β

−β⊤Σ−1 1+σ2Mβ⊤Σ−1β

σ2M

)
,

and thus,

Σ̂−1µ̂=

(
Σ−1 −Σ−1β

−β⊤Σ−1 1+σ2Mβ⊤Σ−1β

σ2M

)(
µMβ+µ

µM

)
=

(
Σ−1µ

µM
σ2M

−β⊤Σ−1µ

)
.

Furthermore, the squared optimal Sharpe ratio is

µ̂⊤Σ̂−1µ̂=
(
µMβ⊤ +µ⊤ µM

)
(

Σ−1µ
µM
σ2M

−β⊤Σ−1µ

)
=

µ2
M

σ2
M

+µ⊤Σ−1µ.

This completes the proof. "

EC.3.7. Proofs for Appendix EC.1.2

Proof of Proposition EC.4. This is a corollary of Theorem 1 because of the mixture function
g(u,w) = σθ

(
ρΦ−1(u)+

√
1− ρ2Φ−1(w)

)
+µθ and the fact that Φ−1(U) follows N (0,1) if U follows

Uniform(0,1). It is also a corollary of Proposition 3 when Fθ(y) = Φ((y − µθ)/σθ). See also David
and Nagaraja (2004, Section 6.8). "

Proof of Proposition EC.5. Like the proof of Proposition EC.4, this is a corollary of Theorem 3
and also a corollary of Proposition 4. See also Lo and MacKinlay (1990). "
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Proof of Theorem EC.1. This is a special case of Theorem EC.2 when σρ = 0, and also a special
case of Theorem EC.3 when ρ̃= ρX = ρθ = 0. "

Proof of Proposition EC.6. This is a corollary of Part (i) of Lemma EC.6. "
Proof of Theorem EC.2. The optimal information ratio given by (9) is

√
µ⊤Σ−1µ. Therefore,

we first need to specify the expressions of µ and Σ under Assumption EC.2. By Lemma EC.8, the
i-th entry of µ is given by (EC.56). In addition, the covariance matrix Σ can be decomposed into
Σ=A+B, where, for i, j = 1,2, . . . ,N and i ̸= j, the (i, i)-entry of A is given by (EC.58), and the
(i, j)-entry of A is given by (EC.61); the (i, i)-entry of B is given by (EC.59), and the (i, j)-entry of
B is given by (EC.62).

Let η = (E(Y1:N),E(Y2:N), . . . ,E(YN :N))⊤, then the matrix B can be written as B = σ2
ρ · σ2

θ ·ηη⊤.
Thus, by the Sherman–Morrison formula,

Σ−1 = (A+B)−1 =A−1 −
σ2
ρ ·σ2

θ ·A−1ηη⊤A−1

1+σ2
ρ ·σ2

θ ·η⊤A−1η
.

In addition, by (EC.56), we have µ= ρ ·σθ ·η+µθ1, where 1∈RN is an all-one vector, and thus,

(IR∗
TimeVary)

2 =µ⊤Σ−1µ= ρ2 ·σ2
θ ·η⊤A−1η+2ρ ·σθ ·µθ ·η⊤A−11+µ2

θ1
⊤A−11

−
σ2
ρ ·σ2

θ · (ρ ·σθ ·η⊤A−1η+µθ1⊤A−1η)2

1+σ2
ρ ·σ2

θ ·η⊤A−1η
. (EC.94)

Now we claim that
1⊤A−1η= 0. (EC.95)

To prove this claim, note that A is a symmetric matrix, and hence A−1 is also symmetric. Meanwhile,
Part (ii) of Lemma EC.5 implies that A is also a persymmetric matrix, i.e., Aij =AN+1−j,N+1−i, for
any i, j = 1,2, . . . ,N . By the property of persymmetric matrices, A−1 is also persymmetric (Horn
and Johnson 2012, Page 36). Thus, with the help of Part (i) of Lemma EC.5,

1⊤A−1η=
N∑

j=1

N∑

i=1

(A−1)ijE(Yj:N) =
N∑

j=1

N∑

i=1

(A−1)N+1−j,N+1−i[−E(YN+1−j:N)]

=−
N∑

j=1

N∑

i=1

(A−1)N+1−i,N+1−jE(YN+1−j:N) =−
N∑

k=1

N∑

s=1

(A−1)s,kE(Yk:N) =−1⊤A−1η,

which proves the claim. Therefore, (EC.94) reduces to

(IR∗
TimeVary)

2 = ρ2 ·σ2
θ ·η⊤A−1η+µ2

θ1
⊤A−11−

σ2
ρ ·σ4

θ · ρ2(η⊤A−1η)2

1+σ2
ρ ·σ2

θ ·η⊤A−1η

=
ρ2

1/(σ2
θ ·η⊤A−1η)+σ2

ρ

+µ2
θ1

⊤A−11. (EC.96)

Let A=Q⊤ΛQ be the eigendecomposition of A, where Q is orthogonal and Λ is a diagonal matrix
whose diagonal entries are eigenvalues of A.
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We first prove the upper bound of IR∗
TimeVary. Denote by λmin(A) the smallest eigenvalue of A,

and Lemma EC.7 implies that λmin(A)≥mini=1,2,...,N

[
Aii −

∑
j ̸=i |Aij |

]
, where Aij is the (i, j)-entry

of A, i, j = 1,2, . . . ,N . Furthermore, by Parts (iv) and (v) of Lemma EC.5 and the assumption of√
ρ2 +σ2

ρ ≤
√
2
2

, for any i= 1,2, . . . ,N , we have

Aii −
∑

j ̸=i

|Aij |= σ2
θ ·
[
1− (ρ2 +σ2

ρ)+ (ρ2 +σ2
ρ) ·Var(Yi:N)

]
−
∑

j ̸=i

σ2
θ · (ρ2 +σ2

ρ) · |Cov(Yi:N , Yj:N)|

= σ2
θ ·
[
1− (ρ2 +σ2

ρ)+ (ρ2 +σ2
ρ) ·Var(Yi:N)− (ρ2 +σ2

ρ) ·Cov
(
Yi:N ,

∑

j ̸=i

Yj:N

)]

= σ2
θ

[
1− 2 · (ρ2 +σ2

ρ) · (1−Var(Yi:N))
]
≥ σ2

θ

[
1− 2 · (ρ2 +σ2

ρ)
]
≥ 0. (EC.97)

Therefore, we have λmin(A) ≥ σ2
θ

[
1− 2 · (ρ2 +σ2

ρ)
]
≥ 0. Combining this with (EC.96) leads to the

upper bound for IR:

(IR∗
TimeVary)

2 ≤ ρ2

λmin(A)/(σ2
θ ·η⊤QQ⊤η)+σ2

ρ

+
µ2
θ1

⊤QQ⊤1

λmin(A)

=
ρ2

λmin(A)/(σ2
θ · q(N))+σ2

ρ

+
µ2
θN

λmin(A)

≤ ρ2

[1− 2 · (ρ2 +σ2
ρ)]/q(N)+σ2

ρ

+
µ2
θN

σ2
θ

[
1− 2 · (ρ2 +σ2

ρ)
] . (EC.98)

We then prove the lower bound of IR∗
TimeVary. Denote by λmax(A) the largest eigenvalue of A, and

Lemma EC.7 implies that λmax(A)≤maxi=1,2,...,N

∑N
j=1 |Aij |. Using similar arguments to (EC.97),

we can prove that
∑N

j=1 |Aij |= σ2
θ . Hence, λmax(A)≤ σ2

θ . Then, through proofs similar to (EC.98),
we can obtain the lower bound:

(IR∗
TimeVary)

2 ≥ ρ2

1/q(N)+σ2
ρ

+
µ2
θN

σ2
θ

.

This completes the proof. "
Proof of Theorem EC.3. The optimal information ratio given by (9) is

√
µ⊤Σ−1µ. Therefore, we

first need to specify the expressions of µ and Σ under Assumption EC.3. By Lemma EC.9, µ =
ρ−ρ̃√
1−ρX

· σθ · η + µθ1, where η ≡ (E[Y1:N ],E[Y2:N ], . . . ,E[YN :N ])⊤. In addition, the covariance matrix
Σ can be decomposed into Σ = P + J , where J = σ2

θ · ρθ · 11⊤, 1 ∈ RN is an all-one vector, and
P = (Pij)Ni,j=1 satisfies

Pii = σ2
θ ·
(
1− ρθ−

(ρ− ρ̃)2

1− ρX
+

(ρ− ρ̃)2

1− ρX
·Var(Yi:N)

)
, Pij = σ2

θ ·
(ρ− ρ̃)2

1− ρX
Cov(Yi:N , Yj:N), (EC.99)

for i, j = 1,2, . . . ,N and i ̸= j. By the Sherman–Morrison formula,

Σ−1 = (P + J)−1 = P−1 − σ2
θ · ρθ ·P−111⊤P−1

1+σ2
θ · ρθ ·1⊤P−11

.
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Hence, the optimal information ratio satisfies

(IR∗
Dependence)

2 =µ⊤Σ−1µ=
(ρ− ρ̃)2

1− ρX
·σ2

θ ·η⊤P−1η+2
ρ− ρ̃√
1− ρX

·σθ ·µθ ·1⊤P−1η+µ2
θ1

⊤P−11

−
σ2
θ · ρθ ·

(
ρ−ρ̃√
1−ρX

·σθ ·1⊤P−1η+µθ1⊤P−11
)2

1+σ2
θ · ρθ ·1⊤P−11

. (EC.100)

Similar to the proof of (EC.95), we can prove that 1⊤P−1η= 0. Therefore, (EC.100) reduces to

(IR∗
Dependence)

2 =
(ρ− ρ̃)2

1− ρX
·σ2

θ ·η⊤P−1η+µ2
θ1

⊤P−11− σ2
θ · ρθ ·µ2

θ · (1⊤P−11)
2

1+σ2
θ · ρθ ·1⊤P−11

=
(ρ− ρ̃)2

1− ρX
·σ2

θ ·η⊤P−1η+
µ2
θ

1/(1⊤P−11)+σ2
θ · ρθ

. (EC.101)

Let P =Q⊤ΛQ be the eigendecomposition of P , where Q is orthogonal and Λ is a diagonal matrix
whose diagonal entries are eigenvalues of P .

We first prove the upper bound of IR∗
Dependence. Denote by λmin(P ) the smallest eigenvalue of P ,

and Lemma EC.7 implies that λmin(P )≥mini=1,2,...,N

[
Pii −

∑
j ̸=i |Pij |

]
, where Pii and Pij are given

by (EC.99). In addition, by Parts (iv) and (v) of Lemma EC.5 and (EC.22), for any i= 1,2, . . . ,N ,
we have

Pii −
∑

j ̸=i

|Pij |= σ2
θ ·
[
1− ρθ−

(ρ− ρ̃)2

1− ρX
+

(ρ− ρ̃)2

1− ρX
·Var(Yi:N)

]
−
∑

j ̸=i

σ2
θ ·

(ρ− ρ̃)2

1− ρX
|Cov(Yi:N , Yj:N)|

= σ2
θ ·
[
1− ρθ−

(ρ− ρ̃)2

1− ρX
+

(ρ− ρ̃)2

1− ρX
·Var(Yi:N)−

(ρ− ρ̃)2

1− ρX
·Cov

(
Yi:N ,

∑

j ̸=i

Yj:N

)]

= σ2
θ

[
1− ρθ− 2 · (ρ− ρ̃)2

1− ρX
· (1−Var(Yi:N))

]
≥ σ2

θ

[
1− ρθ− 2 · (ρ− ρ̃)2

1− ρX

]
. (EC.102)

Hence,

λmin(P )≥ σ2
θ

[
1− ρθ− 2 · (ρ− ρ̃)2

1− ρX

]
= σ2

θ ·
(1− ρθ)(1− ρX)− 2(ρ− ρ̃)2

1− ρX
≥ 0. (EC.103)

Combining this with (EC.101), we have

(IR∗
Dependence)

2 =
(ρ− ρ̃)2

1− ρX
·σ2

θ ·η⊤P−1η+
µ2
θ

1/(1⊤P−11)+σ2
θ · ρθ

≤ (ρ− ρ̃)2

1− ρX
·σ2

θ ·
1

λmin(P )
η⊤QQ⊤η+

µ2
θ

λmin(P )/(1⊤QQ⊤1)+σ2
θ · ρθ

=
(ρ− ρ̃)2

1− ρX
·σ2

θ ·
1

λmin(P )
q(N)+

µ2
θ

λmin(P )/N +σ2
θ · ρθ

≤ (ρ− ρ̃)2q(N)

(1− ρθ)(1− ρX)− 2(ρ− ρ̃)2
+

µ2
θ/σ

2
θ

[(1− ρθ)(1− ρX)− 2(ρ− ρ̃)2]/[(1− ρX)N ] + ρθ
, (EC.104)

which proves the upper bound.
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Now we prove the lower bound of IR∗
Dependence. Denote by λmax(P ) the largest eigenvalue of P , and

Lemma EC.7 implies that λmax(P )≤maxi=1,2,...,N

∑N
j=1 |Pij |. Using arguments similar to (EC.102),

we can derive that
∑N

j=1 |Pij |= σ2
θ · (1− ρθ). Hence, λmax(P )≤ σ2

θ · (1− ρθ), and similar to the proof
of (EC.104), we can obtain that

(IR∗
Dependence)

2 ≥ (ρ− ρ̃)2q(N)

(1− ρθ)(1− ρX)
+

µ2
θ/σ

2
θ

(1− ρθ)/N + ρθ
,

which proves the lower bound. This completes the proof. "
Proof of Proposition EC.7. By (9), the optimal weights to maximize the information ratio have

the form of Σ−1µ. Let Y1:N ≤ Y2:N ≤ · · ·≤ YN :N be the order statistics of Y1, Y2, . . . , YN
IID∼ N (0,1).

Using Proposition EC.5, we approximate the variances and covariances of induced order statis-
tics by Var(θ[i:N ]) ≈ σ2

θ · (1 − ρ2) and Cov(θ[i:N ],θ[j:N ]) ≈ 0. In addition, when µθ = 0, (EC.8)
states that E(θ[i:N ]) = σθ · ρ · E(Yi:N). Thus, the optimal weight to maximize the IR, w̄∗ ≡
(0, . . . ,0,w∗

⌊Nξ1⌋,w
∗
⌊Nξ1+1⌋, . . . ,w

∗
⌊Nξ2⌋,0, . . . ,0), can be approximated by

w∗
i ≈

E(Yi:N)

Var(θ[i:N ])
≈ σθ · ρ ·E(Yi:N)

σ2
θ · (1− ρ2)

=
ρ ·E(Yi:N)

σθ · (1− ρ2)
, ⌊Nξ1⌋ ≤ i≤ ⌊Nξ2⌋,

where ⌊x⌋ is the largest integer not greater than x. Hence, the optimal information ratio satisfies

IR=
w̄∗⊤µ√
w̄∗⊤Σw̄∗

≈

∑⌊Nξ2⌋
i=⌊Nξ1⌋

[
ρ·E(Yi:N )
σθ·(1−ρ2)

]
· [σθ · ρ ·E(Yi:N)]

√
∑⌊Nξ2⌋

i=⌊Nξ1⌋

[
ρ·E(Yi:N )
σθ·(1−ρ2)

]2
· [σ2

θ · (1− ρ2)]

=

√√√√
⌊Nξ2⌋∑

i=⌊Nξ1⌋

ρ2 · [E(Yi:N)]2

1− ρ2
=

|ρ| ·
√
N√

1− ρ2
·

√∑⌊Nξ2⌋
i=⌊Nξ1⌋[E(Yi:N)]2

N

→ |ρ| ·
√
N√

1− ρ2
·
√(

ξ2 −Φ−1(ξ2)ϕ
(
Φ−1(ξ2)

))
−
(
ξ1 −Φ−1(ξ1)ϕ

(
Φ−1(ξ1)

))
,

as N →+∞, where the limit holds due to Part (i) of Lemma EC.6. Thus, (EC.26) holds. Meanwhile,
since Xi ∼N (µX ,σ2

X), the average impact factor satisfies

X̄ =E
[∑⌊Nξ2⌋

i=⌊Nξ1⌋w
∗
iXi:N

∑⌊Nξ2⌋
i=⌊Nξ1⌋ |w

∗
i |

]
=E

[∑⌊Nξ2⌋
i=⌊Nξ1⌋w

∗
iXi:N

∑⌊Nξ2⌋
i=⌊Nξ1⌋ |w

∗
i |

]
=

µX

∑⌊Nξ2⌋
i=⌊Nξ1⌋w

∗
i +σX

∑⌊Nξ2⌋
i=⌊Nξ1⌋w

∗
iE(Yi:N)

∑⌊Nξ2⌋
i=⌊Nξ1⌋ |w

∗
i |

≈ sign(ρ) ·
µX

∑⌊Nξ2⌋
i=⌊Nξ1⌋E(Yi:N)+σX

∑⌊Nξ2⌋
i=⌊Nξ1⌋E(Yi:N)E(Yi:N)

∑⌊Nξ2⌋
i=⌊Nξ1⌋ |E(Yi:N)|

,

and thus, (EC.27) holds thanks to Parts (i)–(iii) of Lemma EC.6. "
Proof of Proposition EC.8. As in the proof of Proposition EC.7, we have Var(θ[i:N ])≈ σ2

θ ·(1−ρ2)
and Cov(θ[i:N ],θ[j:N ])≈ 0. In addition, when µθ = 0, (EC.8) implies that E(θ[i:N ]) = σθ · ρ · E(Yi:N).
Hence, the information ratio of the equal-weighted portfolio can be approximated by

IR≈
∑⌊Nξ2⌋

i=⌊Nξ1⌋
1

⌊Nξ2⌋−⌊Nξ1⌋+1
· [σθ · ρ ·E(Yi:N)]

√
∑⌊Nξ2⌋

i=⌊Nξ1⌋

[
1

⌊Nξ2⌋−⌊Nξ1⌋+1

]2
· [σ2

θ · (1− ρ2)]
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=
ρ√

1− ρ2
· 1√

⌊Nξ2⌋− ⌊Nξ1⌋+1
·

⌊Nξ2⌋∑

i=⌊Nξ1⌋

E(Yi:N)≈
ρ√

1− ρ2
·

√
N√

ξ2 − ξ1
·

⌊Nξ2⌋∑

i=⌊Nξ1⌋

E(Yi:N)

N

→ ρ ·
√
N√

1− ρ2
·
ϕ
(
Φ−1(ξ1)

)
−ϕ

(
Φ−1(ξ2)

)
√
ξ2 − ξ1

,

as N →+∞, where the limit holds due to Part (iii) of Lemma EC.6. Thus, (EC.28) holds. Meanwhile,
since Xi ∼N (µX ,σ2

X), the average impact factor satisfies

X̄ =E
[∑⌊Nξ2⌋

i=⌊Nξ1⌋
1

⌊Nξ2⌋−⌊Nξ1⌋+1
Xi:N

∑⌊Nξ2⌋
i=⌊Nξ1⌋

1
⌊Nξ2⌋−⌊Nξ1⌋+1

]
=

∑⌊Nξ2⌋
i=⌊Nξ1⌋E(Xi:N)

⌊Nξ2⌋− ⌊Nξ1⌋+1
= µX +σX ·

∑⌊Nξ2⌋
i=⌊Nξ1⌋E(Yi:N)

⌊Nξ2⌋− ⌊Nξ1⌋+1

≈ µX +σX ·

[∑⌊Nξ2⌋
i=⌊Nξ1⌋E(Yi:N)

]
/N

ξ2 − ξ1
→ µX +σX ·

ϕ
(
Φ−1(ξ1)

)
−ϕ

(
Φ−1(ξ2)

)

ξ2 − ξ1
,

as N →+∞, where the limit holds due to Part (iii) of Lemma EC.6. Thus, (EC.29) holds. "

EC.3.8. Proofs for Appendix EC.1.3

Proof of Proposition EC.9. Let C be a copula of F . Define C̃(u, v) =
{

FX (d)−u
FX (d)−FX (d−)

C(FX(d−), v)+
u−FX (d−)

FX (d)−FX (d−)
C(FX(d), v), (u, v)∈ (FX(d−),FX(d))× [0,1], d∈∆X ,

C(u, v), otherwise.

We can show by definition that C̃(u, v) is also a copula of F , and it satisfies (13). This proves its
existence. In addition, by Sklar’s (1959) theorem, C is uniquely determined on RX ×Rθ. Hence, the
copula satisfying (13) is uniquely determined on [0,1]×Rθ. "

Proof of Theorem EC.4. Let P be the set of all permutations of 1,2, . . . ,N . For any y1, y2, . . . , yN ,

P
(
θ[1:N ] ≤ y1, . . . ,θ[N :N ] ≤ yN

)

=
∑

(i1,...,iN )∈P

P (θi1 ≤ y1, . . . ,θiN ≤ yN ,Xi1 ≤ · · ·≤XiN )

=
∑

(i1,...,iN )∈P

∫
· · ·
∫

P (θi1 ≤ y1, . . . ,θiN ≤ yN |Xi1 = x1, . . . ,XiN = xN)

·
N∏

k=1

fX,ik(xk) ·1{x1≤···≤xN}dx1 · · ·dxN

=
∑

(i1,...,iN )∈P

∫
· · ·
∫ N∏

k=1

P
(
θik ≤ yk|Xik = xk

)
·

N∏

k=1

fX,ik(xk) ·1{x1≤···≤xN}dx1 · · ·dxN , (EC.105)

where the last equation uses the independence between (X1,θ1)⊤, (X2,θ2)⊤, . . . , (XN ,θN)⊤.
In addition, because of V1, V2 . . . , VN

IID∼ Uniform(0,1) and the independence between V1, V2 . . . , VN

and Π,M1,M2, . . . ,MN ,

P (h1(Π,M1, V1)≤ y1, . . . , hN(Π,MN , VN)≤ yN)
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=
∑

π=(i1,...,iN )∈P

pi1,...,iNP (h1(π,M1, V1)≤ y1, . . . , hN(π,MN , VN)≤ yN |Π= π)

=
∑

π=(i1,...,iN )∈P

pi1,...,iN ·

∫
· · ·
∫

P (h1(π, x1, V1)≤ y1, . . . , hN(π, xN , VN)≤ yN |Π= π,X1 = x1, . . . ,XN = xN)

·mi1,i2,...,iN (x1, x2, . . . , xN)dx1 · · ·dxN

=
∑

π=(i1,...,iN )∈P

∫
· · ·
∫

P (h1(π, x1, V1)≤ y1, . . . , hN(π, xN , VN)≤ yN)

·
N∏

k=1

fX,ik(xk) ·1{x1≤···≤xN}dx1 · · ·dxN

=
∑

π=(i1,...,iN )∈P

∫
· · ·
∫ N∏

k=1

P (hk(π, xk, Vk)≤ yk) ·
N∏

k=1

fX,ik(xk) ·1{x1≤···≤xN}dx1 · · ·dxN . (EC.106)

By the definition of hk,

P (hk(π, xk, Vk)≤ yk) = P
(
F−1
θ,ik

◦hik
FX,ik

(xk)
(Vk)≤ yk

)
= P

(
hik
FX,ik

(xk)
(Vk)≤ Fθ,ik(yk)

)

= P
(
Vk ≤

∂Cik

∂u

(
FX,ik(xk),Fθ,ik(yk)

))
=
∂Cik

∂u

(
FX,ik(xk),Fθ,ik(yk)

)
,

where ∂Cik
∂u

(
FX,ik(xk),Fθ,ik(yk)

)
=

∂Cik
∂u

(u, v)
∣∣
u=FX,ik

(xk),v=Fθ,ik
(yk)

. Furthermore, by Sklar’s theorem,
(
FX,ik(Xik),Fθ,ik(θik)

)
∼Cik(·, ·). Hence,

P
(
θik ≤ yk|Xik = xk

)
= P

(
Fθ,ik(θik)≤ Fθ,ik(yk)

∣∣FX,ik(Xik) = FX,ik(xk)
)

=
∂Cik

∂u

(
FX,ik(xk),Fθ,ik(yk)

)
= P (hk(π, xk, Vk)≤ yk) .

This implies that (EC.105) and (EC.106) take the same value, which completes the proof. "
Proof of Proposition EC.10. Using Theorem EC.4, we have

E(θ[i:N ]) =E(hi(Π,Mi, Vi))

=
∑

π=(j1,j2,...,jN )

pj1,j2,...,jN

∫ 1

0

∫ +∞

−∞

[
F−1
θ,ji

◦hji
FX,ji

(x)(w) ·
1

pj1,j2,...,jN
fX,ji(x)

·
∫ +∞

−∞
· · ·
∫ +∞

−∞

N∏

s=1,s ̸=i

fX,js(xs)1{x1≤···≤xi−1≤x≤xi+1≤···≤xN}dx1 · · ·dxi−1dxi+1dxN

]
dxdw

=
N∑

k=1

∫ 1

0

∫ +∞

−∞

[
F−1
θ,ji

◦hji
FX,ji

(x)(w)fX,ji(x) ·
∑

π=(j1,j2,...,jN ),ji=k

∫ +∞

−∞
· · ·
∫ +∞

−∞

N∏

s=1,s ̸=i

fX,js(xs)1{x1≤···≤xi−1≤x≤xi+1≤···≤xN}dx1 · · ·dxi−1dxi+1dxN

]
dxdw

=
N∑

k=1

∫ 1

0

∫ +∞

−∞

[
F−1
θ,ji

◦hji
FX,ji

(x)(w)fX,ji(x) ·H
i
k(u)

]
dxdw=

N∑

k=1

∫ 1

0

∫ 1

0

h̃k(u,w)H
i
k(u)dudw,

which proves (EC.37). The proofs of (EC.38) and (EC.39) are similar, which we omit here. "
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Proof of Corollary EC.1. This is a direct corollary of Proposition EC.10. "

EC.3.9. Proofs for Appendix EC.1.4

Proof of Theorem EC.5. We only prove the case that the copula of F is stochastically increasing.
Let C be a linearly interpolating copula of F constructed using Proposition EC.9. Nelsen (2007,

Corollary 5.2.11) demonstrates that a copula C̃(u, v) is stochastically increasing if and only if, for any
v ∈ [0,1], C̃(u, v) is a concave function of u. Therefore, by Lemma EC.3, the linearly interpolating
copula C is also stochastically increasing.

By Theorem 2, for i = 1,2, . . . ,N , θ[i:N ]
d
= g(Ui:N , Vi), where g is defined as (15). According to

the definition of stochastically increasing, D1C(u, v) is non-increasing with u. We claim that this
implies that the function g(u,w) = F−1

θ ◦gu(w) is non-decreasing with u. To prove this claim, consider
0 ≤ u1 < u2 ≤ 1, then for any fixed v, we have D1C(u1, v) ≥ D1C(u2, v). Because gu1(w) = inf{v :

D1C(u1, v) ≥ w} and gu2(w) = inf{v : D1C(u2, v) ≥ w}, we immediately have gu1(w) ≤ gu2(w) for
any fixed w. Further because Fθ is non-decreasing, g(u1,w)≤ g(u2,w) holds. This proves the claim.

Through the representation θ[i:N ]
d
= g(Ui:N , Vi) and Lemma EC.4, we have

E
(
θ2k+1
[i:N ]

)
=

∫ 1

0

∫ 1

0

[g(u,w)]2k+1N !ui−1(1−u)N−i

(i− 1)!(N − i)!
dudw.

Let bi(u) =
N !ui−1(1−u)N−i

(i−1)!(N−i)!
, which is the density of a beta distribution. Thus,

∫ 1

0

bi(u)du= 1, i= 1,2, . . . ,N. (EC.107)

In addition, it is easy to verify that, for u ∈ (0,1), bi+1(u) − bi(u) > 0 if and only if u > i
N

, and
bi+1(u)− bi(u)< 0 if and only if u< i

N
. Therefore,

E
(
θ2k+1
[i+1:N ]

)
−E

(
θ2k+1
[i:N ]

)
=

∫ 1

0

∫ 1

0

[g(u,w)]2k+1[bi+1(u)− bi(u)]dudw

=

∫ 1

0

[∫ 1

i
N

[g(u,w)]2k+1[bi+1(u)− bi(u)]du−
∫ i

N

0

[g(u,w)]2k+1[bi(u)− bi+1(u)]du

]
dw

≥
∫ 1

0

[∫ 1

i
N

[
g

(
i

N
,w

)]2k+1

[bi+1(u)− bi(u)]du−
∫ i

N

0

[
g

(
i

N
,w

)]2k+1

[bi(u)− bi+1(u)]du

]
dw

=

∫ 1

0

[[
g

(
i

N
,w

)]2k+1 ∫ 1

0

[bi+1(u)− bi(u)]du

]
dw= 0,

where the inequality uses the fact that g(u,w) is non-decreasing with u, and the last equality holds
because of (EC.107). This completes the proof. "
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Proof of Proposition EC.11. We use Theorem 2 to prove the result, and all notations are the same

as in Theorem 2. If C is a comonotonicity copula, we have D1C(u, v) =

{
1, v≥ u,

0, v < u,
and therefore

gu(w) = u for w ∈ (0,1]. This implies that

(g(U1:N , V1), . . . , g(UN :N , VN)) =
(
F−1
θ (U1:N), . . . ,F

−1
θ (UN :N)

) d
= (θ1:N , . . . ,θN :N).

If C is a countermonotonicity copula, we have D1C(u, v) =

{
1, v≥ 1−u,

0, v < 1−u,
and therefore gu(w) =

1−u for w ∈ (0,1]. This implies that

(g(U1:N , V1), . . . , g(UN :N , VN)) =
(
F−1
θ (1−U1:N), . . . ,F

−1
θ (1−UN :N)

) d
= (θN :N , . . . ,θ1:N).

If C is an independence copula, we have D1C(u, v) = v and therefore gu(w) =w for w ∈ [0,1]. This
implies that

(g(U1:N , V1), . . . , g(UN :N , VN)) =
(
F−1
θ (V1), . . . , F

−1
θ (VN)

) d
= (θ1, . . . ,θN).

This completes the proof. "
Proof of Proposition EC.12. We use Theorem 1 to prove the result, and all notations are the same

as in Theorem 1. Let Fθ ≡ F (1)
θ = F (2)

θ . By definition, one can verify that ∂
∂u
CEl

Ψρ
(u, v) = ∂

∂u
CEl

Ψ−ρ
(1−

u, v). Let gρu(w) and g−ρu (w) be the inverse functions of v -→ ∂
∂u
CEl

Ψρ
(u, v) and v -→ ∂

∂u
CEl

Ψ−ρ
(u, v),

respectively. They therefore satisfy gρu(w) = g−ρ1−u(w) for any u,w ∈ [0,1]. Then, let gρ(u,w) = Fθ ◦
gρu(w) and g−ρ(u,w) = Fθ ◦ g−ρu (w), we have gρ(u,w) = gρ(1−u,w). This implies that

(gρ(U1:N , V1), . . . , g
ρ(UN :N , VN)) = (g−ρ(1−U1:N , V1), . . . , g

−ρ(1−UN :N , VN))

d
= (g−ρ(UN :N , VN), . . . , g

−ρ(U1:N , V1)),

which proves (EC.52). Furthermore, by (9), the optimal weights satisfy (EC.53). This completes the
proof. "

EC.3.10. Proofs for Appendix EC.1.5

Proof of Proposition EC.13. We use Theorem 1 to prove the result, and all notations are the
same as in Theorem 1. By Theorem 1, we have

P
(
θ[1:N ] −µθ ≤ x1, . . . ,θ[N :N ] −µθ ≤ xN

)

=P (gU1:N
(V1)≤ Fθ(µθ+x1), . . . , gUN :N

(VN)≤ Fθ(µθ+xN))

=

∫ 1

0

· · ·
∫ 1

0

P (gu1(V1)≤ Fθ(µθ+x1), . . . , guN
(VN)≤ Fθ(µθ+xN))N !1{u1<···<uN}du1 · · ·duN

=

∫ 1

0

· · ·
∫ 1

0

N∏

i=1

[
∂C

∂u
(ui,Fθ(µθ+xi))

]
N !1{u1<···<uN}du1 · · ·duN , (EC.108)
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and similarly, with the help of the continuity of Fθ and v -→ ∂C
∂u

(u, v),

P
(
µθ− θ[N :N ] ≤ x1, . . . , µθ− θ[1:N ] ≤ xN

)

=

∫ 1

0

· · ·
∫ 1

0

N∏

i=1

[
1− ∂C

∂u
(ui,Fθ(µθ−xi))

]
N !1{u1>···>uN}du1 · · ·duN

=

∫ 1

0

· · ·
∫ 1

0

N∏

i=1

[
1− ∂C

∂u
(1−ui,Fθ(µθ−xi))

]
N !1{u1<···<uN}du1 · · ·duN , (EC.109)

where the last equality replaces ui with 1−ui.
Furthermore, Nelsen (2007, Theorem 2.7.3) demonstrates that, if C is the joint distribution of

(U,V ), we have (U,V )
d
= (1−U,1− V ) and, therefore, P(V ≤ v|U = u) = P(1− V ≤ v|1−U = u) =

P(V ≥ 1 − v|U = 1 − u). This implies that ∂C
∂u

(u, v) = 1 − ∂C
∂u

(1 − u,1 − v). Combining this with
(EC.108), (EC.109), and (EC.54) completes the proof. "

Endnotes

[23] See also Grinold and Kahn (1999, Chapter 6) and Grinold and Kahn (2019, Chapters 4 and 5)

for recent developments.

[24]The true optimal weights are computed by using a sufficiently large number of subintervals

partitioned from the original interval for the numerical integration. In our numerical experiments,

we set the number of subintervals to 1,000 to compute the true optimal weights.

[25] The derivative of φGu
γ is (φGu

γ )′(x) = − exp(−x1/γ)x1/γ−1/γ, whose inverse function (φGu
γ )

′−1

cannot be written explicitly. However, one can still calculate it numerically in practice.

[26]See https://www.marketplace.spglobal.com/en/datasets/trucost-environmental-(46).

[27]Scope 1 emissions cover greenhouse gas emissions from operations that are owned or controlled

by the company. Scope 2 emissions cover emissions from the consumption of purchased electricity,

heat, or steam by the company. Scope 3 emissions cover other indirect emissions not covered in Scope

2, such as from the extraction and production of purchased materials and fuels, transport-related

activities in vehicles not owned or controlled by the reporting entity, electricity-related activities,

outsourced activities, waste disposal, etc. See https://ghgprotocol.org/corporate-standard.

[28]We treat both null and zero values in the data as invalid values.

[29]We obtain the CRSP data from the Wharton Research Data Service.

https://www.marketplace.spglobal.com/en/datasets/trucost-environmental-(46)
https://ghgprotocol.org/corporate-standard
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[30]See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

[31]We match the Trucost Environmental data with the CRSP data by ISIN for all stocks issued

in the US. The ISINs of stocks issued in the US begin with US. We only use stocks with valid

current-month residual returns and last year’s impact factor.

[32]In our empirical study, we use the Deheuvels’ empirical copula. See, for example, Cherubini et al.

(2004, Section 5.5.1).

[33]For simplicity, we assume that σθ = 0.

[34]The carbon emission data start in 2005, which we use to correlate with the residual returns

starting in 2006. By the end of 2010, we have five years of data to estimate ρ.

[35]We define the annual turnover as

turnover =
1

T

T∑

t=1

(
N∑

i=1

∣∣∣∣∣wi,t+1 −
wi,t(1+ ri,t+1)

1+
∑N

j=1wj,trj,t+1

∣∣∣∣∣

)
,

where wi,t and ri,t are the weight and return of stock i in the portfolio in year t, respectively.

The portfolio alpha, α, is the intercept term from the Fama–French five-factor regression, and the

volatility of residual returns, σ(θp), is the standard deviation of the regression’s residual returns. The

information ratio is defined as the ratio of α to σ(θp).

[36]Although our methodology is based on residual returns in excess of asset pricing factors, the

portfolios have nonzero exposures to these factors and therefore gain factor risk premiums. Therefore

we report metrics related to both raw and residual returns.

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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