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Abstract. We develop a mathematical framework for constructing optimal impact portfo-
lios and quantifying their financial performance by characterizing the returns of impact- 
ranked assets using induced order statistics and copulas. The distribution of induced order 
statistics can be represented by a mixture of order statistics and uniformly distributed ran-
dom variables, where the mixture function is determined by the dependence structure 
between residual returns and impact factors—characterized by copulas—and the marginal 
distribution of residual returns. This representation theorem allows us to explicitly and 
efficiently compute optimal portfolio weights under any copula. This framework provides 
a systematic approach for constructing and quantifying the performance of optimal impact 
portfolios with arbitrary dependence structures and return distributions.
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1. Introduction
Impact investing, broadly defined as investments that 
consider not only financial objectives but also other 
goals that support certain social priorities and agendas, 
has drawn an increasing amount of attention in recent 
years. This form of investing has been given other 
names, such as “sustainable” and “green” investing, 
and examples include divestment from “sin stocks,” 
“socially responsible” investing (SRI), the use of envi-
ronmental, social, and governance (ESG) investment 
criteria, and private equity funds seeking social impact 
alongside financial returns.1

The construction of impact portfolios typically 
involves ranking assets based on a measure of impact, 
such as a company’s ESG score, its amount of carbon 
emissions, or the prospect of developing a disease- 
modifying drug. Popular methods include negative 
screening, imposing filters so that certain companies 
are excluded from the investable universe; positive 
screening, selecting companies for high values of 

certain attributes; relative weighting, over- or under-
weighting companies within an industry based on a 
certain measure; and full ESG factor integration in 
which ESG information is combined with other funda-
mental and technical factors of a company to improve 
the investment process.2

Despite the rapid growth in popularity and assets 
under the management of impact investing, it is unclear 
whether they are adding or removing value from an 
investor’s point of view.3 In addition, there are ongoing 
controversies regarding whether ESG portfolios and 
other impact investing products may be violations of 
the fiduciary duties of the managers of those products.4
These challenges call for a general framework for con-
structing optimal impact portfolios and for measuring 
and disclosing the financial impact of impact investing.

1.1. Main Results
In this article, we develop a framework to quantify the 
distribution of asset returns after ranking, screening, 
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and weighting based on a measure of impact. We dem-
onstrate how to construct optimal impact portfolios, 
and explicitly quantify their performance in terms of 
the well-known information ratio (see, for example, 
Grinold and Kahn 2019). Our framework allows for 
arbitrary marginal distributions of the asset returns and 
the impact factor, as well as arbitrary dependence struc-
tures between the two, characterized by copulas.

We formalize impact investing as the sorting and 
selection within an investment universe of N assets 
based on an impact factor, Xi, for asset i, so that 
higher values of Xi correspond to greater impact, for 
example, lower carbon emissions, higher ESG score, 
etc. We consider a linear multifactor model for asset 
returns and focus on the residual returns in excess of 
all known factors, denoted by u ≡ (θ1,θ2, : : : ,θN)

⊤. 
The impact on investment performance is therefore 
determined by the joint distribution of the vector 
X ≡ (X1, X2, : : : , XN)

⊤ of impact factors with the resid-
ual returns, u.

Our fundamental tool to quantify the distribution of 
u after ranking based on X is the induced order statistic, 
which uses random variables that are ranked not by 
their own values (u in our case) but by the values of 
other random variables (X in our case). However, the 
existing literature on induced order statistics often 
relies on strong distributional assumptions, and their 
properties under general distributions are rarely 
discussed.5

Our main result is a representation theorem, which 
shows that, for a general bivariate distribution of 
(Xi,θi)

⊤, the distribution of induced order statistics of θi 
ranked by Xi can be represented by a mixture of order 
statistics and uniformly distributed random noise, and 
the mixture function is determined by the copula of Xi 
and θi and the marginal distribution of θi. These results 
completely characterize the distribution—both in finite 
sample and asymptotically—of induced order statistics 
and allow for the efficient computation of optimal port-
folio weights. To the best of our knowledge, we are the 
first to provide results for induced order statistics under 
general copulas and marginal distributions.

When the distribution of (Xi,θi)
⊤ is discontinuous, 

our construction proof shows that the representation 
holds if and only if the copula is “linearly interpolating” 
in the undefined regions given by Sklar’s (1959) theo-
rem.6 This generality allows us to derive weights for 
optimal impact portfolios when the impact factor, X, 
represents discrete rating values, which is often the 
case in practice, and when residual returns, u, include 
jumps or take discrete values in high-frequency data.

The representation theorem has several important 
applications. To understand the impact of general 
dependence structures between the residual return, u, 
and the impact factor, X, we apply the representation 

theorem under different copulas. In particular, we can 
quantify the impact of asymmetric tail dependence 
between asset returns and the impact factor—modeled 
by the Archimedean copula—which is commonly 
observed in many impact investing contexts.7 We find 
that stronger tail dependence implies larger weights for 
assets on that tail in optimal impact portfolios.

In addition, we use the representation theorem to 
study the impact of the marginal distribution of resid-
ual returns on impact portfolios. It is well documented 
that stock returns are skewed and heavy-tailed. We 
show that a larger positive (negative) skewness leads to 
smaller weights for higher (lower) impact-ranked 
assets. Heavy-tailed returns may lead to nonmonotonic 
weights for the optimal impact portfolio, because of the 
extreme levels of risk from assets with the most extreme 
impact values.

1.2. Related Literature
Our work contributes to a rapidly growing literature 
on quantitative models for green finance. For exam-
ple, Blasberg et al. (2021) propose the carbon default 
swap to manage the exposure to transition risk. De 
Angelis et al. (2023) model the effect of impact inves-
tors on mitigating climate risks by raising the cost of 
capital of the most carbon-intensive companies. Aïd 
and Biagini (2023) discuss the impact of regulations 
on the carbon emission market. Gobet and Lage 
(2023) model the optimal transition path of credit 
portfolios. Our work focuses on impact investing 
from the perspective of portfolio construction. The 
literature on green portfolio construction and sustain-
able asset pricing includes, for example, Pástor et al. 
(2021), Pedersen et al. (2021), Sorensen et al. (2021), 
and Flora and Tankov (2023). Although this litera-
ture incorporates green constraints into the tradi-
tional asset-pricing framework, the interaction 
between these constraints and asset returns is not 
explicitly modeled.

Our results extend the recent work of Lo and Zhang 
(2023), which models the dependence between impact 
factor and asset returns when they are jointly normally 
distributed with a constant correlation. However, as 
demonstrated empirically in Online Appendix EC.2, 
impact factors and returns do not follow normal distri-
butions in practice. Although the joint normality 
assumption yields simple analytical results, it is unclear 
how impact portfolios and their performances are 
affected by deviations from normality (e.g., skewed 
and heavy-tailed distributions) and asymmetric depen-
dencies between asset returns and impact factors. In 
this article, we provide a complete characterization of 
these interactions and a framework to construct impact 
portfolios that account for them. Empirical results in 
Online Appendix EC.2 show that allowing for general 
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dependence and marginal distributions can significantly 
improve the financial performance of impact portfolios.

As mentioned above, we contribute to the theory of 
induced order statistics by characterizing their distribu-
tions under general dependence structures. These sta-
tistics, whose term was first coined by Bhattacharya 
(1974), are also referred to as concomitants of the order 
statistics (David 1973).8 Lo and MacKinlay (1990) apply 
these same statistical tools to quantify data-snooping 
biases in testing financial asset-pricing models. To our 
knowledge, we are the first to combine induced order 
statistics with copulas, and the latter are widely used in 
credit risk models (Giesecke 2003, 2004; Cont and Kan 
2011; Filiz et al. 2012; Cont and Minca 2013; Brigo et al. 
2014). In this article, we derive the distribution of 
induced order statistics under arbitrary copulas, and 
provide a novel application in the context of impact 
investing.

We present the main results under the assumption 
that (Xi,θi)

⊤ is independent and identically distributed 
(IID) across assets (Assumption 1) for three reasons. 
First, the analytical results under the IID assumption 
yield considerable intuition that is mathematically clear 
yet fundamental to describing the distribution of 
induced order statistics and the performance of impact 
portfolios. Second, the main results can be generalized 
to allow for cross-sectional heterogeneity with more 
mathematical complexity (see Online Appendix 
EC.1.3.2), but both the representation theorem and its 
associated intuition carry over. Finally, our characteri-
zation of induced order statistics under general mar-
ginal distributions and dependence is new even under 
this IID assumption, which may yield applications in 
other domains and contexts beyond impact investing.

In fact, the theory of induced order statistics for 
bivariate random variables with arbitrary copulas can 
potentially be applied much more broadly to contexts 
that involve ranking bivariate pairs by one covariate. 
This includes portfolio selection based on hundreds of 
new factors and anomalies in the “Factor Zoo” dis-
cussed in the recent literature (Harvey et al. 2016, Feng 
et al. 2020, Hou et al. 2020), as well as the pricing and 
portfolio construction of credit bonds, credit default 
swaps (CDS), CDS indices, and so on, because investors 
may form portfolios by ranking these assets based on 
their credit ratings.

1.3. Outline
The remainder of this article is organized as follows. 
We describe our framework in Section 2. Section 3
shows the representation theorem. We then discuss 
the impact of general dependence structures in Sec-
tion 4 and marginal distributions in Section 5. We 
conclude in Section 6, and provide additional tech-
nical details, empirical studies, and proofs in the 
online appendix.

2. The Framework
We consider a world of N assets whose returns in excess 
of the risk-free rate satisfy the following linear multifac-
tor model:

rit � αi + βi1Λ1t + βi2Λ2t + ⋯ + βiKΛKt + εit,
i � 1, 2, : : : , N; t � 1, 2, : : : , T; (1) 

where Λkt is the k-th factor return (in excess of the risk- 
free rate), k � 1, 2, : : : , K, αi and βik are the excess return 
and factor betas, respectively, and εit is the idiosyncratic 
return component independent of all factors. The εit’s 
are zero-mean random variables that are IID both 
across assets i and over time t. To allow for potential 
mispricings, we assume that αi are random variables 
that are IID across assets i, and they follow a nonde-
generate distribution.9

We define the following quantity to be the residual 
return of asset i at time t, for i � 1, 2, : : : , N and 
t � 1, 2, : : : , T:

θit ≡ αi + εit: (2) 

Therefore, given a specific time t, the unconditional dis-
tribution of θit is IID across asset i. Given a specific asset 
i, the unconditional distribution of θit is identically dis-
tributed but dependent over time t because of the com-
mon term, αi.

Under suitable restrictions on {αi,βik} and the defini-
tions of the factor returns {Λk}, the linear multifactor 
model in (1) is consistent with a number of asset- 
pricing models, such as the Capital Asset Pricing Model 
(CAPM) (Sharpe 1964, Lintner 1965), the Intertemporal 
CAPM (Merton 1973), the Arbitrage Pricing Theory 
(APT) (Ross 1976), and the Fama-French multifactor 
models (Fama and French 1993). In particular, all of 
these asset-pricing models imply that αi � 0, and that 
the expected returns of the assets are simply the sum of 
the risk-free rate plus all the risk premia multiplied by 
the asset’s corresponding risk exposures or βik’s.

However, to measure the impact of impact investing, 
we take no position as to whether any particular asset- 
pricing model holds. We allow for the possibility of 
superior investment performance of individual securi-
ties, but also include the conventional case of equilib-
rium or no-arbitrage pricing if we set the mean and 
variance of the alphas to zero. The implications of our 
model are broadly applicable to an equilibrium asset- 
pricing setup where “alpha” may be reinterpreted as 
omitted factors which investors are either unaware of 
or unable to access as easily as portfolio managers (see 
Lo and Zhang 2023, section 4.4).

2.1. Impact Factors and Induced Order Statistics
Impact investors rank assets according to a specific 
impact variable,10 and form portfolios based on the 
impact variable. We assume that there exists a specific 
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impact factor for security i at time t (e.g., the ESG score), 
Xit, which may be correlated with the residual returns 
of the i-th asset, θit. Although θit is not observable at 
time t, its corresponding impact factor, Xit, is observ-
able. Let Xt � (X1t , : : : , XNt)

⊤ and ut � (θ1t , : : : ,θNt)
⊤. In 

particular, we assume the following:

Assumption 1. For a specific time t,

X1t
θ1t

� �

, X2t
θ2t

� �

, : : : , XNt
θNt

� �

~IIDF(·, ·): (3) 

Assumption 1 states that the impact factors and resid-
ual returns are IID across different assets. Indepen-
dence across assets is justifiable because we are 
modeling residual returns. The assumption of identical 
distributions allows for mathematical tractability and 
implies that the relationship between Xit and θit is 
homogeneous. In our main article, we employ this IID 
assumption to derive concise theoretical results and 
useful mathematical intuition. However, the IID 
assumption can be relaxed to model cross-sectional het-
erogeneity (such as industry effects) by mixtures of 
homogeneous subgroups. We relax this assumption in 
Online Appendix EC.1.3.2. Moreover, because the 
majority of this article discusses the static case, we omit 
the subscript t for notational simplicity except when 
considering a dynamic model in Online Appendix 
EC.1.2.3.

The bivariate vectors, (Xi,θi)
⊤, i � 1, 2, : : : , N, are 

ranked according to their first components (e.g., ESG 
scores), Xi:

X1:N
θ[1:N]

� �

, X2:N
θ[2:N]

� �

, : : : , XN:N
θ[N:N]

� �

, (4) 

where X1:N ≤ X2:N ≤⋯≤ XN:N are the order statistics 
of X. The notation θ[i:N] represents the i-th induced order 
statistic of u induced by another variable, X. Hereinaf-
ter, we use the notation

u[X] � (θ[1:N],θ[2:N] , : : : ,θ[N:N])
⊤ (5) 

to denote the vector of induced order statistics of u 
ranked by values of X.

The framework in (1)–(4) is different from the impact 
investing model proposed in Lo and Zhang (2023) in 
several important ways. First, we generalize Lo and 
Zhang (2023) by considering the interaction between 
the impact factor and residual returns, u, instead of the 
alpha as in Lo and Zhang (2023). This is also consistent 
with the framework of the fundamental law of active 
management in Grinold (1989). Second, Lo and Zhang 
(2023) consider the case where (Xi,θi)

⊤ follows a bivari-
ate normal distribution, which implies that the depen-
dence between the impact factor and asset return is 
described by a single correlation coefficient. Here, we 
consider a much richer set of dependence structures 

modeled by copulas (see Section 4). Third, the general 
bivariate distribution F in (3) allows for the analysis of 
different marginal distributions of Xi and θi. In particu-
lar, asset returns in practice include important devia-
tions from normality such as nonzero skewness and 
heavy-tailedness which have important implications 
for impact portfolio construction, as shown in Section 5. 
Our empirical results in Online Appendix EC.2 demon-
strate that allowing for general marginal distributions 
and dependence structures between Xi and θi can 
greatly enhance the performance of impact portfolios.

2.2. Impact Portfolio Construction
Impact investing essentially involves selecting securi-
ties based on the impact factor, X. We consider a portfo-
lio based on the N assets, and w � (w1, w2, : : : , wN)

⊤

represents the vector of asset weights for the N assets 
ranked by X. In other words, we hold a fraction of our 
portfolio, wi, in the asset with the i-th smallest impact 
factor, Xi:N. The residual return of the portfolio is there-
fore

θp ≡ w1θ[1:N] +w2θ[2:N] +⋯ +wNθ[N:N] �w⊤u[X]: (6) 

Equation (6) shows that the residual return of the port-
folio, θp, is determined by the distribution of u[X] and 
the choice of w. In addition, impact investors use the 
distribution of u[X] to determine the portfolio weights, 
w. Therefore, our goal is to characterize the distribution 
of u[X], given the joint distribution F in Assumption 1.

To quantify the performance of the impact portfolio, 
let m and Σ�be the expectation and covariance matrix of 
the residual returns of the N impact-ranked assets:

m ≡ E(u[X]), Σ ≡ Cov(u[X]): (7) 

Then, the expectation and variance of the portfolio’s 
residual return are

E(θp) � w⊤m, Var(θp) � w⊤Σw: (8) 

The optimal portfolio weights and their corresponding 
performance metrics can be derived from standard 
portfolio theory. For completeness, we explicitly pro-
vide these constructions based on the moments of resid-
ual returns given by (7), which serves as the foundation 
for our results in subsequent sections. We consider 
impact investors who use either the information ratio 
or the mean-variance utility as the objective function to 
form portfolios. The following proposition from stan-
dard portfolio theory characterizes the optimal portfo-
lios with these objectives.

Proposition 1 (Optimal Portfolio). Under the multifactor 
model of (1), if investors construct portfolios based on N 
assets with frictionless borrowing and lending at the risk- 
free rate, and if they maximize the information ratio, 
IR � E(θp)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(θp)

p
, or the mean-variance utility, 

E(θp)� 0:5λVar(θp), with a constant risk-aversion 
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parameter λ > 0, the optimal portfolio weights and the opti-
mal information ratio will be given by

w∗ ∝Σ�1m, and IR∗ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m⊤Σ�1m

q

, (9) 

where m and Σ�are given by (7).

Proposition 1 characterizes the optimal portfolio 
weights. This is useful for both relative weighting strat-
egies, when companies are reweighted based on the 
rank of a certain measure,11 and exclusionary investing, 
when filters are imposed to exclude certain companies 
from the investable universe. We discuss the trade-off 
between performance and impact for exclusionary 
investing in more detail in Online Appendix EC.1.2.6, 
and provide an extension to accommodate investors 
who care about both active and passive returns in 
Online Appendix EC.1.1. In this article, without loss of 
generality, we set the proportional constant to be one, 
that is, w∗ � Σ�1m.

One advantage of our framework is that one needs to 
estimate a much smaller number of parameters in port-
folio construction. In Markowitz portfolio theory, one 
needs to estimate N(N+ 1)=2 parameters for the covari-
ance matrix (Sharpe 1963). In comparison, our frame-
work circumvents this issue because both m and Σ�
depend solely on the bivariate distribution F defined in 
(3). With certain distributional assumptions for F, one 
only needs to estimate a small number of parameters of 
F. This leads to more robust impact portfolios in prac-
tice, as demonstrated empirically by Lo et al. (2022).

In this article, we focus on the residual return of the 
portfolio rather than its raw return for the following 
reasons. First, institutional investors usually assess a 
portfolio’s relative performance in comparison with 
benchmark portfolios (such as an index fund) or base-
line asset-pricing models (such as the Fama-French fac-
tor models), rather than a portfolio’s raw returns. This 
is the typical target of interest for ESG and sustainable 
investment products.12 Second, more broadly, the liter-
ature on active investing also focuses on the residual 
returns to derive active investment performance metrics 
such as the information ratio.13 Our choice follows both 
strands of the literature. Third, although residual returns 
of a portfolio are not directly realizable by holding 
individual assets, they are realizable when using index 
funds and factor exchange-traded funds to neutralize a 
portfolio’s exposure to existing asset-pricing factors. 
Investors can realize the excess returns in this case.

3. The Distribution of Induced 
Order Statistics

The key to constructing impact portfolios using Proposi-
tion 1 lies in the characterization of the distribution of 
induced order statistics, u[X], and, in particular, their 
first and second moments. In this section, we employ 

copulas to derive a representation theorem for the distri-
bution of induced order statistics as a mixture of order 
statistics of uniform random variables and uniform ran-
dom noise. The mixture is determined by the depen-
dence structure between residual returns and impact 
factors, which is characterized by copulas, as well as the 
marginal distribution of residual returns. We present an 
exact finite-sample representation theorem in Section 
3.1, and provide an asymptotic version in Section 3.2.

3.1. The Representation Theorem
Sklar’s (1959) well-known theorem decomposes the 
joint distribution of an arbitrary pair of random vari-
ables—(Xi,θi)

⊤ in our case—into a copula function that 
characterizes their dependence structure, and two mar-
ginal distributions. To be specific, we denote the mar-
ginal distribution functions of Xi and θi by FX and Fθ, 
respectively. Sklar’s theorem states that there exists a 
copula C(·, ·) such that the bivariate distribution func-
tion of (Xi,θi)

⊤, F, can be represented as
F(x, y) � C(FX(x), Fθ(y)), ∀x, y ∈ R: (10) 

If FX and Fθ�are continuous, C is unique; otherwise, C is 
uniquely determined on RX ×Rθ, where RX and Rθ�
are the closures of the ranges of FX and Fθ, respectively. 
In this article, we refer to C as a copula of F when it 
satisfies (10).

Next, we present our main representation theorem 
that explicitly shows the relationship between the dis-
tribution of u[X] and the three components of F—FX, Fθ, 
and C—under a general F.

3.1.1. Representation Theorem Under Smoothness 
Condition. We first present the key result under a 
smoothness condition of F to build intuition, and then 
provide the general representation theorem without 
any smoothness assumptions.

Theorem 1 (The Representation Theorem). Under 
Assumption 1, if both FX and Fθ�are continuous func-
tions, and C is a copula of F with a density, we have

(θ[1:N],θ[2:N], : : : ,θ[N:N])

�
d
(g(U1:N, V1), g(U2:N, V2), : : : , g(UN:N, VN)),

(11) 

where “�d ” denotes equality in distribution. Function g is 
defined as

g(u, w) ≡ F�1
θ ◦ gu(w), (12) 

where gu(w) is the inverse function of v ⊢→ ∂C
∂u (u, v),14 and 

“◦” represents function composition. In addition, U1, U2: : : , 
UN and V1, V2: : : , VN are mutually independent and IID 
random variables, each following Uniform(0, 1), and U1:N ≤

U2:N ≤⋯≤ UN:N are the order statistics of U1, U2: : : , UN.

Theorem 1 provides an explicit representation for the 
distribution of induced order statistics, u[X], by a 
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mixture of order statistics, Ui:N, and IID uniform noise, 
Vi, for any smooth bivariate distribution, F. The mixture 
function given by (12), g(·, ·), is constructed using Fθ�
and C but does not depend on FX. This theorem explic-
itly establishes a relationship between the distribution 
of u[X] and the joint distribution of X and u.

The representation given by Theorem 1 requires the 
smoothness of F, specifically the continuity of FX and 
Fθ, which are assumptions also adopted by prior stud-
ies (Lo and Zhang 2023), and the differentiability of C, 
which are satisfied by many commonly used copulas. 
However, from both the mathematical and practical 
perspectives, we are still interested in whether this rep-
resentation holds for a more general F.

3.1.2. Representation Theorem for General Distribu-
tions. To extend the representation theorem to general 
distributions F, we require a few technical results. First, 
when Fθ�is discontinuous, we need to specify the defini-
tion of the inverse function, F�1

θ (·), in the mixture func-
tion (12). Second, when C is nondifferentiable, the 
function gu(·) in (12), which is the inverse of 
v ⊢→ ∂C

∂u (u, v), is not well defined. We adopt the concept 
of modified partial Dini derivative first proposed by 
Fang et al. (2020), instead of the traditional definition of 
derivatives, to address this issue (see Online Appendix 
EC.1.3.1 for further details).

Finally, when FX is discontinuous, we demonstrate 
that the representation holds only when the copula of F 
is “linearly interpolating” in an undetermined region of 
the copula. To be precise, according to Sklar’s theorem, 
the copula of F satisfying (10) is uniquely determined 
on RX ×Rθ. For the undetermined regions, we define 
a notion of linear interpolation as follows.

Definition 1 (Linearly Interpolating Copula). Let R
c
X �

[0, 1]\RX. A copula C(u, v) is linearly interpolating on 
R

c
X ×Rθ�with respect to u if

C(u, v) � FX(d)� u
FX(d)� FX(d�)

C(FX(d�), v)

+
u� FX(d�)

FX(d)� FX(d�)
C(FX(d), v) (13) 

holds for any (u, v) ∈ (FX(d�), FX(d)) ×Rθ�and d ∈ ∆X, 
where ∆X is the set of all discontinuity points of FX, and 
FX(d�) � limx→d� FX(x).15

In Definition 1, we say a copula is linearly interpo-
lating on Rc

X ×Rθ�with respect to u when it is a linear 
function of u ∈R

c
X given any value of v ∈Rθ. Online 

Appendix EC.1.3.1 provides the intuition behind this 
concept.

With these technical results in hand, we can pro-
ceed to the representation theorem of the distribution 
of u[X] for a very general joint distribution function, F.

Theorem 2 (Representation Theorem for General F). 
Under Assumption 1, we have

(θ[1:N],θ[2:N], : : : ,θ[N:N])

�
d
(g(U1:N, V1), g(U2:N, V2), : : : , g(UN:N, VN))

(14) 

for any N ≥ 1 if and only if the copula C(u, v) is linearly 
interpolating on Rc

X ×Rθ�with respect to u. Here, the func-
tion g is defined as

g(u, w) ≡ F�1
θ ◦ gu(w), (15) 

where gu(w) is the inverse function of v ⊢→$1C(u, v), and 
$1C(u, v) is defined by (EC.30) in Online Appendix 
EC.1.3.1. Other notation is defined as in Theorem 1.

Theorem 2 gives a necessary and sufficient condition 
for the representation—the copula, C(u, v), must be lin-
early interpolating on Rc

X ×Rθ�with respect to u. Prop-
osition EC.9 in Online Appendix EC.1.3.1 provides 
details of the existence and uniqueness of this linearly 
interpolating copula, as well as how to construct it. 
Note that, when FX is continuous, we have RX � [0, 1]
and Rc

X � ∅. Therefore, Theorem 1 can be viewed as a 
special case of Theorem 2 where no interpolation is 
needed for the copula on Rc

X ×Rθ.

3.1.3. Implications. Representation Theorems 1 and 2
have several important implications.

First, they demonstrate that the distribution of 
induced order statistics, u[X], can always be represented 
as a mixture of order statistics, Ui:N, and IID uniformly 
distributed random variables, Vi. In addition, the mix-
ture function, g, is explicitly given by (15). This not only 
provides insight into the source of the randomness of 
u[X] but also allows us to analyze the distribution of 
induced order statistics using the many established 
tools for order statistics.

Second, the representation theorems allow us to cal-
culate the moments of u[X], which is required for con-
structing optimal impact portfolios. By specifying the 
dependence structure between X and u, along with 
their marginal distributions, we can construct a linearly 
interpolating copula and then use Theorem 2 to effi-
ciently compute the moments of u[X] through numeri-
cal integration. In particular, the first two moments of 
u[X] are given by the following proposition, which 
shows that the computational complexity of computing 
the first two moments of one asset (pair) does not scale 
with the number of assets N:
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Proposition 2. Under the assumptions of Theorem 2, if the 
copula C(u, v) is linearly interpolating on Rc

X ×Rθ�with 
respect to u, we have

E(θ[i:N]) �
Z 1

0

Z 1

0
g(u, w) ·N!ui�1(1� u)N�i

(i� 1)!(N� i)!
dudw,

E(θ[i:N]2) �
Z 1

0

Z 1

0
[g(u, w)]2 ·N!ui�1(1� u)N�i

(i� 1)!(N� i)! dudw,

E(θ[i:N]θ[j:N]) �
Z 1

0

Z 1

0

Z 1

0

Z 1

u
g(u, w) · g(z, s)

·
N!ui�1(z� u)j�i�1

(1� z)N�j

(i� 1)!(j� i� 1)!(N� j)!
dzdudwds, 

for i, j � 1, 2, : : : , N and i < j, where function g is defined by 
(15).

Third, the representation theorems have a broad 
range of potential practical applications because of their 
ability to characterize the distribution of u[X] under any 
bivariate distribution between the impact factors and 
the residual returns. For example, we allow the impact 
factors, X, to take discrete rating values.16 The residual 
returns, u, can also be discontinuous, which can 
describe prices with jumps, daily price limits, and high- 
frequency data with discrete price levels.17 We also 
allow nondifferentiable dependence structures, C, 
between X and u.18

Fourth, the representation theorems assert that the 
distribution of u[X] is typically determined by the 
dependence structure, that is, the copula C, and the 
marginal distribution of residual returns, u, but not the 
marginal distribution of the impact factors, X. This is 
because the mixture function, g, given by (15), depends 
solely on C and Fθ. The specific form of FX does not 
affect the representation, and only the discontinuity 
points of FX are necessary to determine the interpola-
tion of C (see Definition 1 in Online Appendix EC.1.3). 
This implies that impact investors who follow Proposi-
tion 1 to construct optimal impact portfolios should 
only focus on the rank of impact factors, rather than 
their specific distribution. It is well known that consid-
erable noise exists in impact measurements such as the 
ESG score (Berg et al. 2022). The fact that portfolio 
weights depend only on the rank suggests that our 
methodology is more robust against noise and outliers 
in impact measurements.

We generalize the representation theorems to allow 
for cross-sectional heterogeneity in Online Appendix 
EC.1.3.2 and highlight the similarities and differences 
in terms of the implications above. We also use the gen-
eralized representation theorem to model markets with 
a mixture of heterogeneous subgroups and show how 
that affects the optimal impact portfolio.

3.2. Asymptotic Version
Theorems 1 and 2 characterize the exact finite-sample 
distribution of u[X] for N assets. In practice, the universe 
of investable assets can be very large, in which case we 
can approximate the distribution of u[X] as N increases 
without bound. As in Section 3.1, we first present the 
results for a smooth F and then the general version.

Theorem 3. Under Assumption 1, assume that both FX 
and Fθ�are continuous functions, C is a copula of F with a 
density, and ∂C

∂u (u, v) is a continuous function of u. For any 
fixed m ≥ 1, any constants ξ1 < ξ2 <⋯< ξm, and any 
sequence 1 < i1(N) < i2(N) <⋯< im(N) < N such that 
ik(N)=N→ ξk ∈ (0, 1) for k � 1, 2, : : : , m as N→+∞, we 
have

(θ[i1(N):N],θ[i2(N):N], : : : ,θ[im(N):N])

→
d
(g(ξ1, V1), g(ξ2, V2), : : : , g(ξm, Vm)): (16) 

Here, “→d ” denotes convergence in distribution, and random 
variables Vi and function g are defined as in Theorem 1.

Theorem 3 is the asymptotic counterpart of Theorem 1. 
We follow both the theory of order statistics (David and 
Nagaraja 2003) and that of impact investing (Lo and Zhang 
2023) to consider asymptotic convergence where the num-
ber of investable assets, N, grows, and assets i1(N), i2(N), 
: : : , im(N) converge to assets ranking at 100ξ1, 100ξ2, 
: : : , 100ξm percentiles among all assets in the universe. 
Practitioners who invest in a large number of assets or tar-
get assets ranking at specific percentiles can use this theo-
rem to guide their impact investing strategies.

The following result provides the asymptotic version 
of the representation theorem for general F.

Theorem 4. Under Assumption 1, let C be a copula of F 
and $1C(u, v) be a continuous function of u. We have

(θ[i1(N):N],θ[i2(N):N], : : : ,θ[im(N):N])

→
d
(g(ξ1, V1), g(ξ2, V2), : : : , g(ξm, Vm))

(17) 

for any fixed m ≥ 1, any constants ξ1 < ξ2 <⋯< ξm, and 
any sequence 1 < i1(N) < i2(N) <⋯< im(N) < N such 
that ik(N)=N→ ξk ∈ (0, 1) for k � 1, 2, : : : , m as N→+∞, 
if and only if the copula C(u, v) is linearly interpolating on 
R

c
X ×Rθ�with respect to u. Here, “→d ” denotes convergence 

in distribution, and random variables Vi and function g are 
defined as in Theorem 2.

Compared with Theorems 1 and 2, the asymptotic 
version has the following implications.

First, similar to Theorem 2, the linearly interpolating 
copula is necessary and sufficient for the asymptotic 
representation. One can easily construct the linearly 
interpolating copula and calculate the moments of the 
asymptotic distribution numerically using Theorem 4.
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Second, unlike the exact finite-sample version, the 
asymptotic version reveals that the asymptotic distribu-
tion of induced order statistics is no longer a mixture of 
order statistics and random noise. Instead, it becomes a 
mixture of asset quantiles, ξi, and uniform noise, Vi. 
The mixture function, g, remains the same as in the 
finite-sample version and is determined by the mar-
ginal distribution of u and the dependence structure, C.

Third, because ξi in (17) are constants, the random-
ness of the asymptotic distribution of (θ[i1(N):N],θ[i2(N):N], 
: : : ,θ[im(N):N]) arises solely from Vi. Therefore, the 
induced order statistics θ[i1(N):N],θ[i2(N):N], : : : ,θ[im(N):N]
are asymptotically mutually independent. This high-
lights an advantage of our framework compared with 
the standard mean-variance portfolio construction—the 
estimation of the inverse of Σ�is more stable when the 
number of assets N is large. Proposition 1 shows that the 
optimal weight depends on Σ�1, which can be estimated 
stably in our framework because the asymptotic inde-
pendence of the induced order statistics implies that Σ�is 
approximately diagonal.

Finally, as with the finite-sample version, the asymp-
totic version also shows that the asymptotic distribu-
tion of u[X] is typically determined by C and Fθ, but not 
FX. This provides a road map for investigating the dis-
tribution of induced order statistics, and therefore the 
optimal impact portfolios. In Sections 4 and 5, we study 
how different copulas and marginal distributions of u 
affect the optimal impact portfolio weights and their 
corresponding returns, respectively. In Online Appen-
dix EC.1.2, we discuss the special case where (Xi,θi)

⊤ is 
jointly normally distributed. Most of the results in this 
article are derived based on the powerful representa-
tion theorems, Theorems 1 and 4.

4. General Dependence via Copulas
In this section, we consider general dependence struc-
tures between X and u. In particular, based on our repre-
sentation theorems, we demonstrate how the moments 
of u[X] depend on the characteristics of the copula. We 
focus on specific copulas, including the Gaussian and 
Archimedean copula (which encompasses the Clayton 
copula and Gumbel copula), to model tail dependence. 
The fundamental copulas studied by Yang et al. (2006) 
and the elliptical copula are discussed in Online Appen-
dices EC.1.4.3 and EC.1.4.4, respectively.

4.1. Gaussian Copula
The Gaussian copula, which is constructed from multi-
variate normal distributions, is one of the most widely 
used copulas in the literature (Cont and Kan 2011).

Definition 2 (Gaussian Copula). The bivariate Gaussian 
copula with parameter ρ ∈ (�1, 1) is defined as

CGa
ρ (u, v) ≡Fρ(Φ

�1(u),Φ�1(v)), u, v ∈ [0, 1], 

where Φ�is the distribution function of N (0, 1), and Fρ�is 
the bivariate distribution function of a bivariate normal 
distribution with mean 0, variance 1, and correlation ρ.

The parameter ρ�captures the degree of dependence 
between the impact factor and the residual return.

The following result characterizes the distribution of 
u[X] under the Gaussian copula using Theorems 1 and 2.

Proposition 3. Under Assumption 1, if FX is continuous 
and the copula of F is a Gaussian copula with parameter 
ρ ∈ (�1, 1), we have

(θ[1:N], : : : ,θ[N:N])

�
d F�1

θ ◦ Φ(ρY1:N +
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ρ2
q

Z1), : : : ,
�

F�1
θ ◦ Φ(ρYN:N +

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ρ2
q

ZN)

�

, (18) 

where Z1, Z2, : : : , ZN ~IIDN (0, 1), Y1:N ≤ Y2:N ≤⋯≤ YN:N 
are the order statistics of Y1, Y2, : : : , YN ~IIDN (0, 1), and ran-
dom variables {Yi}

N
i�1 and {Zi}

N
i�1 are mutually independent.

Proposition 3 shows that, under the Gaussian copula, 
the distribution of θ[i:N] is determined by ρYi:N+ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ρ2
p

Zi, which is a linear mixture of order statistics 
of standard normal random variables and IID standard 
normal noise. Proposition 3 also implies that the distri-
bution of θ[i:N] is linked to ρYi:N +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
Zi via a spe-

cial function:

Q(x) ≡ F�1
θ ◦ Φ(x), x ∈ R: (19) 

In fact, Q(x) is precisely the quantile-quantile plot (Q-Q 
plot) of Fθ�versus the standard normal distribution, a 
widely used statistical tool. Financial practitioners often 
use the Q-Q plot to visualize the heaviness of the tails 
of random variables. In particular, if u is normally 
distributed with mean µθ�and variance σ2

θ, we have 
Fθ(y) � Φ((y�µθ)=σθ), and 
Q(x) � F�1

θ ◦ Φ(x) � µθ + σθx, which is a linear Q-Q plot. 
In this case, it is straightforward to verify that Proposi-
tion 3 reduces to the case of a bivariate normal distribu-
tion (see Proposition EC.4 in Online Appendix EC.1.2).

The following result gives the asymptotic distribu-
tion of u[X] under the Gaussian copula, which is a corol-
lary of the asymptotic version of Theorems 3 and 4.

Proposition 4. Under the assumptions of Proposition 3, 
for any fixed m ≥ 1, any constants ξ1 < ξ2 <⋯< ξm, and 
any sequence 1 < i1(N) < i2(N) <⋯< im(N) < N such 
that ik(N)=N→ ξk ∈ (0, 1) for k � 1, 2, : : : , m as N→+∞, 
we have

(θ[i1(N):N], : : : ,θ[im(N):N])

→
d �F�1

θ ◦ Φ
�
ρΦ�1(ξ1) +

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ρ2
q

Z1

�
, : : : ,

F�1
θ ◦ Φ

�
ρΦ�1(ξm) +

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ρ2
q

Zm

��
, 

where the notation follows that in Proposition 3.

Lo et al.: Impact Portfolios with General Dependence 
8 Operations Research, Articles in Advance, pp. 1–15, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

5.
78

.9
5.

66
] 

on
 2

0 
M

ar
ch

 2
02

4,
 a

t 0
7:

31
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



By combining Proposition 4 and the optimal weights 
given by (9), the optimal weight for assets ranked at quan-
tile ξ�under the Gaussian copula can be approximated by

wGa(ξ) ≡
E F�1

θ ◦ Φ
�
ρΦ�1(ξ) +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
Z
�h i

Var F�1
θ ◦ Φ

�
ρΦ�1(ξ) +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
Z
�h i ,

ξ ∈ (0, 1), (20) 
where Z is a standard normal random variable. There is 
no need to calculate the covariances among induced 
order statistics because θ[i1(N):N],θ[i2(N):N], : : : ,θ[im(N):N]
are asymptotically mutually independent. Investors 
can use (20), which can be easily computed numeri-
cally, to approximate the optimal weights when the 
total number of assets, N, is large.

4.2. Archimedean Copula
Although the Gaussian copula is widely used, it has 
been documented that the tail dependencies between 
asset returns and impact factors for both tails are asym-
metric in many contexts applicable to impact investing 
(Bax et al. 2023), a feature that cannot be captured by 
the Gaussian copula. Therefore, in this section, we con-
struct optimal portfolios under another important fam-
ily of copulas—the Archimedean copula family— 
which has been proven to be useful for modeling tail 
dependence in financial data (McNeil et al. 2015).

Definition 3 (Archimedean Copula). The Archimedean 
copula with generator function ψ�is defined as

CAr
ψ (u, v) ≡ φ(ψ(u) + ψ(v)), u, v ∈ [0, 1], 

where the generator function ψ : [0, 1] → [0, +∞] is a 
continuous, strictly decreasing, and strictly convex 
function such that ψ(1) � 0, and its inverse φ ≡ ψ�1 is 
defined on [0, +∞].19

The dependence structure of an Archimedean copula 
is determined by its generator function, ψ, instead of the 
single parameter ρ�of the Gaussian copula. This allows 
the Archimedean copula to capture a rich set of depen-
dence structures.20 The following proposition charac-
terizes the distribution of u[X] under the Archimedean 
copula using Theorems 1 and 2. The corresponding 
asymptotic result can also be derived using Theorems 3
and 4, which we omit because of space constraints.

Proposition 5. Under Assumption 1, if FX is continuous 
and the copula of F is an Archimedean copula with generator 
function ψ�(let φ � ψ�1), and if the first- and second-order 
derivatives of φ, φ′ and φ′′, both exist on [0, +∞), we have
θ[1:N]

θ[2:N]

⋮
θ[N:N]

0

B
B
B
B
@

1

C
C
C
C
A
�
d

F�1
θ ◦φ[φ

′�1[φ′ ◦φ�1(U1:N) ·V1]�φ
�1(U1:N)]

F�1
θ ◦φ[φ

′�1[φ′ ◦φ�1(U2:N) ·V2]�φ
�1(U2:N)]

⋮
F�1
θ ◦φ[φ

′�1[φ′ ◦φ�1(UN:N) ·VN]�φ
�1(UN:N)]

0

B
B
B
B
@

1

C
C
C
C
A

, 

where the notation is the same as in Theorem 1.

Given an Archimedean copula with any generator 
function ψ, we can use Proposition 5 to derive the distri-
bution of u[X] explicitly. Like the result for the Gaussian 
copula, Proposition 5 demonstrates that the distribu-
tion of u[X] under the Archimedean copula is also a mix-
ture of order statistics, Ui:N, and IID uniform noise, Vi, 
although the mixture is more complicated than the lin-
ear mixture for the Gaussian copula given by Proposi-
tion 3.

Archimedean copulas are widely used for character-
izing various tail dependencies. To derive optimal 
impact portfolios when the dependence between the 
impact factors and residual returns is asymmetric in its 
tails, we consider two special cases of the Archimedean 
copula: the Clayton and Gumbel copulas. The Clayton 
copula characterizes lower tail dependence (i.e., small 
values of the residual returns, u, generally appear 
together with small values of the impact factors, X), 
and the Gumbel copula characterizes upper tail depen-
dence (i.e., large values of u generally appear together 
with large values of X).21 One can expect that the two 
copulas yield opposite results. For brevity, we discuss 
the Clayton copula below and relegate the discussion of 
the Gumbel copula to Online Appendix EC.1.4.2.

4.3. Clayton Copula
The Clayton copula, which models lower tail depen-
dence, is defined as follows:

Definition 4 (Clayton Copula). The Clayton copula with 
parameter γ ∈ (0, +∞) is defined as an Archimedean 
copula with generator function

ψCl
γ (u) ≡

u�γ� 1
γ

, u ∈ [0, 1]: (21) 

The Clayton copula parameterizes the Archimedean 
copula generated by (21), and the parameter γ�mea-
sures the strength of dependence between X and u.

By replacing the generator function of the Archime-
dean copula in Proposition 5 by ψCl

γ , we can derive the 
distribution of its induced order statistics, u[X] (for 
brevity, we write the i-th entry only):

θ[i:N] �
d F�1
θ [(1+U�γi:NV�γ=(γ+1)

i �U�γi:N )
�1=γ
]: (22) 

This result allows us to calculate the moments of u[X]
numerically. In addition, by taking the limits of (22) 
with respect to γ, we can show that the right-hand 
side of (22) converges to F�1

θ (Ui:N) as γ�increases with-
out bound, and converges to F�1

θ (Vi) as γ�approaches 
zero. Therefore, γ�determines the relative importance 
of the order statistics, Ui:N, and the uniform noise, Vi, 
in the representation.

We use numerical examples to investigate the 
optimal impact portfolios under the Clayton copula 
using (22) and Proposition 2. Figure 1 displays the 

Lo et al.: Impact Portfolios with General Dependence 
Operations Research, Articles in Advance, pp. 1–15, © 2024 INFORMS 9 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

5.
78

.9
5.

66
] 

on
 2

0 
M

ar
ch

 2
02

4,
 a

t 0
7:

31
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



expectations and variances of the ranked residual 
returns, and the optimal weights (in terms of maximiz-
ing the information ratio given by (9)) under the Clayton 
copula. For illustrative purposes, we assume that u is 
normally distributed with zero mean and a 10% stan-
dard deviation, and the number of assets is n � 50.22

We observe that assets with higher impact factors have 
higher expectations (Figure 1(a)). The variances show dif-
ferent monotonicity patterns with respect to i (Figure 
1(b)). Assets with higher impact factors generally have 
higher weights (Figure 1(c)). Meanwhile, as γ�increases, 
the dispersion in expected residual returns across assets 
becomes larger (Figure 1(a)), the variances become gener-
ally smaller (Figure 1(b)), and thus the optimal weights 
are more dispersed across assets (Figure 1(c)).

It is worth noting that the distribution of residual 
returns and optimal weights shown in Figure 1 is not 
symmetric. In particular, the overall weights of long 
positions are lower than the magnitudes of weights of 
short positions, because of the lower expected residual 
returns for assets in long positions. This is consistent 
with the fact that the Clayton copula characterizes 
lower tail dependence, meaning that the dependence 
between the impact factor and residual returns will be 
stronger for assets with lower impact factors.

In summary, our findings for the Clayton copula 
shed light on the implications of tail dependence for 
impact portfolios. Generally speaking, stronger tail 
dependence implies larger weights for those assets 
that are ranked on that tail. This also reveals the 
importance of choosing proper dependence structures 
between the impact factors, X, and the residual 
returns, u, in practice when constructing impact 
portfolios.

5. General Return Distributions
In this section, we investigate how different marginal 
distributions of residual returns, u, affect the construc-
tion of impact portfolios under Assumption 1. In 

particular, we focus on the influence of skewed and 
heavy-tailed residual returns. Online Appendix 
EC.1.5.2 provides additional discussions on the impli-
cations of symmetric distributions of u.

5.1. Skewed Returns
It has been well documented that individual stock returns 
are skewed (Cont 2001, Jondeau and Rockinger 2003). In 
this section, we investigate the influence of a skewed u on 
the optimal weights. To derive the key result, we use the 
Gaussian copula and analyze the influence of a skewed u 
using the Q-Q plot, Q(x), defined by (19).

We model a skewed distribution for u by considering 
a piecewise linear Q-Q plot:

QSkew
a, b (x) � (F

Skew
θ;a, b )

�1
◦ Φ(x) ≡ ax, x ≥ 0,

bx, x < 0,

�

(23) 

where a > 0, b > 0, FSkew
θ;a, b is the marginal distribution 

function of u, and Φ�is the distribution function of 
N (0, 1). The parameters a and b control the skewness. 
Specifically, if a > b, the distribution is positively 
skewed (heavier right tails), whereas if a < b, the distri-
bution is negatively skewed (heavier left tails). The case 
of a � b corresponds to a normal distribution.

For u specified by (23), the following proposition 
characterizes the optimal portfolio weights at both tails.

Proposition 6. Under Assumption 1, assume that the 
marginal distribution of X is continuous, the marginal dis-
tribution of u is given by (23), and the copula is Gaussian 
with parameter ρ ∈ (�1, 1). Then, wGa(ξ) defined by (20) 
satisfies

lim
ξ→1�

wGa(ξ)

ρΦ�1(ξ)=[a(1� ρ2)]
� 1,

lim
ξ→0+

wGa(ξ)

ρΦ�1(ξ)=[b(1� ρ2)]
� 1:

Proposition 6 demonstrates that the optimal weights on 
assets ranked at quantile ξ�can be approximated by 

Figure 1. (Color online) Expectations and Variances of u[X], and Optimal Weights Assuming a Clayton Copula 

(a) (b) (c)

Notes. The marginal distribution of u is N (0,σ2
θ) with σθ � 10%. We set n � 50 for illustrative purposes. (a) Expectations. (b) Variances. 

(c) Weights.
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ρΦ�1(ξ)=[a(1� ρ2)] on the right tail (ξ→ 1�), and by 
ρΦ�1(ξ)=[b(1� ρ2)] on the left tail (ξ→ 0+). This proves 
the key result that, under a skewed marginal distribu-
tion of residual returns, a larger positive skewness (a >
b) results in smaller weights for top-ranking assets 
based on the impact factor ( |ρΦ�1(ξ) |=[a(1� ρ2)] <

|ρΦ�1(ξ) |=[b(1� ρ2)]), whereas a larger negative skew-
ness (a < b) leads to smaller weights for bottom-ranking 
assets ( |ρΦ�1(ξ) |=[a(1� ρ2)] > |ρΦ�1(ξ) |=[b(1� ρ2)]). In 
other words, positive skewness reduces the weights of 
top-ranked assets, and negative skewness reduces the 
weights of bottom-ranked assets. Online Appendix 
EC.1.5.1 provides additional numerical examples to 
further illustrate this effect.

5.2. Heavy-Tailed Returns
It is widely recognized that the empirical distribution 
of financial asset returns exhibits a higher peak and 
heavier tail compared with the normal distribution 
(Cont 2001, Kou and Peng 2016). Here we consider the 
influence of these characteristics of u.

To derive the key result, we begin by considering a 
special distribution of u with heavy tails:

QHeavyTail
σ,τ,β (x) � (FHeavyTail

θ;σ,τ,β )
�1
◦Φ(x) ≡ σx+τ |x |β, x≥ 0,

σx�τ |x |β, x < 0,

�

(24) 

where σ > 0, τ > 0, β ≥ 1, FHeavyTail
θ;σ,τ,β� is the marginal dis-

tribution function of u, and Φ�is the distribution func-
tion of N (0, 1). Parameter β�controls the heaviness of 
the tails, and a larger value of β�implies a distribution 
with a higher peak and heavier tails. Parameters σ�and 
τ�control the balance between the linear term, x, and the 
heavy-tailedness term, |x |β.

The following proposition characterizes the optimal 
portfolio weights when the residual returns, u, have 
heavy tails, specifically for β > 2.

Proposition 7. Under Assumption 1, assume that the 
marginal distribution of X is continuous, the marginal dis-
tribution of u is given by (24) with β > 2, and the copula is 
Gaussian with parameter ρ ∈ (0, 1). Then, wGa(ξ) defined 
by (20) satisfies

wGa(0:5) � 0; wGa(ξ)> 0, ξ ∈ (0:5,1); lim
ξ→1�

wGa(ξ) � 0;

wGa(ξ) < 0, ξ∈ (0,0:5); lim
ξ→0+

wGa(ξ) � 0:

If ρ ∈ (�1, 0), the signs of the inequalities above are 
reversed.

Proposition 7 reveals an interesting result that, when 
the tails of the marginal distribution of residual returns 
are heavy enough (β > 2), the optimal weights are no 
longer monotonic. In particular, according to Proposi-
tion 7, assets with the most extreme values of impact 
factors (i.e., the highest or lowest) should have optimal 

weights of nearly zero. This explains why impact inves-
tors may not put the most money on assets with the 
highest or lowest impact factors, but prefer to invest 
more in nonextreme assets.

The intuition behind the nearly zero optimal weights 
when ξ�approaches zero and one is that the variance of 
the impact returns increases without bound and, in par-
ticular, at a higher rate than the expectation. This is 
demonstrated in the proof of Proposition 7 in Online 
Appendix EC.3.5. In other words, the high risk from 
assets with extreme impact values leads to their low 
weights in the optimal allocation. This is also illustrated 
in the following numerical example based on the 
scaled-t distribution.

Definition 5 (Scaled-t Distribution). A random variable θ�
follows a scaled-t distribution with parameters (df,σθ)
if θ�d σθ · S=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(S)

p
, where σθ > 0, and the random 

variable S follows Student’s t-distribution with degree 
of freedom df. We denote this by θ ~ Scaled-t(df,σθ).

Figure 2, (a) and (b), shows the Q-Q plot and the 
density function of the scaled-t distribution, respec-
tively. Figure 2(a) shows that the Q-Q plot deviates 
from a straight line as the degrees of freedom, df, 
decrease. Figure 2(b) implies that the degrees of free-
dom control the kurtosis of the distribution, with 
smaller values corresponding to higher peaks and 
heavier tails. In particular, as the degrees of freedom 
increase without bound, by definition, the scaled-t dis-
tribution converges to the normal distribution.

Figure 2, (c) and (d), displays the expectations and 
variances of the induced order statistics, u[X], and 
Figure 2(e) contains the optimal weights in a market 
with n � 50, scaled-t distributed u, and Gaussian cop-
ula with parameter ρ � 50%. Figure 2(e) highlights that 
the optimal weights are no longer monotonic. When 
the distribution of u has a higher peak and a heavier 
tail, the optimal weights for assets with extreme impact 
factors are lower, which confirms the results given by 
Proposition 7. In addition, the decrease in the magni-
tudes of weights for assets ranked at the two extremes 
is driven by their extremely high variances (see Figure 
2(d)). In other words, impact investors may not want to 
put the highest weights on assets with the highest or 
lowest impact factors because of their high risk.

6. Conclusion
In this article, we develop a framework for constructing 
optimal impact portfolios and analyzing their perfor-
mance. Our results apply to any joint distribution of 
impact factors and residual returns, making them 
broadly applicable to a wide range of contexts. We 
develop significant extensions of the theory of induced 
order statistics, with which we are able to characterize 
the distribution of residual returns of individual assets 
ranked by the impact factor.
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By modeling the dependence between impact factors 
and residual returns using copulas, we derive represen-
tation theorems for the distribution of impact-ranked 
residual returns, both in finite samples and asymptoti-
cally. These representation theorems completely char-
acterize the distribution as a mixture of order statistics 
and uniformly distributed random noise, and the mix-
ture function is determined by the copula and the mar-
ginal distribution of residual returns, but does not 
depend on the marginal distribution of impact factors. 
Our representation theorems allow for discontinuous 
joint distributions, in which case we demonstrate that 
the representation holds if and only if the copula is line-
arly interpolating.

In practice, impact investing involves nonnormal 
dependence structures and nonnormal return distribu-
tions. In particular, we apply our representation theo-
rems to Gaussian and Archimedean copulas and 
investigate the corresponding distribution of impact 
returns. We also study how tail dependence affects the 
construction of optimal impact portfolios, and find that 
stronger tail dependence implies larger weights for 
assets that are ranked on that tail in optimal impact 
portfolios.

We also demonstrate several important implications 
for the optimal impact portfolio weights when residual 
returns are skewed or exhibit heavy tails. Larger 

positive skewness leads to smaller weights for higher 
impact-ranked assets, and larger negative skewness 
leads to smaller weights for lower impact-ranked 
assets. In addition, because of the high risk on heavy 
tails, the optimal impact portfolio should not put the 
largest weights on assets with the highest or the lowest 
impact factors. Rigorous theoretical justifications are 
provided for these heuristics to construct impact 
portfolios.

Overall, our results completely characterize how to 
construct optimal impact portfolios for arbitrary joint 
distributions of impact factor and returns, and provide 
an efficient methodology to compute their portfolio 
weights numerically.

Our framework provides a toolkit for practitioners to 
construct impact portfolios and quantify their perfor-
mance based on real data. As demonstrated in Online 
Appendix EC.2, impact investors can first estimate an 
appropriate copula and a specific marginal distribution 
for residual returns, and then use our analytical results 
to form optimal impact portfolios. This allows impact 
investors to achieve higher risk-adjusted returns than 
those for impact portfolios constructed using simpler 
heuristics such as negative or positive screening.

More broadly, our framework can be regarded as an 
extension of standard portfolio theory by considering 
the rank rather than the value of a specific factor, 

Figure 2. (Color online) Q-Q Plots, Density Functions, Expectations, Variances, and Weights 

(a) (b)

(c) (d) (e)

Notes. Panels (a) and (b) are the Q-Q plot and density function of scaled-t(df,σθ). Panels (c)–(e) are expectations, variances of u[X], and the opti-
mal weights under Assumption 1. The copula is Gaussian with parameter ρ, and the marginal distribution of u is scaled-t(df,σθ). We set n � 50, 
ρ � 50%, and σθ � 10% for illustrative purposes. (a) Q-Q plots. (b) Density functions. (c) Expectations. (d) Variances. (e) Weights.
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leading to portfolios with more robust performance in 
practice. Beyond impact investing, the mathematics of 
our framework also applies more broadly to any factor, 
such as the momentum, size, and value factors, or the 
hundreds of new factors in the “Factor Zoo” discussed 
in the recent literature (Cochrane 2011, Feng et al. 2020).

Our results also yield several other potentially useful 
applications. For example, the copula is widely used in 
credit risk models (Cont and Kan 2011, Filiz et al. 2012, 
Cont and Minca 2013). Credit bond investors may form 
portfolios by ranking bonds based on their credit rat-
ings. They can choose a copula to characterize the 
dependence structure between credit ratings and bond 
returns, use our framework to derive the distribution of 
credit-ranked returns of the bonds, and thus construct 
optimal bond portfolios. Our theory may also be used 
in the pricing and portfolio construction of credit deri-
vatives, such as CDS, CDS indices, and so on. In gen-
eral, our framework can be applied whenever there 
exists an observable factor (e.g., impact measures or 
credit ratings) that can influence another target variable 
of interest (e.g., asset returns).
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Endnotes
1 Impact investing has also been used to refer specifically to these 
investments (Barber et al. 2021), but we use the term more broadly 
in this article.
2 In a 2017 survey, Eccles et al. (2017) find that the two most popular 
strategies are exclusionary screening (i.e., negative screening, 47% 
of surveyed investors) and best-in-class selection (i.e., relative 
weighting, 37%). See also Roselle (2016), Amel-Zadeh and Serafeim 
(2018), and Cappucci (2018).
3 Several studies show that investments with ESG considerations 
may sacrifice returns in stock markets (Hong and Kacperczyk 2009, 
Pástor et al. 2022), bond markets (Baker et al. 2022), and venture 
capital funds (Barber et al. 2021), whereas others (Bansal et al. 2022, 
Lo et al. 2022) suggest that ESG is associated with higher returns, at 
least under certain market conditions.
4 For example, on August 4, 2022, a letter signed by the attorneys 
general of 19 states in the United States was sent to BlackRock—one 
of the world’s largest institutional asset managers—expressing con-
cern over its ESG policies and how they may violate multiple state 
laws and fiduciary duties (https://www.texasattorneygeneral.gov/ 

sites/default/files/images/executive-management/BlackRock%20Letter. 
pdf, accessed December 15, 2022).
5 See, for example, David (1973) and Bhattacharya (1974).
6 Sklar’s theorem maintains that the copula between Xi and θi is 
uniquely determined only on the Cartesian product of the closures 
of the ranges of the marginal distribution functions, but undefined 
in other regions.
7 See, for example, Nofsinger and Varma (2014), Lööf et al. (2022), 
and Bax et al. (2023).
8 For the literature on induced order statistics, see, for example, 
Yang (1977), Kim and David (1990), Balakrishnan (1993), Lee and 
Viana (1999), and Wang and Nagaraja (2009).
9 The assumption that αi is random is somewhat unconventional, so 
a few clarifying remarks are in order. This assumption was first 
used in Lo and MacKinlay (1990) to represent cross-sectional esti-
mation errors of intercepts from CAPM regressions. In the current 
context, we interpret the randomness in αi as a measure of uncer-
tainty regarding the degree of mispricings of assets in our invest-
ment universe, similar to Pástor and Stambaugh (1999) and Lo and 
Zhang (2023). This uncertainty can be interpreted from a Bayesian 
perspective as the degree of conviction that mispricings exist in the 
cross-section.
10 Examples include negative screening, positive screening, and rel-
ative weighting (or “best-in-class selection”). Investors use the rank 
information but not necessarily the exact values of X to form portfo-
lios. This is a weaker assumption compared with the framework of 
Grinold (1989), and is particularly relevant in the context of impact 
investing, because many impact measurements (such as ESG) are 
known to be very noisy (Berg et al. 2022).
11 Even if investors include all assets in the portfolio, their weights 
are determined by the rank of the impact factor. Because the rank of 
each asset is random, their returns are also random. Therefore, we 
need to quantify the distribution of the induced order statistics in 
order to quantify the returns of the sorted assets and their weights 
in the optimal impact portfolio.
12 See, for example, Bolton and Kacperczyk (2021, 2023), Pástor et al. 
(2021, 2022), Pedersen et al. (2021), and Lo et al. (2022).
13 See, for example, Treynor and Black (1973), Grinold and Kahn 
(1999, 2019), and Ding and Martin (2017).
14 The function gu(w) corresponds to the inverse Rosenblatt trans-
form (Rosenblatt 1952), which is widely used for sampling random 
vectors from copula. See, for example, Nelsen (2007, section 2.9).
15 Because FX is nondecreasing, ∆X must be at most countably infinite 
and Rc

X can always be represented as Rc
X � ∪d∈∆X (FX(d�), FX(d)).

16 For example, the MSCI ESG Ratings gives categorical ratings 
(CCC, B, BB, BBB, A, AA, and AAA) for companies. Similarly, bond 
credit ratings are almost always discrete.
17 For example, Kou et al. (2017) and Cai and Yang (2018) investigate 
jumps in equity markets, Chen and Kou (2009) propose a jump model 
for credit risk, and Cai and Kou (2012) use jump diffusion models to 
price options. In addition, the U.S. equity index market has a market- 
wide 20% circuit breaker, and the Chinese stock market has 610% 
price limits on individual stocks. And for high-frequency data, most 
markets have a minimum tick size of, for example, one cent.
18 For example, the comonotonicity copula and the countermonoto-
nicity copula discussed in Online Appendix EC.1.4.3 are not 
differentiable.
19 Some authors refer to the inverse function ψ�1 as the generator 
function of the Archimedean copula, as in McNeil et al. (2015). Here 
we largely follow the definition given by Nelsen (2007).
20 Nelsen (2007, section 4) provides a list of Archimedean copulas 
with over 20 types of generator functions.
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21 Formally, the lower tail dependence parameter, λL, and the upper 
tail dependence parameter, λU, for a copula C are defined as

λL ≡ lim
u→0+

C(u, u)
u

, λU ≡ 2� lim
u→1�

1� C(u, u)
1� u

:

In particular, the Clayton copula with parameter γ�has λL � 2�1=γ�

and λU � 0, and the Gumbel copula with parameter γ�has λL � 0 
and λU � 2� 21=γ. See Nelsen (2007, section 5.4).
22 The first two moments shown in Figure 1 are computed numeri-
cally using Proposition 2. We perform the numerical integrations 
using the scipy.integrate package in Python 3.7 on a laptop 
with an Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz. The computa-
tion times are 14.77, 15.37, and 505.59 seconds for expectations, var-
iances, and covariances, respectively. When the number of assets is 
high, one may skip the calculation of covariances in practice to fur-
ther reduce computation time because they are very close to zero 
(see, for example, Theorems 3 and 4).
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Bax K, Sahin Ö, Czado C, Paterlini S (2023) ESG, risk, and (tail) 
dependence. Internat. Rev. Financial Anal. 87:102513.

Berg F, Kölbel JF, Rigobon R (2022) Aggregate confusion: The diver-
gence of ESG ratings. Rev. Finance 26(6):1315–1344.

Bhattacharya P (1974) Convergence of sample paths of normalized 
sums of induced order statistics. Ann. Statist. 2(5):1034–1039.

Blasberg A, Kiesel R, Taschini L (2021) Carbon default swap— 
Disentangling the exposure to carbon risk through CDS. Preprint, 
submitted May 31, https://dx.doi.org/10.2139/ssrn.3856993.

Bolton P, Kacperczyk M (2021) Do investors care about carbon risk? 
J. Financial Econom. 142(2):517–549.

Bolton P, Kacperczyk M (2023) Global pricing of carbon-transition 
risk. J. Finance 78(6):3677–3754.

Brigo D, Capponi A, Pallavicini A (2014) Arbitrage-free bilateral 
counterparty risk valuation under collateralization and applica-
tion to credit default swaps. Math. Finance 24(1):125–146.

Cai N, Kou S (2012) Pricing Asian options under a hyper- 
exponential jump diffusion model. Oper. Res. 60(1):64–77.

Cai N, Yang X (2018) International reserve management: A drift- 
switching reflected jump-diffusion model. Math. Finance 28(1): 
409–446.

Cappucci M (2018) The ESG integration paradox. J. Appl. Corporate 
Finance 30(2):22–28.

Chen N, Kou SG (2009) Credit spreads, optimal capital structure, 
and implied volatility with endogenous default and jump risk. 
Math. Finance 19(3):343–378.

Cochrane JH (2011) Presidential address: Discount rates. J. Finance 
66(4):1047–1108.

Cont R (2001) Empirical properties of asset returns: Stylized facts 
and statistical issues. Quant. Finance 1(2):223–236.

Cont R, Kan YH (2011) Dynamic hedging of portfolio credit deriva-
tives. SIAM J. Financial Math. 2(1):112–140.

Cont R, Minca A (2013) Recovering portfolio default intensities 
implied by CDO quotes. Math. Finance 23(1):94–121.

David H (1973) Concomitants of order statistics. Bull. Internat. Stat-
ist. Inst. 45(1):295–300.

David HA, Nagaraja HN (2003) Order Statistics (John Wiley & Sons, 
Hoboken, NJ).

De Angelis T, Tankov P, Zerbib OD (2023) Climate impact invest-
ing. Management Sci. 69(12):7669–7692.

Ding Z, Martin RD (2017) The fundamental law of active manage-
ment: Redux. J. Empirical Finance 43:91–114.

Eccles RG, Kastrapeli MD, Potter SJ (2017) How to integrate ESG 
into investment decision-making: Results of a global survey of 
institutional investors. J. Appl. Corporate Finance 29(4):125–133.

Fama EF, French KR (1993) Common risk factors in the returns on 
stocks and bonds. J. Financial Econom. 33(1):3–56.

Fang J, Jiang F, Liu Y, Yang J (2020) Copula-based Markov process. 
Insurance Math. Econom. 91:166–187.

Feng G, Giglio S, Xiu D (2020) Taming the factor zoo: A test of new 
factors. J. Finance 75(3):1327–1370.

Filiz IO, Guo X, Morton J, Sturmfels B (2012) Graphical models for 
correlated defaults. Math. Finance 22(4):621–644.

Flora M, Tankov P (2023) Green investment and asset stranding 
under transition scenario uncertainty. Energy Econom. 124: 
106773.

Giesecke K (2003) A simple exponential model for dependent 
defaults. J. Fixed Income 13(3):74–83.

Giesecke K (2004) Correlated default with incomplete information. J. 
Banking Finance 28(7):1521–1545.

Gobet E, Lage C (2023) Optimal ecological transition path of a credit 
portfolio distribution, based on multidate Monge–Kantorovich 
formulation. Ann. Oper. Res. Published ahead of print May 25, 
https://doi.org/10.1007/s10479-023-05385-4.

Grinold RC (1989) The fundamental law of active management. J. 
Portfolio Management 15(3):30–37.

Grinold RC, Kahn RN (1999) Active Portfolio Management: A Quanti-
tative Approach for Producing Superior Returns and Controlling 
Risk, 2nd ed. (McGraw-Hill Education, New York).

Grinold RC, Kahn RN (2019) Advances in Active Portfolio Manage-
ment: New Developments in Quantitative Investing (McGraw Hill 
Professional, New York).

Harvey CR, Liu Y, Zhu H (2016) … and the cross-section of 
expected returns. Rev. Financial Stud. 29(1):5–68.

Hong H, Kacperczyk M (2009) The price of sin: The effects of social 
norms on markets. J. Financial Econom. 93(1):15–36.

Hou K, Xue C, Zhang L (2020) Replicating anomalies. Rev. Financial 
Stud. 33(5):2019–2133.

Jondeau E, Rockinger M (2003) Testing for differences in the tails of 
stock-market returns. J. Empirical Finance 10(5):559–581.

Kim SH, David HA (1990) On the dependence structure of order 
statistics and concomitants of order statistics. J. Statist. Planning 
Inference 24(3):363–368.

Kou S, Peng X (2016) On the measurement of economic tail risk. 
Oper. Res. 64(5):1056–1072.

Kou S, Yu C, Zhong H (2017) Jumps in equity index returns before 
and during the recent financial crisis: A Bayesian analysis. Man-
agement Sci. 63(4):988–1010.

Lee HM, Viana M (1999) The joint covariance structure of ordered 
symmetrically dependent observations and their concomitants 
of order statistics. Statist. Probab. Lett. 43(4):411–414.

Lintner J (1965) The valuation of risk assets and the selection of 
risky investments in stock portfolios and capital budgets. Rev. 
Econom. Statist. 47(1):13–37.

Lo AW, MacKinlay AC (1990) Data-snooping biases in tests of 
financial asset pricing models. Rev. Financial Stud. 3(3): 
431–467.

Lo et al.: Impact Portfolios with General Dependence 
14 Operations Research, Articles in Advance, pp. 1–15, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

5.
78

.9
5.

66
] 

on
 2

0 
M

ar
ch

 2
02

4,
 a

t 0
7:

31
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

https://dx.doi.org/10.2139/ssrn.3856993
https://doi.org/10.1007/s10479-023-05385-4


Lo AW, Zhang R (2023) Quantifying the impact of impact investing. 
Management Sci. ePub ahead of print December 7, https://doi. 
org/10.1287/mnsc.2022.01168.

Lo AW, Zhang R, Zhao C (2022) Measuring and optimizing the risk 
and reward of green portfolios. J. Impact ESG Investing 3(2):55–93.
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Pástor L, Stambaugh RF, Taylor LA (2022) Dissecting green returns. 
J. Financial Econom. 146(2):403–424.

Pedersen LH, Fitzgibbons S, Pomorski L (2021) Responsible investing: 
The ESG-efficient frontier. J. Financial Econom. 142(2):572–597.

Roselle P (2016) The evolution of integrating ESG analysis into 
wealth management decisions. J. Appl. Corporate Finance 28(2): 
75–79.

Rosenblatt M (1952) Remarks on a multivariate transformation. 
Ann. Math. Statist. 23(3):470–472.

Ross S (1976) The arbitrage theory of capital asset pricing. J. Econom. 
Theory 13(3):341–360.

Sharpe WF (1963) A simplified model for portfolio analysis. Manage-
ment Sci. 9(2):277–293.

Sharpe WF (1964) Capital asset prices: A theory of market equilib-
rium under conditions of risk. J. Finance 19(3):425–442.
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