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A Additional Technical Results

In this Appendix, we provide additional technical results.

A.1 Asymptotic Distribution of Induced Order Statistics

As the number of securities, N , increases without bound, the limiting joint distribution of the

induced order statistics, α[i:N ], has been derived by Yang (1977) and does not require the normality

assumption (A1), hence we can rely on this asymptotic approximation for large samples.

Proposition A.1. Assuming (X1, α1)
T , · · · , (XN , αN )T are IID, for any sequence 1 < i1 < · · · <

in < N such that, as N →∞, ik/N → ξk ∈ (0, 1) for k = 1, · · · , n, we have:

lim
N→∞

P
(
α[i1:N ] < a1, · · · , α[in:N ] < an

)
=

n∏
k=1

P (αk < ak|Fx(Xk) = ξk) , (A.1)

where Fx(·) is the marginal CDF of Xi.

Proposition A.1 implies that the induced order statistics at distinct quantiles are asymptotically

independent, consistent with the finite sample observations in Proposition 3 and Figure 1. Also,

because the conditional distribution of jointly normal random vectors is still normal, we can charac-

terize the first two moments of the induced order statistics asymptotically via the following result.

Proposition A.2. Under Assumption (A1), as N increases without bound, the induced order

statistics, α[ik:N ] (k = 1, · · · , n), converge in distribution to independent Gaussian random variables

with mean µ(ξk) and variance σ2(ξk), where

µ(ξk) ≡ ρ(σα/σx)
[
F−1x (ξk)− µx

]
= ρσαΦ−1(ξk), (A.2)

σ2(ξk) ≡ σ2α(1− ρ2). (A.3)

Note that the mean and variance here are consistent with the finite-sample results in Proposition 2

when k/N converges to ξk. The mean depends on the order k (shown in Figure A.1), and its shape

is very similar to the finite-sample case (Figure 1a). On the other hand, the variance, σ2(ξk), is a

constant across all quantiles.

A.2 Estimation of ρ and σα.

Two key parameters that characterize the distribution of induced order statistics in Propositions 2

and A.2 are ρ, the correlation between unobserved α and X, and σα, the cross-sectional standard

deviation of αi. A special case of Proposition 6—equal-weighted portfolios—provides a way to

estimate these parameters in practice. Consider an equal-weighted portfolio S defined in (28) with

portfolio weights ωi = 1/n0. In this case, Proposition 6 implies that the expected value and variance
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Figure A.1: Asymptotic mean of the induced order statistic, α[ik:N ], as ik/N → ξ ∈ (0, 1).

of portfolio alphas are given by:

E [α̃] =
ρσα
n0

∑
i∈S

E [Xi:N ] , (A.4)

Var (α̃) = σ2α

1− ρ2 +
ρ2

n20

∑
i∈S

Var (Xi:N ) + 2
∑
i<j∈S

Cov (Xi:N , Xj:N )

 . (A.5)

Empirical studies usually report excess returns from equal-weighted portfolios formed by ranking

some stock characteristics such as the P/E ratio, book-to-value, or ESG score. As a result, the

expected value and variance of the impact-portfolio alpha in (A.4)–(A.5) lead to a natural estimator

of these two parameters based on historical data.

In particular, suppose one empirically measures the portfolio alpha and its variance, which can

be substituted into (A.4)–(A.5) to yield a system of two equations with respect to ρ and σα, where

parameters such as the number of securities in the portfolio (n0) and the total number of securities

in the universe (N) can be easily obtained. This leads, in principle, to a solution for ρ and σα.

On the other hand, if the variance in (A.5) is difficult to estimate empirically, one can still

use (A.4) to calibrate ρσα, from which ρ can be solved based on assumptions or prior empirical

estimates (such as Pástor and Stambaugh (1999)) for the spread in cross-sectional α.

In addition, it is worth emphasizing that the estimation of ρ depends implicitly on the frequency

of historical data used to estimate impact-portfolio excess returns, α̃. In theory, if the two terms

in (A.4), α̃ and σα, both scale linearly as the frequency varies, the estimates of ρ should stay

invariant with respect to weekly, monthly, or annual returns. However, they may lead to different

empirical estimates in practice, and therefore, the correlation estimated from this procedure should

be interpreted in the same frequency space as the return data used.
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A.3 Numerical Examples for the Performance of Impact Portfolios

To develop intuition for Proposition 6, consider a portfolio formed by selecting the top n0 securities

based on X. For a market with N = 50 securities, Figure A.2 displays the mean and variance of

the excess return of portfolios formed in this way. As the number of securities in the portfolio, n0,

increases, the excess return decreases because more securities with weaker alphas are included. At

the same time, the variance of the portfolio also decreases thanks to the diversification from more

securities.

(a) Expected Value (b) Variance

Figure A.2: Distribution of portfolio excess return formed by the top n0 securities ranked by the
impact factor, X. The number of total securities, N , is set to be 50.

(a) N=50 (b) N →∞

Figure A.3: Expected excess return for decile portfolios formed by ranking the impact factor, X. In
(a) the number of total securities, N , is set to be 50, and in (b) we show the case when N increases
without bound.

Another typical way of forming portfolios is to sort all securities in the universe into 10 deciles

based on X. Figure A.3a contains the expected excess returns of the 10 deciles, which has a similar

shape to the expected excess returns of individual securities in Figure 1a.
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Finally, we can also consider portfolios as N increases without bound. Suppose we divide the

[0, 1] interval into L segments each of length 1/L, and pick M equally-spaced quantiles within each

segment. Specifically, the l-th portfolio is formed by selecting the following quantiles:

ξl,m =
l − 1 + m

M+1

L
, m = 1, 2, · · · ,M (A.6)

for l = 1, 2, · · · , L. Figure A.3b shows the expected excess returns of this portfolio when L=M=10,

which, not surprisingly, has a similar shape to Figure A.3a because the portfolio formed by (A.6)

is the limit of the decile portfolio when N increases without bound.

For an illustrative example of Proposition 7, consider a portfolio formed by the top n0 securities

ranked by X, and let n0 vary from 1 to 250. We assume for a moment that the idiosyncratic

volatility is 15% for all securities. Figure A.4 depicts the weights of this portfolio. As expected,

securities that rank higher have higher weights. Based on Proposition 7, the weights in Figure A.4

are determined only by the relative rank of the i-th security in the universe of N securities. In

other words, changing the correlation, ρ, between α and X does not affect these weights.

(a) N=50 (b) N=500

Figure A.4: Treynor-Black weights of the securities in the impact portfolio formed by top-ranking
securities based on the impact factor, X, with (a) N=50; and (b) N=500.

To further demonstrate the performance of Treynor-Black portfolios as given in Proposition

7, Figure A.5 contains the expected excess return, αA, for two examples of the impact portfolio

in a collection of N = 500 securities. Figure A.5a depicts portfolios formed by selecting the top

n0 securities ranked by X. The expected value decreases as n0 increases and more securities are

included. Figure A.5b depicts portfolios formed by dividing all securities into four quantiles based

on the ordering of X. In both cases, Treynor-Black portfolios (solid line) achieve higher expected

excess returns than the equal-weighted portfolios (dashed line).

4



(a) Top n0 Portfolio (b) Quantile Portfolio

Figure A.5: Expected excess return of the impact portfolio formed based on Treynor-Black weights,
with N = 500 and σα = 5%. The expected excess returns of the corresponding equal-weighted
portfolios are shown in dashed lines for comparison. (a) shows the case where the top-ranking
securities are selected. (b) shows the case where all securities are divided into four segments based
on ranking.

A.4 Numerical Examples for Impact Portfolios Combined with Passive Portfo-

lios

Figure A.6 generalizes the long/short portfolios in Panel B of Table 1, and displays two metrics for

the combined portfolio that consists of the impact and passive portfolios, with two different levels

of σα. In Figures A.6a and A.6b we consider σα=2%. In other words, most of the securities have

an alpha within [−4%, 4%]. The weights of the active portfolio range from −1.5 to 1.5, depending

on the correlation between α and X (Figure A.6a). The expected excess return of the combined

portfolio ranges from 0% to over 2.5% (Figure A.6b).

In Figures A.6c and A.6d we consider σα=5%. In other words, most of the securities have an

alpha within [−10%, 10%]. This is not unimaginable in some highly volatile sectors such as biotech.

The weights of the active portfolio can be as high as two, indicating a leveraged impact portfolio

and a short position in the passive market portfolio (Figure A.6c). In this case, the expected excess

return of the impact portfolio can yield up to 14% (Figure A.6d)!

Figure A.7 is the long-only counterpart of Figure A.6, which generalizes the long-only portfolios

in the bottom half of Panel B in Table 1. The top-right regions in Figures A.7a and A.7c show

positive weights for the impact portfolio, because top-ranking securities yield positive expected

excess returns when the correlation, ρ, is positive. Similarly, the bottom-left regions in Figures

A.7a and A.7c also show positive weights because these securities, despite having low impact, have

positive expected excess returns. As a result, the positive excess returns in the top-right regions

in Figures A.7b and A.7d provide a measure of the financial benefit of forming long-only impact

portfolios, while the bottom-left regions can be interpreted as the financial cost of not investing in

the lowest impact deciles.
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(a) σα =2%: Weights (b) σα =2%: Excess Return

(c) σα =5%: Weights (d) σα =5%: Excess Return

Figure A.6: Performance metrics for the combined long/short portfolio that consists of the impact
portfolio with N = 500 and passive market portfolio with an annualized risk premium of E[Rm] −
Rf = 6% and volatility of σm = 15%. The idiosyncratic volatility is a constant σ(εi) = 15% for
all securities. (a) and (b) show the Treynor-Black weight for the impact portfolio and the overall
expected excess return, respectively, for σα=2%. (c) and (d) show the same metrics for σα=5%.
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(a) σα =2%: Weights (b) σα =2%: Excess Return

(c) σα =5%: Weights (d) σα =5%: Excess Return

Figure A.7: Performance metrics for the combined long-only portfolio that consists of the impact
portfolio with N = 500 and passive market portfolio with an annualized risk premium of E[Rm] −
Rf = 6% and volatility of σm = 15%. The idiosyncratic volatility is a constant σ(εi) = 15% for
all securities. (a) and (b) show the Treynor-Black weight for the impact portfolio and the overall
expected excess return, respectively, for σα=2%. (c) and (d) show the same metrics for σα=5%.
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A.5 Institutional Background for the Cystic Fibrosis Foundation.

The CF Foundation is the world’s leading philanthropic organization for CF, a rare genetic disease

that currently affects more than thirty thousand Americans. Over a period of 12 years, the CF

Foundation invested $150 million to fund CF drug development efforts at Vertex Pharmaceuticals,

a Boston-based biotechnology firm. This work led to the identification and development of Kaly-

deco, the first FDA-approved treatment to address the underlying causes of CF. The Foundation’s

investment entitled them to receive royalties calculated as a percentage of future sales of successful

CF drugs. In 2014, their rights to Vertex royalties were sold to an outside investment firm, New

York City-based Royalty Pharma, for $3.3 billion in cash.

From the financial perspective, a $3.3 billion return from a $150 million investment is the dream

scenario for any investor, but it could seem like just one individual success story. If we consider

CF Foundation’s entire portfolio of VP efforts, they allocated a medical and research budget of

$87 million across more than 500 awards in 2012, and over $160 million across more than 1,100

awards in 2016 (Kim and Lo, 2019). Apparently, from the portfolio perspective, the $3.3 billion

return is still very attractive after factoring in CF Foundation’s investments in other projects, even

assuming everything else did not produce any financial reward.1

In fact, a key part of the CF Foundation’s VP strategy has been to divest any ties to commercial

products and direct the proceeds to the Foundation’s mission as quickly as possible. In contrast

to certain types of investment funds, it is not a priority for the CF Foundation to achieve financial

returns. Their single purpose is to support CF patients and ease their burden of disease.

The CF Foundation is only one example of VP in biomedicine. More generally, most early-stage

drug development programs have low probabilities of success, long time horizons, and large capital

requirements (Fagnan et al., 2013), making them less attractive investments than alternatives in

other industries like software, social media, telecommunications, etc. In recent years, new tools have

emerged to quantify and diversify the risk in these investments (Fagnan et al., 2013; Thakor et al.,

2017). Our impact framework provides a systematic approach for constructing impact portfolios

and measuring their financial performance, and properly measuring and managing the risk of these

investments is the first step towards encouraging more capital to be allocated to accelerate drug

development and build greater social value.

Finally, Figure A.8 displays the 250-day rolling-window daily estimated beta of Vertex from 17

July 1992 to 30 December 2020, which we use to estimate the beta used in the CAPM model (43)

in the main text.

1In fact, since 2014, the CF Foundation has sold additional royalty interests, bringing their total investment
returns to over $4 billion since inception. However, for our purposes, we focus only on the single sale to Royalty
Pharma for simplicity since it occurred at a single point in time.
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Figure A.8: 250-day rolling-window estimated daily beta coefficients for Vertex Pharmaceuticals
from 17 July 1992 to 30 December 2020.

A.6 Endogeneity and Matched Sample for Sematech.

We conduct additional analysis for the Sematech example, in order to assess whether the impact

identified in Section 6.2 of the main text can be endogenously explained by other company charac-

teristics.

We first compare the logarithm of market capitalization (LogSize) and two profitability mea-

sures, including return on asset (RoA) and return on sales (RoS), for Sematech vs. non-Sematech

firms before Sematech was formed. Figure A.9 shows the distributions of these firm characteristics

computed at the firm-month level before and after Sematech was formed.2 It is clear that LogSize is

the main difference between Sematech and non-Sematech firms. Differences in the two profitability

measures also exist before Sematech’s formation but to a much lesser extent. The distribution

of both profitability measures for Sematech firms shifted towards the right-hand side in the post

period, an observation consistent with Irwin and Klenow’s (1996a) findings.

We then construct re-weighted samples for non-Sematech firms to match the distribution of

Sematech firms in terms of the LogSize, RoA, and RoS, respectively, and show that the return

impact from Sematech largely remains robust on these balanced samples.

2We obtain data from Compustat. The logarithm of market capitalization is winsorized at 1% each side and the
two profitability measures are winsorized at 2% each side to reduce the impact of outliers.

9



(a) Log Size, Pre (b) Log Size, Post

(c) Return on Asset, Pre (d) Return on Asset, Post

(e) Return on Sales, Pre (f) Return on Sales, Post

Figure A.9: Distribution of firm characteristics for Sematech vs non-Sematech firms, before (pre)
and after (post) Sematech was formed.
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For each firm characteristic (LogSize, RoA, and RoS), we use the average value of each firm in

the pre period to estimate two distributions for Sematech and non-Sematech firms. We then assign

weights to non-Sematech firms in order to match their pre-period distribution to that of Sematech

firms. In addition, a Sematech firm is also assigned zero weight if no non-Sematech firm exists to

match its characteristic. Overall, this leads to a small number of firms with nonzero weights in the

case of LogSize (10 firms), but a bigger set in the case of RoA (37 firms) and RoS (40 firms). Figure

A.10 shows the distributions of weighted samples at the firm-month level, which are much more

closely matched between Sematech and non-Sematech firms compared to the original distributions

in Figure A.9.

(a) Log Size

(b) Return on Asset (c) Return on Sales

Figure A.10: Distribution of firm characteristics for Sematech vs non-Sematech firms before Se-
matech was formed, in which each firm is re-weighted to match the distribution of a corresponding
characteristic between Sematech and non-Sematech firms.

Using this weighted sample, Table A.1 summarizes the estimated annualized alphas. Overall,

results are consistent with those in Table 2 of the main text, which yields a difference-in-difference

estimate of 10.22% lift in annualized excess returns for a firm that joined the R&D consortium.
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When samples are weighted by Log Size, the annualized excess return becomes 24.81% though with

very wide confidence intervals due to the small number of matched samples. When samples are

weighted by profitability measures, the annualized excess returns actually increase to 15.10% for

RoA and 12.46% for RoS, both with statistical significance at 5 percent level. Overall, these results

suggest that the positive estimate of the financial impact of the Sematech impact factor is likely

robust against endogeneity concerns for at least firm size and profitability.

Table A.1: Estimated annualized CAPM excess returns on weighted sample, based on a difference-
in-difference (DiD) approach that compares Sematech member firms against non-members, before
and after the formation of Sematech. Estimated coefficients are significant at the 1 percent (***),
5 percent (**), or 10 percent (*) levels based on Bootstrap confidence intervals.

Firm Period Excess Return
Excess Return

(Post minus Pre)
Excess Return

(DiD)

Panel A: Log Size as Weights

Sematech Members
Pre -8.92%

22.13%**
24.81%

Post 13.20%***

Non-Members
Pre -2.54%

-2.68%
Post -5.23%

Panel B: Return on Asset as Weights

Sematech Members
Pre -3.81%

11.01%**
15.10%**

Post 7.20%***

Non-Members
Pre -0.54%

-4.09%
Post -4.63%

Panel C: Return on Sales as Weights

Sematech Members
Pre 0.21%

6.23%*
12.46%**

Post 6.44%**

Non-Members
Pre 1.61%

-6.22%
Post -4.61%

In fact, previous research has studied the effects of Sematech on members’ R&D spending,

profitability, investment, and productivity (Irwin and Klenow, 1996a,b; Link, Teece, and Finan,

1996). In particular, it has been estimated that Sematech induced members to cut their overall

R&D spending on the order of $300 million per year, and raised members’ profitability relative

to non-members’ (Irwin and Klenow, 1996a). This reflects more sharing and less duplication of

research. In other words, more research has been accomplished per R&D dollar. This provides a

potential channel through which excess returns are earned.

A.7 A Simple Execution Model for Meme Stock Trading

Following Bertsimas and Lo’s (1998) framework and notation, we assume that an investor seeks to

purchase a total of S̄ shares of a particular security over a fixed time interval, [0, T ]. The investor

decides how to divide S̄ into smaller purchases distributed throughout the interval so as to maximize
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the final price-impact of the security.3 The answer depends, of course, on the degree to which a

single purchase affects the market price, i.e., the “price impact” and the dynamics of future market

prices. Given a particular price-impact function and a specification for the price dynamics, an

optimal trading strategy that maximizes the price impact of acquiring S̄ in [0, T ] may be obtained.

Specifically, denote by St the number of shares acquired in period t at price Pt, where t =

1, 2, · · · , T . Then the investor’s objective of maximizing final price impact is given by:

max
{St}

E[PT ] (A.7)

subject to the constraint that the desired number of shares are acquired:

T∑
t=1

St = S̄. (A.8)

We assume that the security price follows the bivariate stochastic process:

Pt = Pt−1 + θSzt + γFt + εt, θ > 0, z ∈ (0, 1]

Ft = δFt−1 + ηt, δ ∈ (−1, 1)
(A.9)

where εt and ηt are independent white noise processes with mean 0 and variance σ2ε and σ2η, respec-

tively. The parameter θ specifies the magnitude of the price impact, which is assumed to follow a

power law in St, where the parameter z specifies the “price sensitivity” of the security or, equiv-

alently, the security’s degree of illiquidity. The latter interpretation is motivated by Kyle’s (1985)

market microstructure model in which liquidity is measured by a loglinear-regression estimate of

the log-volume required to move the price by one dollar. Sometimes referred to as “Kyle’s lambda,”

this measure is an inverse proxy of liquidity, with higher values of lambda implying lower liquidity

and lower market depth.4

The presence of Ft in the law of motion for Pt captures the potential impact of market conditions

or private information about the security. For example, Ft can represent new business opportunities

created by the company, the impact of popular sentiment—as in the case of GME, as well as any

of the other factors mentioned above. In either case, the impact of Ft on trading profits and the

time series properties of Ft both have important implications for the feasibility and profitability

of price-impact investing. With these price dynamics, the following result completely characterizes

the optimal price-impact strategy and its corresponding expected profit:

Proposition A.3. Under the price dynamics specified by (A.9), the strategy that maximizes the

3Note that this is not the objective function considered by Bertsimas and Lo (1998)—the problem they pose is
how to divide S̄ so as to maximize cumulative profits, which they solve via stochastic dynamic programming.

4See also Lillo, Farmer, and Mantegna (2003) and Almgren et al. (2005) for more detailed explorations of the
power law of price impact in equity markets. When z=1, this reduces to the “linear price impact with information”
specification from Bertsimas and Lo (1998).
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total price impact, (A.7), is given by:

S1=S2= · · ·=ST =
S̄

T
, (A.10)

and its corresponding expected profit is given by:

V ∗ =

(
θS̄z(T − 1)

2T z
+
γδF1

(
1− TδT−1 + (T − 1)δT

)
(1− δ)2T

)
S̄. (A.11)

In fact, when z=1 and price impact is linear in trading quantities,5 it does not matter how trades

are allocated because the total impact from T trades is always equal to the impact of one single

trade of size S̄. However, when the price impact is a concave function in general (0<z < 1), the

optimal strategy is to simply divide the total order S̄ into T equal “waves,” and trade them at

regular intervals, as specified in (A.10).

The expression for V ∗ in (A.11) shows that the expected profit of price-impact investing depends

on two factors: the market impact as parameterized by θ and z, and influences from other factors

(sentiment, liquidity, private information, etc.) as parameterized by γ and the AR(1) coefficient

governing these other factors (δ).

To illustrate the effect of these parameters on trading profit V ∗, we simulate a universe of

N=500 securities where the parameters, θ, z, γ, and δ, are generated by four independent uniform

distributions on [0, 1]. In the following analysis, we assume that the first realization of X1 = 1,

without loss of generality.

In Figure A.11a, we first show the relationship of the expected profit V ∗ with respect to market

impact (θ). As θ increases, expected profit increases as well. This is quite intuitive because the

stronger the market impact, the easier it is for short squeezers to induce price momentum and

generate profits. If we consider a collection of securities each with a different θ, the correlation

between their market-impact coefficients and expected profit is 37%, implying that sorting α based

on θ will generate positive excess returns in the context of our impact-investing framework.

Figure A.11b displays the relation between expected profit V ∗ and sensitivity z. As power

increases from 0 to 1, the expected profit decreases. This is because lower values of z correspond to

more concave price-impact functions, for which each small trading segment has larger price impact.

The correlation between z and expected profit is −63%. In other words, one can achieve positive

excess returns by selecting securities based on the reverse ordering of sensitivity z.

Figure A.11c displays the relation between expected profit V ∗ and influences from other factors

(γ), which has a weak positive correlation of 9%. Finally, Figure A.11d displays the relation

between AR coefficient (δ) and expected profit. The expected profit is larger when δ is larger. This

is because we have assumed the first realization of Ft is positive, and higher autocorrelations imply

stronger momentum. Indeed, the correlation between the AR coefficient, δ, and expected profit is

26% in this simulated market.

5See also Bertsimas and Lo (1998).
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(a) Price impact (θ) (b) Market sensitivity (z)

(c) Influences from other factors (γ) (d) AR coefficient (δ)

Figure A.11: The expected profit, V ∗, of price-impact investing as a function of four parameters
in (A.9), for a market with N=500 securities with simulated parameters. Here we set θ=1, z=1,
γ=1, δ=10%, S̄=1, F1=1, and T =30 by default, and vary each parameter accordingly.
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We summarize the results from Figure A.11 in Table A.2, and provide their implied α when

applied to a collection of 500 securities simultaneously, each with different price dynamics as spec-

ified in (A.9). Panels A, B, and C show the expected excess returns if investors apply θ, z, γ, and

δ, respectively, to rank securities, where the correlations with trading profits are obtained from our

simple execution model. The expected α can be very high with a leveraged portfolio, driven by the

high correlation between stock α and the price-impact investing factor in certain cases.

In practice, it is difficult to accurately calibrate the relevant parameters for each stock, hence

the expected profit of engaging in GME-like price-impact investing is correspondingly difficult

to estimate. However, this example highlights the fundamental determinants for a price-impact

investor’s α: the correlation between each stock’s trading profit and stock characteristics, e.g.,

market capitalization, liquidity, specific forms of market impact, attention from the general public,

main shareholders, short interest, or anything correlated with stock returns. Higher correlations

lead to higher alpha when following that particular characteristic to select target stock.

Table A.2: Estimated excess returns per annum for the price-impact investing factor, based on the
optimal strategy’s profit in (A.11) and its implied correlations with respect to various characteristics
of individual securities. Here we assume σα = 5%—an intermediate value based on Pástor and
Stambaugh’s (1999) estimated range of σα (between 0% to 10%), and the passive portfolio has an
annualized risk premium of E[Rm]−Rf = 6% and volatility of σm=15%.

Impact
Portfolio

Weight of
Impact Portfolio

ωA

Expected Excess Return
Impact Portfolio

αA

Combined with Passive Portfolio
ωAαA

Panel A: Ranking based on price impact (θ)
Model-implied correlation with alpha: ρ=37%.
Top Half 9.19 2.3% 21.4%
Top Decile 4.09 3.4% 14.0%
Top 2% 1.20 4.5% 5.4%

Panel B: Ranking based on market sensitivity (z); reverse order
Model-implied correlation with alpha: ρ=63%.
Top Half 15.58 3.9% 61.5%
Top Decile 6.95 5.8% 40.3%
Top 2% 2.04 7.6% 15.5%

Panel C: Ranking based on other factors (γ)
Model-implied correlation with alpha: ρ=9%.
Top Half 2.20 0.6% 1.2%
Top Decile 0.98 0.8% 0.8%
Top 2% 0.29 1.1% 0.3%

Panel D: Ranking based on AR coefficient for other factors (δ)
Model-implied correlation with alpha: ρ=26%.
Top Half 6.43 1.6% 10.5%
Top Decile 2.87 2.4% 6.9%
Top 2% 0.84 3.2% 2.7%
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B Proofs

In this Appendix, we provide proofs for all the propositions.

B.1 Proof of Proposition 1

The constraints on the right-hand side optimization problem of (3) is a subset of the left-hand side

optimization problem. Therefore the inequality follows.

To give a bound on the utility loss between the unconstrained portfolio W and the constrained

portfolio W c, we consider an intermediate portfolio W c1 that is also constrained to the subset S,

but with equal factor loadings as the unconstrained portfolio W . In other words, the portfolio

weights for W c1 satisfy the following conditions:

ωc1i = 0 for i /∈ S (A.12)∑
i∈S

ωc1i = 1 (A.13)

N∑
i=1

ωiβik =
∑
i∈S

ωc1i βik for k = 1, . . . ,K. (A.14)

Because W c maximizes the utility in (3),

E[U(W c)] = E

[
U

(
Rf +

K∑
k=1

∑
i∈S

ωciβik (Λk −Rf ) +
∑
i∈S

ωci εi

)]

≥ E

[
U

(
Rf +

K∑
k=1

∑
i∈S

ωc1i βik (Λk −Rf ) +
∑
i∈S

ωc1i εi

)]

= E

[
U

(
Rf +

K∑
k=1

N∑
i=1

ωiβik (Λk −Rf ) +
∑
i∈S

ωc1i εi

)]
= E[U(W c1)].

(A.15)

Now we consider the utility of the following two portfolios,

E[U(W )] = E

[
U

(
Rf +

K∑
k=1

N∑
i=1

ωiβik (Λk −Rf ) +

N∑
i=1

ωiεi

)]
,

E[U(W c1)] = E

[
U

(
Rf +

K∑
k=1

N∑
i=1

ωiβik (Λk −Rf ) +
∑
i∈S

ωc1i εi

)]
.

(A.16)

Note that they only differ in the last term in the parenthesis, the idiosyncratic volatilities. Denote

A ≡ Rf +
∑K

k=1

∑N
i=1 ωiβik (Λk − Rf ) and B ≡

∑N
i=1 ωiεi (or

∑
i∈S ω

c1
i εi). For any well-behaved

utility function U , because E[B]=0, we have:

E[U(A+B)] ≈ E

[
U(A) + U ′(A)B +

1

2
U ′′(A)B2

]
= E[U(A)] +

1

2
E[U ′′(A)]Var[B2] (A.17)
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by second-order Taylor expansion around B=0. Since E[U(W )] and E[U(W c1)] differs only through

the idiosyncratic volatility term, B, we have:

E[U(W )]− E[U(W c)] ≤ E[U(W )]− E[U(W c1)]

≈ 1

2
E[U ′′(A)]

(
Var

(
N∑
i=1

ωiεi

)
−Var

(∑
i∈S

ωc1i εi

))
.

(A.18)

When the number of securities, N , is large, suppose further that:

ωi ≈
1

N
, ωc1i ≈

1

N − n
, σ(εi) ≈ σε, (A.19)

where n is the number of securities excluded in S, and σε is the common idiosyncratic volatility for

all securities. We have:

E[U(W )]− E[U(W c)] ≤ 1

2
E[U ′′(A)]

(
σ2ε
N
− σ2ε
N − n

)
= −1

2
E[U ′′(A)]σ2ε

(
n

N(N − n)

)
. (A.20)

When the number of securities excluded in S, n, is small relative to the total number of securities,

N , the utility loss (A.20) is also small.

Finally, we observe that the assumptions in (A.19) are non-critical for our main conclusions

here, and can be relaxed at the expense of simplicity of the mathematical derivation.

B.2 Proof of Proposition 2

Because X and α are jointly normal, we can express αi with the following linear relationship:

αi = µα + ρ
σα
σx

(Xi − µx) + ei, (A.21)

where ei are normal random variables with E[ei] = 0 and Var(ei) = σ2α(1− ρ2), and the Xi and the

ei are mutually independent. Ordering securities based on Xi, we have:

α[i:N ] = µα + ρ
σα
σx

(Xi:N − µx) + e[i], (A.22)

where e[i] denotes the particular ei associated with Xi:N . Note that Xi:N on the right-hand side are

the usual order statistics, while α[i:N ] on the left-hand side are the induced order statistics. Because

Xi and ei are independent, the set of Xi:N and the set of e[i] are also independent. Therefore, we
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can calculate the first two moments of α based on the relationship in (A.22):

E
[
α[i:N ]

]
= µα + ρ

σα
σx

(E[Xi:N ]− µx) + e[i] = µα + ρσαE[Xi:N ], (A.23)

Var
(
α[i:N ]

)
= ρ2

σ2α
σ2x

Var (Xi:N ) + σ2α(1− ρ2) = σ2α
(
1− ρ2 + ρ2Var (Xi:N )

)
, (A.24)

Cov
(
α[i:N ], α[j:N ]

)
= Cov

(
ρ
σα
σx
Xi:N , ρ

σα
σx
Xj:N

)
= σ2αρ

2Cov (Xi:N , Xj:N ) . (A.25)

See also David and Nagaraja (2004, Section 6.8).

B.3 Proof of Proposition 3

We first observe that Ui:N ≡ Φ(Xi:N ) maps the i-th normal order statistics to the i-th order

statistics from a uniform distribution on [0, 1], where Φ is the cumulative distribution function

of standard normal random variables. We define Q ≡ Φ−1 and write Xi:N = Q(Ui:N ). We then

expand Q(Ui:N ) in a Taylor series around the expected value of Q(Ui:N ):

E[Q(Ui:N )] =
i

n+ 1
= pi, (A.26)

which gives:

Xi:N = Q(Ui:N ) = Q(pi) + (Ui:N − pi)Q′(pi) +
1

2
(Ui:N − pi)2Q′′(pi) +

1

6
(Ui:N − pi)3Q′′′(pi) + · · · .

(A.27)

Substituting (A.27) into the definition of E [Xi:N ], Var (Xi:N ), and Cov (Xi:N , Xj:N ), and rearrang-

ing the terms lead to (11)-(13) in Proposition 3. See also David and Nagaraja (2004, Section

4.6).

In particular, for standard normal random variables we have Q′(pi) = 1/φ(Q) where φ is the

density function for standard normal random variables. Therefore we can calculate:

Q′′(pi) =
d (1/φ(Q))

dΦ(Q)
=
d (1/φ(Q))

dQ

dQ

dΦ(Q)
=

Q

φ2(Q)
, (A.28)

Q′′′(pi) =
1 + 2Q2

φ3(Q)
, (A.29)

Q′′′′(pi) =
Q(7 + 6Q2)

φ4(Q)
, (A.30)

which completes the proof for (14)-(17).
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B.4 Proof of Proposition 4

Because X and α are both normally distributed, we observe that Xi−µx
σx

and αi−µα
σα

both follow the

standard normal distribution. Therefore,

E

[
Xi:N − µx

σx

]
= E

[
αi:N − µα

σα

]
, (A.31)

Var

(
Xi:N − µx

σx

)
= Var

(
αi:N − µα

σα

)
, (A.32)

Cov

(
Xi:N − µx

σx
,
Xj:N − µx

σx

)
= Var

(
αi:N − µα

σα
,
αj:N − µα

σα

)
. (A.33)

We have assumed, without loss of generality, that µα = µx = 0 and σx = 1, which leads to:

E[Xi:N ] =
E[αi:N ]

σα
, (A.34)

Var (Xi:N ) =
Var (αi:N )

σ2α
, (A.35)

Cov (Xi:N , Xj:N ) =
Cov (αi:N , αj:N )

σ2α
. (A.36)

This together with (8)-(10) gives:

µi = E
[
α[i:N ]

]
= ρσαE [Xi:N ] = ρE[αi:N ]. (A.37)

σ2i − σ2α = σ2αρ
2 [Var (Xi:N )− 1] = ρ2

[
Var (αi:N )− σ2α

]
, (A.38)

σij ≡ Cov
(
α[i:N ], α[j:N ]

)
= σ2αρ

2Cov (Xi:N , Xj:N ) = ρ2Cov (αi:N , αj:N ) . (A.39)

B.5 Proof of Proposition 5

For simplicity, we define λ ≡ [λ1 · · · λN ]T , and observe that X and λ can be rewritten as:

X = µx1 + CxNx

λ = µλ1 + CλNλ

(A.40)

where 1 ≡ [ 1 · · · 1 ]T is a column vector of ones with size N , Nx and Ny are both N -dimensional

standard normal random vectors with Cov (Nx,Ny) = Σ, and Cx and Cy are both N ×N deter-

ministic matrices. The specification in (A.40) completely characterizes the joint distribution of X

and λ. In light of the parameterization in Assumption (A2), we have:

Cx =
√

1− ρxσxI +
(√

1 + (N − 1)ρx −
√

1− ρx
)
σxL

Cλ =
√

1− ρλσλI +
(√

1 + (N − 1)ρλ −
√

1− ρλ
)
σλL

Σ =
ρxλ − ρ̃xλ√

(1− ρx)(1− ρλ)
I +

(
ρxλ + (n− 1)ρ̃xλ√

(1 + (n− 1)ρx)(1 + (n− 1)ρλ)
− ρxλ − ρ̃xλ√

(1− ρx)(1− ρλ)

)
L

(A.41)
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where I is the identity matrix and L ≡ 1·1T
N is a matrix whose elements are all 1/N .

We now define a projection matrix:

P ≡
(
CλΣ

TCT
x

) (
CxC

T
x

)−1
= ρadj

σλ
σx︸ ︷︷ ︸
a

I +

(
ρxλ + (n− 1)ρ̃xλ

1 + (n− 1)ρx
− ρadj

)
σλ
σx︸ ︷︷ ︸

b

L

= aI + bL

(A.42)

and it is easy to show that:

λ−PX ⊥ X. (A.43)

Therefore, when assuming µx = 0 and σx = 1, we have:

E
[
λ[i:N ]

]
= E

[
(λ−PX)[i:N ]

]
+ E

[
(PX)[i:N ]

]
= µλ − (a+ b)µx + aE [Xi:N ] + bµx

= µλ + ρadjσλE [Xi:N ] ,

(A.44)

which proves (25). The variances and covariances in (26)-(27) can be proven similarly following the

same decomposition in (A.44). See also Lee and Viana (1999).

B.6 Proof of Proposition 6

The expected excess return follows directly from the distribution of alphas for single securities in

Proposition 2. The variance also follows by rearranging terms:

Var (α̃) =
∑
i∈P

ω2
i σ

2
i + 2

∑
i<j∈P

ωiωjσij

=σ2α

1− ρ2 + ρ2
∑
i∈P

ω2
i Var (Xi:N ) + 2ρ2

∑
i<j∈P

ωiωjCov (Xi:N , Xj:N )


=σ2α

1− ρ2 + ρ2

∑
i∈P

ω2
i Var (Xi:N ) + 2

∑
i<j∈P

ωiωjCov (Xi:N , Xj:N )

 .

(A.45)

B.7 Proof of Proposition 7

Because of the decomposition in (32), and the fact that ζi are independent of εi, the combined

idiosyncratic variance for security i is simply σ2i + σ(εi)
2, where σ2i is the variance of the i-th

induced order statistic given in (9), and σ(εi)
2 is the original idiosyncratic variance for security

i given in (1). The classical result of Treynor and Black (1973) maintains that to maximize the

Sharpe ratio of the portfolio, security weights should be proportional to the expected excess returns

divided by the idiosyncratic variance, which proves (33).

(34) follows from plugging in results from Proposition A.2 into (33).
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B.8 Proof of Proposition 8

By definitions in (35)-(36), the return of the impact portfolio in excess of the risk-free rate can be

written as:

RA −Rf = αA + βA(Rm −Rf ) + εA. (A.46)

When combining with the passive market portfolio, the weight of the impact portfolio, ωA, is given

in (38). Therefore, the return of the combined portfolio, in excess of the risk-free rate, is

RP −Rf = ωA(RA −Rf ) + (1− ωA)(Rm −Rf )

= ωA (αA + βA(Rm −Rf ) + εA) + (1− ωA)(Rm −Rf )

= ωAαA + (Rm −Rf )(βAωA + (1− ωA)) + ωAεA,

(A.47)

which completes the proof of (39). (40) and (41) follow directly from simple calculations of the

expected value and variance of RP based on (A.47).

B.9 Proof of Proposition A.1

This proposition follows from Yang (1977). See also Lo and MacKinlay (1990) for an application

in a different context.

B.10 Proof of Proposition A.2

This follows from Proposition A.1 by observing that Φ(ξk) = Fx(ξkσx + µx). Alternatively, this

result can be proved by taking the limit as N →∞ based on the finite-sample results in Proposition

2-3.

B.11 Proof of Proposition A.3

Based on the price process, (A.9), the investor’s objective, (A.7), can be written as:

E[PT ] = E[PT−1 + θSzT + γFT + εT ]

= E[PT−2 + θSzT−1 + γFT−1 + εT−1 + θSzT + γFT + εT ]

= P0 + θ(Sz1 + · · ·+ SzT ) + γ(F1 + δF1 + · · ·+ δT−1F1]

= P0 + θ(Sz1 + · · ·+ SzT ) +
γ(1− δT )F1

1− δ
.

(A.48)

Maximizing E[PT ] over S1, S2, . . . , ST is the same as maximizing the middle term in (A.48):

(Sz1 + · · ·+ SzT ). (A.49)

When z=1, it does not matter how trades are allocated because (A.49) is always equal to S̄. When

0 < z < 1, (A.49) is a concave function with respect to S1, S2, . . . , ST , and is maximized when
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S1=S2= · · ·=ST = S̄/T , which completes the proof of the optimal strategy, (A.10).

The optimal profit is simply the total value of the position subtracted by the average execution

cost:

V ∗ = E[PT ] · S̄ − E

[
T∑
t=1

PtSt

]
=

(
E[PT ]− 1

T

T∑
t=1

E[Pt]

)
S̄. (A.50)

Based on a similar derivation to (A.48), it is easy to show that

E[Pt] = P0 + θ(Sz1 + · · ·+ Szt ) +
γ(1− δt)F1

1− δ
= P0 + θt

S̄z

T z
+
γ(1− δt)F1

1− δ
, (A.51)

for t = 1, 2, . . . , T . Substituting (A.51) into (A.50), we have

V ∗ =

(
E[PT ]− 1

T

T∑
t=1

E[Pt]

)
S̄

=

(
P0 + θT

S̄z

T z
+
γ(1− δT )F1

1− δ
− 1

T

T∑
t=1

(
P0 + θt

S̄z

T z
+
γ(1− δt)F1

1− δ

))
S̄

=

(
θT

S̄z

T z
+
γ(1− δT )F1

1− δ
− 1

T

T∑
t=1

(
θt
S̄z

T z
+
γ(1− δt)F1

1− δ

))
S̄

=

(
θ
S̄z

T z

(
T − 1

T

T∑
t=1

t

)
+

γF1

1− δ

(
(1− δT )− 1

T

T∑
t=1

(1− δt)

))
S̄

=

(
θ
S̄z

T z

(
T − 1 + T

2

)
+

γF1

1− δ

(
1

T

T∑
t=1

δt − δT
))

S̄

=

(
θ
S̄z

T z

(
T − 1

2

)
+
γδF1

1− δ

(
1− δT

T (1− δ)
− δT−1

))
S̄

=

(
θS̄z(T − 1)

2T z
+
γδF1

(
1− TδT−1 + (T − 1)δT

)
(1− δ)2T

)
S̄

(A.52)

which completes the proof of (A.11).
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