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KEY FINDINGS

n The authors identify and summarize the explainability requirements for different  
stakeholders involved in credit risk management.

n The authors identify the right tools from the literature that can help in answering neces-
sary explainability questions for different stakeholders in a systematic way.

n The authors modify the existing explainability tools and generate better explanations for 
different stakeholders.

ABSTRACT

In this work, the authors create machine learning (ML) models to forecast home equity 
credit risk for individuals using a real-world dataset and demonstrate methods to explain 
the output of these ML models to make them more accessible to the end user. They analyze 
the explainability for various stakeholders: loan companies, regulators, loan applicants, and 
data scientists, incorporating their different requirements with respect to explanations. For 
loan companies, they generate explanations for every model prediction of creditworthiness. 
For regulators, they perform a stress test for extreme scenarios. For loan applicants, they 
generate diverse counterfactuals to guide them with steps toward a favorable classifica-
tion from the model. Finally, for data scientists, they generate simple rules that accurately 
explain 70%–72% of the dataset. Their study provides a synthesized ML explanation frame-
work for all stakeholders and is intended to accelerate the adoption of ML techniques in 
domains that would benefit from explanations of their predictions.

The total US household debt at the end of the fourth quarter of 2020 was estimated 
to be $14.56 trillion, with 189.6 million new credit accounts opened within the 
prior 12 months.1 The total amount of home equity lines of credit (HELOCs) at the 

same time was around $300 billion.2 Although small in relative terms compared with 
the total US household debt, this number is still significant economically, and HELOCs 
currently account for the majority of the banking industry’s home equity portfolios. Given 
this massive amount of household debt, even a low delinquency rate can significantly 
affect the operation of the business and the financial system as a whole. This potential 
impact makes the study of credit default risk an important real-world task.

Lenders generally use consumer credit ratings to grant and structure the terms 
of credit to consumers. To compute these credit ratings, a variety of factors that 

1 Source: New York Fed Consumer Credit Panel/Equifax.
2 Source: FRED Economic Data.
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gauge the creditworthiness of individuals have been described in the literature, which 
extends as far back as the 1940s (Chapman 1940). One popular example is the 
FICO score created by the Fair Isaac Corporation, which is used by over 90% of top 
lenders when making lending decisions.

Recent advances in computing, innovative algorithms, and an explosion in the 
quantity of data available have contributed to the growing success of complex non-
linear machine learning models, including what are known as deep learning models. 
Unlike traditional machine learning (ML) techniques such as logistic regression and 
decision trees, deep learning models may have an extraordinary number of parame-
ters. They are able to automatically learn nonlinear representations and interactions 
of input features from large datasets, a process that helps them to achieve supe-
rior performance compared to other ML methods. ML models have been explored 
for diverse applications in economics and finance (Gogas and Papadimitriou 2021). 
In particular, they are widely used for a variety of different credit risk applications, 
including peer-to-peer lending (Ma et al. 2018; Duan 2019), mortgage risk (Kvamme 
et al. 2018; Chen, Guo, and Zhao 2021; Sadhwani, Giesecke, and Sirignano 2021), 
credit card risk (Butaru et al. 2016), consumer credit risk (Jiang et al. 2021), fair 
credit allocation (Tantri 2021), sovereign default risk (Dim et al. 2022), and a large 
pool of loans (Sirignano and Giesecke 2019).

However, regulatory compliance is a major obstacle in the adoption of black-box 
models for credit risk modeling. In the United States, the Fair Credit Reporting Act 
of 1970 mandates that lenders must be able to disclose up to four key factors 
that adversely affected the credit score of a rejected consumer. More recently, the 
European Union’s General Data Protect Regulation of 2018 creates a right to expla-
nation, whereby users may ask for an explanation of an algorithmic decision that was 
made about them (Goodman and Flaxman 2017). Similarly, the European Artificial 
Intelligence Act of 2021 imposes the requirement of global explainability for artificial 
intelligence (AI) algorithms.

Apart from regulatory compliance, different stakeholders have different require-
ments for explanation and transparency. For example, a loan applicant may want to 
know the possible steps that they could follow to make them creditworthy. Similarly, 
loan companies may need to provide explanations for their decisions regarding the 
creditworthiness of applicants, whereas system developers may need to understand 
the specific features and relationships that underpin their models.

In this article, we first model a credit risk forecast on a real-world HELOC dataset 
released by the Fair Isaac Corporation (FICO). This dataset is widely used to study 
interpretability (see, for example, Rudin and Shaposhnik 2019 and Chen et al. 2022). 
We developed a wide range of ML models, including interpretable rule-based models  
(e.g., inductive logic programming [ILP] and optimal trees) and black-box ML models 
(e.g., neural networks [NNs] and random forests). We compare these models and 
find that NNs outperform other linear and nonlinear models, reaching an accuracy 
of 74.75% on a task to predict the creditworthiness label provided by FICO. We 
also find that properly constructed explainable rules can reach an accuracy of up 
to 70%–72%. Our focus in this article is the explainability of ML models. As such, we 
do not view these models as optimal in terms of prediction accuracy, and they are 
constructed as proofs of concept for studying the explainability of black-box models.

The explainability of a model means the ability to give answers to the differ-
ent stakeholders involved in the decision-making process (Croxson, Bracke, and 
Jung 2019). Interpretability for one party need not be translated to interpretability in 
the eye of another party. Hence, in this article, we identify the different stakeholders 
involved in credit risk management—loan companies, regulators, loan applicants, and 
data scientists—and provide explanations of the models according to their needs.
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For loan companies, we generate interpretable explanations for every prediction 
using two post hoc explainability tools, local interpretable model-agnostic expla-
nations (LIME) and Shapley additive explanations (SHAP), that are able to provide 
reasons for loan denial. We modify the methodology of the LIME algorithm to incor-
porate the covariance structure of different features implied by constraints on their 
relationship. The ability to generate explanations makes a model transparent about 
the relationships it has learned. For example, we identify that having a higher aver-
age age of line of credit leads to a decrease in the probability of default. In addition, 
these explanations make it possible to find representative borrowers from the past 
to aid loan officers in human decision making.

For regulators, we suggest a method of investigating fairness of these models. 
Regulators may also be interested in evaluating the model’s functionality in extreme 
scenarios. In anticipation of this issue, we provide a methodology to perform stress 
tests to help regulators analyze the model’s behavior in extreme scenarios. In prac-
tice, the threshold for regulators to adopt any model will be high and requires a 
thorough investigation into the previously mentioned issues using a comprehensive 
dataset. Our study would not be sufficient to definitively answer such questions 
given the limited data available publicly. Nonetheless, we provide a methodology to 
prove the concept and demonstrate the possibility to carry out such analysis in a 
systematic way.

For loan applicants, because they are interested in getting approval for a loan, 
we generate a diverse set of suggestions that can help individuals deemed non-
creditworthy become creditworthy, even if the black-box ML models are used for 
loan approval decisions. For individuals who have already been approved for loans,  
we are able to generate suggestions that can help them remain creditworthy.  
These counterfactual suggestions are generated by incorporating constraints based 
on specific items of domain knowledge, which makes these suggestions more prac-
tical in real-world applications. We generated suggestions successfully for 99% of 
the individuals in our testing dataset.

Finally, for data scientists, we are able to summarize the dataset using a few 
simple rules that can help them understand the relationships and structure in the 
dataset. Understanding these relationships may provide a data scientist with the 
insights to develop better models in the future. Using ILP we are able to explain 70% 
of the dataset using a single rule, and up to 72% using two simple rules.

Our article demonstrates that the functionality of black-box ML models can be 
explained to a range of different stakeholders if the right tools are applied to the task. 
This progress unlocks the future potential of applying AI to improve credit modeling. 
New explainable AI tools can help stakeholders make counterfactual predictions and 
explain a model’s output, leading to the ability to answer many what-if questions. This 
includes stress tests for extreme scenarios and informing applicants about how to 
improve their creditworthiness. More generally, it demonstrates the importance and 
potential of explainable AI to advance classical tasks in traditional fields like credit 
modeling. However, we emphasize that the data used in the study and the models 
developed are meant to be proofs of concept only. But, similar analysis can be per-
formed for other larger datasets if they are made available.

The remainder of this article is structured as follows. “Literature Review” dis-
cusses the relevant literature. “ML Methods” describes the different models used in 
our article, and “Data” describes the dataset. “Evaluation” evaluates the prediction 
performance across different models. “Explaining ML Models” develops a range 
of explainability methods for various stakeholders. Finally, the conclusion section 
summarizes our findings.
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LITERATURE REVIEW

A range of statistical and operational research methods has been used over the 
long history of credit scoring models (Thomas 2000). Many existing models learn rela-
tionships between risk factors and borrower behavior, either using logistic regression 
(Campbell and Dietrich 1983; Cunningham and Hendershott 1984; Elul et al. 2010; 
Agarwal et al. 2011) or the Cox proportional hazards model (Green and Shoven 1983; 
Deng, Quigley, and Van Order 2000; Stanton and Wallace 2011). Some studies find 
nonlinear relationships between the risk factors and mortgage risk (Elul et al. 2010; 
Foote et al. 2010; Agarwal, Chang, and Yavas 2012).

More recently, ML techniques have been adopted for credit risk models. For 
example, Sadhwani, Giesecke, and Sirignano (2021) develop a deep learning model 
and find significant nonlinearities in mortgage delinquency, foreclosure, and pre-
payment risk. Kvamme et al. (2018) predict mortgage default using convolutional 
NNs. Lessmann et al. (2015), Thomas (2000), Breeden (2020), and Gogas and 
Papadimitriou (2021) give detailed surveys of ML methods for credit risk forecasting.  
Gogas and Papadimitriou (2021) also highlight the shortcomings of ML with regard 
to the explainability of the models for fintech applications.

On the other hand, an extensive literature has been developed about explainable 
AI in health care, computer vision, and natural language processing (Adadi and 
Berrada 2018; Molnar 2020). Even though these techniques were developed for 
other domains, some have been adopted for explaining credit risk forecast models.

A variety of solutions have been proposed to deal with the shortcomings of 
ML models used in credit risk forecasting. Interpretable ML models have been 
used by Khandani, Kim, and Lo (2010) (decision trees for a consumer credit risk 
model) and Obermann and Waack (2016) (a multiclass rule-based model for cor-
porate credit ratings). Similarly, Dumitrescu et al. (2021) propose an interpretable 
penalized logistic tree regression model for credit scoring, while Chen et al. (2022) 
use an interpretable two-layer additive risk model for a HELOC dataset. Some stud-
ies have explored the use of network-based (Giudici, Misheva, and Spelta 2020) 
or latent factor (Ahelegbey, Giudici, and Misheva 2019) models for peer-to-peer 
lending, which can be more interpretable than traditional deep learning models.  
A two-layer additive risk model was an award-winning model in the recent FICO data 
science challenge. For these models, interpretability generally comes at the cost of 
performance compared to black-box models. For example, Caruana and Niculescu-Mizil 
(2006) found that random forests outperform decision tree classifiers, but random 
forests are not interpretable. In this article, we show that an NN outperforms the 
two-layer additive risk model proposed in Chen et al. (2022), which we use as a 
benchmark. Most of these explainable ML models are developed for applications 
involving structured data.

There is also a rapidly growing literature on post hoc interpretable ML meth-
ods. These methods can generally be used on both structured and unstructured 
data. Sadhwani, Giesecke, and Sirignano (2021) use first-order derivatives and cross 
partial derivatives of the fitted transition probability with respect to features to study 
marginal and interaction effects. Bussmann et al. (2021) use Shapley values to 
explain tree-based ensemble models and apply correlation networks to group the 
borrowing companies using the derived explanations. Similarly, Misheva et al. (2021)  
use LIME and SHAP to obtain local and global explanations for models trained on a 
Lending Club dataset. Albanesi and Vamossy (2019) propose a deep learning–based 
approach that combines the outputs of tree-based ensemble models and NNs to pre-
dict consumer default, and use SHAP to provide model explanations. Other methods 
that use SHAP for explaining credit risk models include Ariza-Garzón et al. (2020) and 
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Bracke et al. (2019). More recently, Qadi et al. (2021) propose a human-in-the-loop 
ML method that combines a post hoc explanation from SHAP with explanations from 
credit risk experts. Rudin and Shaposhnik (2019) propose a minimum set cover 
problem to generate a rule-based summary of an ML model on the HELOC dataset.  
Similarly, Martens et al. (2007) propose a rule extraction method from a trained sup-
port vector machine for credit scoring. There are also some post hoc interpretability 
methods, including accumulated local effects (ALE) and leave one covariate out 
(LOCO) (Lei et al. 2018; Apley and Zhu 2020), that can be used for finding the global 
relationship between input features and output. Finally, Ponomareva and Caenazzo 
(2019) propose the layerwise relevance propagation and activation analysis of hidden 
units of an NN.3

Although these methods generate explanations of model outcomes, they are not 
tailored specifically for the different stakeholders involved in the credit risk pipeline. 
For example, many of the aforementioned methods do not provide local explainability 
that is necessary for many real-world applications. Because interpretability for one 
party may not always translate to interpretability in the eye of another party, none 
of the existing methods can be generalized for all stakeholders. In addition, they do 
not embed the specific constraints of the dataset in their methodology of generating 
explanations, which may lead to explanations that are not practical or useful. Inter-
pretability for different stakeholders has been introduced in a demo by IBM,4 but it 
remains incomplete and does not use the state-of-the-art methods that we employ 
in this study.

In this article, we present a methodology that generates explanations of black-box 
models for different stakeholders, a direction that has not been well explored previ-
ously. In some cases, we improve existing methods by making necessary modifica-
tions for our purposes, whereas in others we develop new models. In the process of 
generating these explanations, we embed constraints to ensure that explanations 
and suggestions are meaningful and can be adopted for real-world use.

ML METHODS

The fundamental goal of credit scoring is to determine the creditworthiness of an 
individual. Simply put, it is a binary classification task that labels credit applicants 
as creditworthy or noncreditworthy. A creditworthy applicant is likely to repay their 
financial obligation, whereas a noncreditworthy applicant is not.

We frame the consumer credit risk classification problem as predicting the probabil-
ity of default for a borrower. More specifically, given a set of features, , ....1 2



=x x x xi i i ki,  
for a borrower i, the task is to predict a variable yi, that is, the probability of default, 
Pr(Default). The features 



xi describe the borrower’s credit history, for example, the 
number of lines of credit and the number of times the borrower defaulted in the past, 
among others. In practice, yi is determined by long-standing credit scoring models, 
which are characterized by decisions such as whether the applicant had 90+ days 
delinquency in the two years after the opening of a new line of credit.

We frame the classification as a supervised learning problem in which we train a 
function f that can approximate the relationship yi = f ( )



xi . To train the function, f, we 
use a variety of ML models, including optimal classification trees, random forests, 
ILP, and NNs. We describe these models next.

3 There are also other interpretability methods, such as those discussed in Giudici and Raffinetti 
(2021) and Giudici, Mezzetti, and Muliere (2003), that are yet to be applied to credit risk management.

4 https://aix360.mybluemix.net/data.
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Random Forests

Random forests are an ensemble supervised learning technique. This technique 
aggregates multiple outputs from a set of predictors—in this case, multiple decision 
trees—in the belief that this will produce a more accurate classifier.

The key idea behind random forests is that a high-performing classifier can be 
constructed from a set of nonexpert classifiers that are decision trees. A single deci-
sion tree is a supervised learning method that predicts the value of a target variable 
by learning simple if–then decision rules. It is constructed using the classification and 
regression tree (CART) algorithm (Breiman et al. 1984). Each node in the decision tree 
is a condition on the value of a single feature that splits the data into two subsequent 
branches. CART recursively identifies the feature–value pair that best minimizes the 
tree’s Gini impurity, a metric of the disorderliness of the labels of a set of data points.

Random forests are trained via a method called bootstrap aggregation, or bag-
ging. The training data points are first randomly assigned into n groups with replace-
ment, where n corresponds to the number of decision trees. Individual decision trees 
are fitted to a randomly chosen set of features in each group. To classify a new data 
point, the random forest aggregates the predictions from each of its constituent deci-
sion trees and uses the majority vote as its classification. The random sampling of 
data points and features ensures that the resulting decision trees are uncorrelated. 
Thus, by aggregating their independent predictions, random forests are able to reduce 
variance and improve generalizability.

However, random forests are difficult to interpret. For individual data points, each 
decision tree gives its if–else conditions that lead to a classification, but when these 
conditions are combined over the many trees of an ensemble, interpreting these 
conditions is impossible. This makes random forests effectively a black-box model.

ILP

ILP (Muggleton 1991) involves using first-order logic to represent and explain data. 
The dataset can be represented by a finite set of rules or clauses. In this section, 
the ILP developed is data-driven and clauses are learned from the input data for the 
ILP model.

ILP requires that we specify the number of rules, N, a given maximum rule size, R,  
and the dimensional n binary input vector X. We construct Π, an N × R × 2n tensor, 
and interpret softmax(Π[i, j]) as a probability distribution for the jth term in the ith 
rule; that is, we obtain a 2n-sized discrete probability distribution over the n features 
and their negations.

The rules are learned in a disjunctive normal form that consists of clauses with ∧̂  
(AND) and ∨̂ (OR) conditions. The AND and OR operators require binary operands. 
These operators, however, must be extended to continuous operands to learn clauses 
from data. We use the product as a continuous extension of ∧̂, while a continuous 
extension of ∨̂ is obtained from DeMorgan’s law, ∨ = − −ˆ( ) 1 (1 )x A x , where A is the con-
tinuous extension of ∧̂ (product as described earlier). From parametrization and using 
these continuous extensions of ∨̂ and ∧̂ on [0, 1], we can compute an approximated 
label ŷ for an input vector X by concatenating X with its 1 - X to get a 2n-vector X*:

ˆ  ˆ ˆ ( * softmax( [ , ]))y X i ji j= ∨ ∧ ⋅ Π

where i ranges over the number of rules and j ranges over the size of a rule.
The binary cross-entropy loss between ŷ  and ground truth y can be minimized 

using stochastic gradient descent in order to learn the probability distributions in Π. 
Once the model is trained, we use the probability distribution Π to obtain a set of 
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logical rules in disjunctive normal form, for all n from 1 to N and r from 1 to R, using 
the following expression:

( )← ∨ ∧ Π= =Target argmax ( [ , , ])1 1 n r kn
N

r
R

k

In our study, X is a numerical vector with each dimension corresponding to a dif-
ferent feature value. We first rank-normalize it to change its range to [0, 1] and use 
the transformation T to binarize it: T(x) = σ(a(X - b)), where σ is the sigmoid function, 
a is the fixed scale parameter, and b is the parameter learned during optimization. 
We use stochastic gradient descent to learn the clauses based on the input data. 
Using the ILP model, we can thus learn simple interpretable rules that can be used 
for classification and summarizing datasets.

Optimal Classification Trees

Decision trees are constructed in a top-down greedy way using the CART algo-
rithm (Breiman et al. 1984), as described in the “Random Forests” section. At every 
node, the split is decided locally without the knowledge of other nodes. This makes 
decision trees only one-step optimal, leading to poor performance when classifying 
unseen points.

Optimal trees (Bertsimas and Dunn 2017) are a variant of decision trees that are 
learned in a globally optimal manner. Optimal trees decide their split in one step, with 
knowledge of all other splits. The tree learning process is modeled as a mixed-integer 
optimization problem, which can be solved using fast available optimizers. Because 
optimal trees are constructed in a globally optimal fashion, they perform better 
than decision trees, and have all the advantages of other decision trees in terms 
of explainability. Optimal trees, however, become difficult to explain if they are very 
deep, and the rules learned at every node are complex. In addition, the number of 
variables involved in optimization for the creation of an optimal tree model is a linear 
function of dataset size and an exponential function of maximum depth. In general, 
mixed integer optimization does not scale well with a large number of variables. As a 
result, deeper optimal trees take a longer time to train on large datasets compared 
to decision trees, which limits their use for Big Data problems.

NNs

NNs are supervised learning models loosely inspired by the biological networks 
of the human brain. An NN is composed of three types of layers: an input layer, a 
number of hidden layers, and an output layer. An input layer relays the input features 
into the model, the hidden layers act as the computational engine, and the output 
layer generates the final model prediction. The input to each hidden unit is a linear 
combination of the units of the preceding layer. The hidden unit then computes its 
output by mapping its input through an activation function. A nonlinear activation func-
tion is commonly used to create nonlinear interactions between the units of the NN.  
It is worth noting that logistic regression is a special case of an NN, with one hidden 
layer containing one hidden unit with a sigmoid activation function.

In NNs, the value of each hidden unit can be computed as

( )
0

∑= + ⋅




=

h x f w w zj j
i

n

ij i
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Here, wij is the weight from input zi to hidden unit hj. The weights, wij, can be learned 
by minimizing the loss function using optimizers like stochastic gradient descent.

The weights of the NN create complex and nonlinear interactions between input 
features, which do not have human-interpretable meanings. However, the complex 
nonlinear interactions learned by NNs lead, in general, to better model performance. 
Moreover, the decision boundaries learned by NNs can be both high-dimensional and 
extremely nonlinear. Thus, learned features may have varying significance at different 
points of the feature space.

DATA

For our task, we use a HELOC dataset provided by FICO. A HELOC is a revolving 
loan in which the collateral is the borrower’s equity in their house. Like a credit card, a 
HELOC is available for a set time frame during which a borrower can withdraw money 
as needed. This dataset was released as part of the explainable ML challenge by 
FICO5 and is widely used for explainable ML studies (see also “Literature Review”). 
Therefore, we follow this literature and use the same dataset to study the explain-
ability of several ML models in “ML Methods.” However, our methodology can easily 
be generalized for other credit risk datasets.

The FICO dataset contains 10,459 borrowers who were granted HELOCs during 
a two-year application window from March 2000 to March 2002. In March 2003, a 
year after the application window had closed, a performance snapshot was captured, 
and the risks of the borrowers were evaluated. In this dataset, an applicant might 
have used their HELOC for a duration between one and three years, depending on 
the time of their approval. The dataset contains 5,459 noncreditworthy records, 
while the remaining 5,000 records are deemed creditworthy. A record is considered 
noncreditworthy if the consumer has been 90 days past due at least once over a 
period of 24 months since opening the credit. The record is considered creditworthy 
if the consumer has been making payments without ever being 90 days delinquent.6

In addition to the binary target variable of credit risk classification, each credit 
applicant is characterized by 23 predictor features, 21 continuous and 2 categorical. 
Further information about these features, and important terms relevant to the data-
set, are provided in the “Explanation of Predictor Features” section of the appendix.

Although our dataset is relatively small compared to the total HELOC market, it is 
sufficient to provide a proof-of-concept benchmark that it is possible to improve credit 
predictions using ML models and, more importantly, to explain these ML models using 
our proposed framework. With a much bigger and more complete dataset in practice, 
one can expect to explain these models in a more precise and granular fashion.

EVALUATION

In this section, we evaluate the different models described in “ML Methods.” These 
ML models, including optimal trees, random forests, and NNs, are trained by recoding 
all the features using the weight of evidence (WoE) encoding. An ILP model is trained 
using the methodology described in “ILP.” We also evaluate the NN model trained on 

5 https://community.fico.com/s/explainable-machine-learning-challenge.
6 In general, default is a rare event. However, in this public dataset, the classification is provided by 

FICO and the target variable is relatively balanced between the two classes. Though this is a resampled 
dataset compared to the population of all HELOCs, it is still widely used in the literature, especially 
when studying model interpretability (see, for example, Rudin and Shaposhnik 2019, Chen et al. 2022, 
and https://aix360.mybluemix.net/data).
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a one-hot encoding version of the dataset. The details of these implementations and 
best-performing models are included in the “Model Implementation Details” section 
of the appendix, for reproducibility.

We include the two-layer additive risk model in our evaluation (Chen et al. 2022), 
which was the best-performing model of the FICO Data Challenge.7 It partitions fea-
tures into different subgroups, combining scores from different subgroups into a 
global model score. Its feature subgroups are generally interpretable because they 
are created through the intervention of an expert in the field. The model resembles a 
two-layer sparse NN. This model serves as a baseline for the other black-box models.

We evaluate these models using K-fold cross-validation. In K-fold cross-validation, 
the input dataset is randomly partitioned into K equal subsets. In each run, one of 
the subsets is chosen as the test set and the remaining as the training set. For this 
analysis, we choose K = 5, that is, in each run of cross-validation, the training set con-
tains 80% of the dataset (7,898 points), and the test set contains the remaining 20% 
(1,973 points). The class distributions of the train–test sets are included in Exhibit A1 
in the appendix. The standard errors of the performance measures are obtained by 
bootstrap sampling of the dataset (keeping a train/test split of 80%/20%) followed by 
retraining of the model and estimating the performance metric for 1,000 iterations. 
The performance measures for 1,000 iterations can be used to obtain standard errors.

We evaluate the models using different metrics: accuracy, area under the curve 
(AUC), false positive rate (type I error), and false negative rate (type II error). The 
metrics are averaged across all five cross-validation datasets. The AUC measures 
the ability of a classifier to distinguish between the classes. Our dataset is fairly bal-
anced, as is illustrated in Exhibit A1, hence the accuracy is also a good measure of 
goodness of fit along with the AUC. All models predict the Pr(Default) values for every 
sample. To classify the different samples, we used a threshold of 0.5.

As Exhibit 1 illustrates, we find that the NN model trained on WoE data8 has 
the best performance, with an accuracy of 74.75%. It outperforms the NN trained 
on one-hot encoded data, implying that the WoE-encoded features have more 

7 http://dukedatasciencefico.cs.duke.edu/.
8 “Data Preprocessing” in the appendix provides a summary of the WoE feature preprocessing.

EXHIBIT 1
Fivefold Cross-Validation Performance of ML Models

NOTES: The NN trained on WoE data performs the best with a mean test accuracy of 74.75%, precision of 74.70%, and AUC of 81.40%. 
A higher AUC implies the NN model is better able to distinguish between the creditworthy and noncreditworthy classes compared to 
other models. All rule-based classifiers have smaller values of AUC compared to the others. The NN (one-hot) has the minimum false 
positive rate, whereas two rules generated using ILP has the minimum false negative rate. All the reported values are in percentages. 
The values in parentheses are the standard errors of the estimates.

Models

ILP (one rule)

ILP (two rules)

Optimal Trees (interpretable)

Optimal Trees (black box)

Random Forest (140 trees)

Two-Layer Additive Risk

NN (one-hot)

NN (WoE)

Test Accuracy

70.71(0.92)

70.92(0.94)

72.28(1.03)

74.12(0.46)

73.77(0.01)

74.12(0.88)

74.10(0.88)

74.75(0.98)

Test AUC

70.64(0.93)

70.62(0.94)

74.18(1.74)

74.46(0.50)

79.82(0.01)

81.01(0.83)

80.59(0.84)

81.40(0.84)

False Positive Rate

31.13(1.38)

36.98(1.48)

28.25(4.26)

29.16(2.63)

29.71(0.02)

30.31(1.28)

25.16(2.50)

28.31(1.56)

False Negative Rate

27.57(1.20)

21.75(1.21)

27.21(2.99)

22.85(2.78)

23.01(0.02)

21.77(1.17)

26.60(2.25)

22.42(1.37)

Precision

71.56(1.24)

69.59(1.21)

71.59(2.16)

73.54(1.14)

73.61(0.02)

73.63(1.15)

74.06(1.53)

74.70(1.30)
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information than one-hot encoded features. The two-layer additive risk model 
performs second best, with an accuracy of 74.12%. This model is easy to inter-
pret; however, it requires the input and involvement of experts who know about 
the constraints in the dataset and the relationship between its different features  
(in order to divide features into different subgroups), which might not always be avail-
able for various applications.

On the other hand, the rule-based models, optimal trees (black box), and random 
forests suffer from the problem of explainability. For random forests, analyzing the 
ensemble of 140 trees at a time is intractable. Similarly, the optimal trees (black-box) 
model has a single deep tree with multiple features deciding every split, which is 
difficult to interpret. If we train a shallow optimal tree, its accuracy drops to 72.28%, 
but the model is easy to interpret and analyze. We also obtain a small set (one or two) 
of simple rules from ILP that are easy to understand, but they come at the cost of a 
decrease in accuracy. Even though interpretable rule-based models do not perform 
as well as the NN model, we will see in “Explaining ML Models” that they are useful 
for explainability for the different stakeholders involved.

Using ILP, we obtain a single simple rule—“If ExternalRiskEstimate is smaller 
than 72, then classify borrowers as noncreditworthy”—which achieves an accuracy 
of 70.71%. ExternalRiskEstimate is a condensed version of the borrower’s credit risk, 
a metric similar to the FICO score.9 In general, companies use the credit score and a 
threshold associated with it to decide an individual’s creditworthiness; in our case, 
it is the ExternalRiskEstimate with a threshold of 72. We observe that the use of ML 
models using different features about a borrower’s credit history can increase the 
accuracy of the delinquency forecast by four percentage points compared to the naïve 
use of credit scores.

Credit companies are naturally interested in using models with the best perfor-
mance. If credit companies give loans to borrowers by misclassifying defaulters as 
nondefaulters (i.e., false negatives), they will suffer losses. Similarly, if credit com-
panies deny loans to borrowers who can repay (i.e., false positives), they will lose 
business. A 4% improvement in accuracy may not seem big, but given the enormous 
size of the mortgage business in the United States, even a small increase in model 
performance can create a substantial economic impact.10 Moreover, a more accurate 
model can lead to more borrowers having access to loan opportunities in aggregate.11 
However, regulatory practice and the black-box nature of the models prevent them 
from harnessing these benefits. This motivates us to analyze the explainability of 
these different models.

EXPLAINING ML MODELS

We have shown in the “Evaluation” section that the NN model outperforms every 
other model tested. However, the noninterpretable nature of NNs limits its adoption. 
In this section, we analyze the explainability of models in order to help their wider 
adoption for different applications.

The multiple parties involved in credit risk management require different expla-
nations for different purposes. For instance, loan applicants who are denied loans 

9 Although this may not be an interpretable feature by itself, we keep this feature in the analysis 
because it is widely used and our goal is to generate an explanation methodology given a dataset and 
model irrespective of features included in the study.

10 In practice, with more data available by real lenders, the improvement in model performance 
should be even bigger than our proof-of-concept study.

11 See, for example, the model of Fuster et al. (2022).
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are interested in finding the reason for the denials and suggestions that can make 
them more creditworthy. Data scientists, on the other hand, are more interested in 
understanding the data, whereas regulators demand fairness from the models and 
analyze the model’s behavior in extreme scenarios. We characterize the kinds of 
explanation that are appropriate for the following end users: loan companies, data 
scientists, loan applicants, and regulators.

Interpretability for Loan Companies: Opening the Black Box

Loan companies use ML models to evaluate the creditworthiness of a borrower. 
Regulations require the loan companies to give a set of reasons for every denial of 
the application. Consequently, loan companies are interested in finding the factors 
that contribute to the creditworthiness of the individual. In addition, they require 
explanations for every prediction of the model. These explanations make the model 
transparent, and they assist in finding the most representative samples (borrowers 
from the past) for a data point (a new borrower). We use state-of-the-art methods to 
generate explanations for our model predictions, including LIME (Ribeiro, Singh, and 
Guestrin 2016) and SHAP (Lundberg and Lee 2017). We generate explanations for 
the best-performing NN model. Our key contributions in this section include applying 
and comparing existing models (LIME and SHAP) to generate explanations for loan 
companies, modifying LIME to improve the validity of linear approximations in our 
context, and using the k nearest neighbor (kNN) algorithm on the explanation to find 
representative samples for a data point.

LIME

LIME is a model-agnostic technique that approximates the decision boundary of 
a model at a particular data point using a linear approximation.12 This linearity makes 
the LIME model interpretable. The approximation is constructed by training a locally 
weighted linear regression model in the neighborhood of the data point of interest. 
The coefficients of the regression can be used to justify the data point’s classifica-
tion. Because the features are on the same scale (WoE encoded), the coefficients 
are comparable.

Constructing a locally weighted linear regression model involves sampling and 
perturbing the data points that are used for training. One of the shortcomings of 
LIME is that the perturbed data points sampled by LIME may be invalid. For example, 
imagine a dataset with two features A and B, with a constraint that A < B. Sampling 
each feature’s value independently, as is done in LIME’s original algorithm, may 
produce perturbed data points where this constraint is violated. We address this 
shortcoming of LIME by modifying the algorithm to take into account the potential 
interdependencies of different input features.

This modification changes the methodology of sampling a data point of the LIME 
algorithm. In its original implementation, a data point with n features is sampled by 
independently sampling each of its n features from univariate normal distributions. In 
our modified implementation, a data point is sampled directly from a joint multivariate 
normal distribution across all features. This allows perturbations to be informed by 
the correlation of features. The multivariate normal distribution is still centered on 
the mean of each feature value, but the standard deviation along each feature is 
determined by the correlation matrix of the input data.

12 The key idea behind LIME is that every segment of the decision boundary begins to look linear 
at increasingly smaller scales.
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We first evaluate our modified LIME with respect to the validity of the perturbed 
data points. As noted, LIME samples perturbed points in the neighborhood of the 
input data point. We generate a set of 5,000 perturbed data points from several 
univariate normal distributions centered on the feature means and a single multivar-
iate normal distribution centered similarly. We measure the quality of the sampled 
points by two metrics.

Correlation. The correlation between features of the perturbed data points 
should be similar to that of the features in the training dataset. We compute the 
mean-squared error (MSE) between the correlation matrix of the training data and that 
of the perturbed points generated by both implementations of LIME. Let us call these 
values MSEoriginal and MSEmodified, respectively. We find that MSEmodified is much smaller 
than MSEoriginal (0.000 versus 0.053). This is expected because the correlation matrix 
of the training data is an input to the multivariate normal distribution that samples 
perturbed points in our modified implementation. Our perturbed data more closely 
resemble the characteristics of the original dataset.

Constraint violation. There are 12 constraints relevant to the HELOC dataset (six 
relational constraints and six value constraints). We determined these via discussions 
with FICO personnel. Examples of these constraints include “All feature values with 
percentage units should be smaller than 100” and “The number of lines of credit 
not delinquent must be less than the total number of lines of credit.” The 5,000 per-
turbed data points are scanned for violations of these constraints. The results for all 
constraints are shown in Exhibit 2. We see that the modified implementation of LIME 
produces fewer violations than the original implementation in 7 out of the 12 con-
straints. Moreover, a perturbed point sampled by the modified implementation has,  
on average, 1.954 constraint violations versus 2.627 for the original implementation. 
Hence, the modified LIME does provide an improvement in terms of generating more 
realistic data points.

We also compute the average goodness of fit of the linear model in LIME for all 
test data points. We find that the average R2 of the modified LIME is 90%, compared 
to 88% for the original LIME. Comparing correlation, constraint violation, and goodness 
of fit, we conclude that the modified LIME leads to better surrogate models. In the 

EXHIBIT 2
Constraint Violation

NOTES: This exhibit shows a comparison of constraint violations among 5,000 perturbed points sampled from the original and  
modified implementations of LIME. The points sampled from the modified implementation of LIME have fewer violations in 7  
out of the 12 constraints.

Index

1
2
3
4
5
6
7
8
9
10
11
12

Constraint

All feature values interpreted quantitatively must be non-negative
PercentLOCNeverDelq ≤ 100
PercentInstLOC ≤ 100
PercentLOCWBalance ≤ 100
FracRevLOCLimitUse ≤ 100
FracInstLOCUse ≤ 100
NumLOC90PlusDaysDelq ≤ NumLOC60PlusDaysDelq
NumLOCReqLast6MExPastWeek ≤ NumLOCReqLast6M
NumLOC60PlusDaysDelq ≤ NumTotalLOC
NumLOC90PlusDaysDelq ≤ NumTotalLOC
NumLOCNotDelq ≤ NumTotalLOC
NumLOCInLast12M ≤ NumTotalLOC

Original LIME
Violations

4,383
1,198

1
340

62
509

1,656
2,095

191
192

2,257
249

Modified LIME
Violations

4,024
1,183

2
296

75
506
655
388
239
233

1,915
255
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remainder of the article, we use this modified LIME for our analysis, which we refer 
to as the LIME model for simplicity.

Explaining Model Predictions (LIME)

LIME learns a linear surrogate model. As a result, for each data point, the coef-
ficients of its linear regression can be interpreted as the change in the output pro-
duced by a unit change in the corresponding feature value, given that other feature 
values are held constant. Exhibit 3 shows an example of a LIME explanation. A unit 
increase in the values of features with coefficients shown in red lines will increase 
the noncreditworthy probability, whereas a unit increase in the values of features 
with coefficients shown in blue lines will decrease the noncreditworthy probability.

After obtaining the feature importance for all the data points, they can be aggre-
gated to find the overall feature importance. In Exhibit 4, we look at the global feature 
importance for the model. The top three most significant features are the months 
since the newest request for a new line of credit (excluding those requested in the past 
week), the external risk estimate, and the fraction of all revolving line of credit limits 
in use. It is worth emphasizing that the external risk estimate is an important feature 
of the model but not the most important one. This can be understood by observing 
the nonlinear nature of the classifier in Exhibit 4, Panel A. For example, for the feature 
“months since the newest request for a new line of credit (excluding those requested 
in the past week),” having small and large values both contribute to a decrease in the 
noncreditworthy probability, while having values around the median contributes to an 
increase in the noncreditworthy probability. Such a nonlinear relationship would be 

EXHIBIT 3
The LIME Model Approximation for a Random Data Point

NOTES: A unit increase in features with a red horizontal line will increase the noncreditworthy probability. Similarly, a unit increase  
in features with a blue horizontal line will decrease the noncreditworthy probability. The contribution of each feature in the model 
explanation can be obtained by multiplying each feature coefficient by the feature value.

NumLOCNotDelq
MSinceNewLOCReqExPastWeek

NumRevLOCWBalance
PercentInstLOC

AvgAgeOfLOC
PercentLOCNeverDelq
NumInstLOCWBalance

FracRevLOCLimitUse
MSinceMRecentDelq
NumLOCReqLast6M

NumLOC90PlusDaysDelq
NumLOCReqLast6MExPastWeek

NumTotalLOC
MSinceNewestLOC

ExternalRiskEstimate
NumBankOrNatlLoansWHighUtil

MaxDelqEver
MaxDelqLast12M

NumLOCInLast12M
PercentLOCWBalance

MSinceFirstLOC
FracInstLOCUse

NumLOC60PlusDaysDelq
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EXHIBIT 4
Feature Importance Obtained by Aggregating LIME Explanations for All Samples in the Test Set

NOTES: In Panel A, the color coding (blue-red) represents the value of the feature. For example, for the external risk estimate, the larger 
values (in red) contribute to the decreasing noncreditworthy probability, whereas the smaller values (in blue) contribute to the increasing 
noncreditworthy probability. The contributions are defined relative to 0.5 (equal probability of default/nondefault). The x-axis is the con-
tribution of the individual feature in the output of the model relative to 0.5. For example, for a data point, if the contribution of all other 
features is zero and the contribution of the external risk estimate is -0.2, the model’s output will be 0.5 - 0.2 = 0.3. Panel B  
is obtained by aggregating the feature importance as obtained for all points, which illustrates that the three most significant features 
are months since the newest request for a new line of credit (excluding those requested in the past week), the external risk estimate, 
and the fraction of all revolving line of credit limits in use.

Low

High
MSinceNewLOCReqExPastWeek

ExternalRiskEstimate
FracRevLOCLimitUse

PercentLOCNeverDelq
AvgAgeOfLOC

MSinceMRecentDelq
MaxDelqEver

NumLOCNotDelq
NumLOCReqLast6M

PercentInstLOC
NumRevLOCWBalance

NumBankOrNatlLoansWHighUtil
MaxDelqLast12M

NumTotalLOC

FracInstLOCUse
MSinceNewestLOC

NumLOC60PlusDaysDelq
NumInstLOCWBalance

NumLOC90PlusDaysDelq
NumLOCReqLast6MExPastWeek

Fe
at

ur
e 

Va
lu

e

–0
.2

–0
.1 0.

0
0.

1
0.

2
–0

.3 0.
3

MSinceNewLOCReqExPastWeek
ExternalRiskEstimate
FracRevLOCLimitUse

PercentLOCNeverDelq
AvgAgeOfLOC

MSinceMRecentDelq
MaxDelqEver

NumLOCNotDelq
NumLOCReqLast6M

PercentInstLOC
NumRevLOCWBalance

NumBankOrNatlLoansWHighUtil
MaxDelqLast12M

NumTotalLOC

FracInstLOCUse
MSinceNewestLOC

NumLOC60PlusDaysDelq
NumInstLOCWBalance

NumLOC90PlusDaysDelq
NumLOCReqLast6MExPastWeek

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
00

0.
08

Panel A: Feature Contribution for All Samples in the Test Set

Panel B: Average Feature Contribution (absolute value) for All Samples

AUTHOR-A
UTHORIZED C

OPY FOR LIM
ITED D

ISTRIB
UTIO

N O
NLY



The Journal of Financial Data Science | 23Fall 2023

difficult to capture using traditional models. These generated explanations and the 
overall feature importance also aid in discovering biases in the model.

The quality of LIME explanations depends on the fidelity of the LIME model. We 
evaluate the fidelity of the approximations produced by our modified implementation 
of LIME for the best-performing NN. We do this by constructing an approximation at 
each of the 1,973 points in the test dataset and computing the fraction of times 
the NN and the LIME approximations produce the same classification. We find that 
out of 1,973 data points, 1,935 points have the same classification for the linear 
LIME approximation and the NN model being analyzed. The high fidelity of the LIME 
approximations shows that LIME is able to generate valid linear approximations that 
can be trusted for a large number of data points.

However, for the few cases in which the classification of the NN model and 
LIME do not match and are significantly different, the linear approximation cannot 
be trusted. In order to generate explanations for these points, we discuss another 
method.

SHAP

SHAP is an explainable AI method with an economic foundation. It performs the 
Shapley value decomposition of the model output, giving the contributions of every 
feature at a data point. Like LIME, it is also a model-agnostic method.

Shapley values have several good properties that satisfy a number of important 
criteria, including local accuracy (i.e., the model explanation matches the original 
prediction), handling of missing data (i.e., if the feature is absent, its contribution to 
the model prediction will be zero), and consistency (i.e., if the model changes in a 
way that leads to larger marginal contributions for a feature, the Shapley values also 
increase). Shapley values also incorporate the interactions between features in the 
process of calculating feature importance, making SHAP a more reliable method for 
interpretability than LIME.

We use the kernel SHAP implementation from Lundberg and Lee (2017). The 
kernel SHAP procedure computes the Shapley values by running a weighted least 
squares regression whose solution is the Shapley values of features. To explain a 
point 



xi, the different points used in the linear regression are obtained by selecting 
a subset of features from 



xi, and the remaining subset of features not selected are 
replaced with values from background data points (i.e.,  from training data). The 
weights of the linear regression are decided by the size of the sampled subset. For 
example, a subset of one feature has the maximum weight because it provides the 
maximum information about that feature’s contribution. Using the described weighted 
least squares regression, we obtain Shapley values for the data point 



xi. It is worth 
highlighting that the kernel SHAP implementation relies on taking subsets of features, 
that is, 2Numberoffeatures. As a result, kernel SHAP does not scale well.

Using SHAP, we obtain explanations for the classification of all the data points in 
the test set. Similar to LIME, the Shapley values for features can be aggregated for 
all test points to find the overall impact of a feature on the model. We present the 
feature importance for all data points in the test sample in Exhibit 5, which shows 
that the months since the newest request for a new line of credit (excluding those 
requested in the past week), the fraction of all revolving line of credit limits in use, 
and the average age of lines of credit are the top three most important features for 
the model. We observe a minor difference in the feature contribution obtained from 
LIME and SHAP. This may be due to the fact that not all LIME approximations are 
locally accurate.

It is also worth emphasizing that both LIME and SHAP have their weaknesses, 
which may affect the explanations in the credit risk domain. For example, in addition 
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EXHIBIT 5
Feature Importance (Shapley Values) Obtained by Aggregating Kernel SHAP Explanations for All the Samples  
in the Test Set

NOTES: In Panel A, the color coding (blue-red) represents the value of the feature. For instance, the larger values (in red) for the 
external risk estimate contribute to the decreasing noncreditworthy probability, whereas the smaller values (in blue) contribute to the 
increasing noncreditworthy probability. The contributions are defined relative to 0.5 (equal probability of default/nondefault). The x-axis 
is the contribution of the individual feature in the output of the model relative to 0.5. For example, for a data point, if the contribution 
of all other features is zero and the contribution of the external risk estimate is -0.2, the model’s output will be 0.5 - 0.2 = 0.3.  
We obtain the overall feature importance (as illustrated in Panel B) by aggregating Shapley values for all test points. The most import-
ant features are the months since the newest request for a new line of credit (excluding those requested in the past week), the frac-
tion of all revolving line of credit limits in use, and the average age of lines of credit. These are largely consistent with the LIME feature 
importance. Small discrepancies can be attributed to the inaccurate local approximations of LIME.
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to feature importance, we can obtain locally linear approximations using LIME  
(as shown in Exhibit 3), which are not available in SHAP. These local approximations 
of the decision boundary are necessary for other applications, which will become 
clear in the next section. However, the explanations using LIME might not satisfy 
important properties like local accuracy and consistency that Shapley values allow. 
In addition, we have incorporated feature correlations in the sampling of data points 
for learning the local linear model in LIME, which leads to fewer constraint violations 
in the input feature vector, hence creating more realistic data points. However, in 
SHAP such feature correlations are not considered when computing Shapley values.

From the computational perspective, different runs of LIME produce slightly differ-
ent explanations because of the randomness in sampling local data points. Conse-
quently, it can potentially suffer from instability issues. On the other hand, computing 
Shapley values is not scalable for datasets with a large number of features. In such 
scenarios, LIME approximations can be computed efficiently. Therefore, both methods 
(SHAP and LIME) should be used in practice depending on the use case, carefully 
and judiciously.

Finding Representative Samples

Another application of model explanations is to find the most representative data 
point for a particular target point analyzed. It can be useful in scenarios in which 
loan companies might require representative data points from the past to explain the 
model prediction of a particular loan candidate. For example, the borrower 



xi might 
default in the future because it is similar to x j



 and xk



 who defaulted in past.
The kNN algorithm applied to the data naively can generate the most similar 

points in the sample. If we apply kNN to the original feature space, however, the 
less significant features will end up contributing to the distance calculations between 
the data points. To avoid this problem, every data point can be represented by a 
feature importance vector (for instance, a vector of Shapley values), and kNN can be 
applied to the feature importance vector. Using SHAP will ensure that less important 
features have smaller feature contributions (i.e., smaller Shapley values). Hence, the 
contributions of less important features to the distance calculation in the kNN will 
be minimal. This modification leads to finding a more representative data point for 
each new data point being analyzed.

Interpretability for Regulators: Model Fairness and Stress Testing

In the previous sections, we generated explanations for model predictions. Apart 
from concerns about the transparency of the credit approval algorithm, government 
regulations mandate that these algorithms must be fair. Concerns about the fairness 
of a model arise when the model gives importance to features like race, religion, 
or gender that are specified in law. Our HELOC dataset does not contain any such 
features overtly. Nevertheless, the fairness of a black-box model can be examined 
(if features were present) using the individual and overall feature contributions that 
are obtained from LIME and SHAP.

Another important aspect of interpretability for regulators is stress testing the 
models. The credit risk models used by companies need to withstand appropriate 
stress testing. This involves simulating extreme scenarios and analyzing the model’s 
behavior in response to generally extreme macroeconomic conditions.

Extreme macroeconomic conditions cannot be simulated in our model because 
of its lack of macroeconomic features. However, we demonstrate how interpretabil-
ity methods can help in stress testing a black-box model for extreme customers. 
The same methodology can be generalized for extreme macroeconomic conditions.  
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We use two extreme customers in our stress testing. 
In the first case, an extreme customer is obtained by 
sampling points from a multivariate normal distribution 
with extreme values. While sampling, some feature 
values may no longer satisfy the feature-specific con-
straints; for them, we manually truncate the feature 
values. In the second case, we use a customer whose 
feature values are all -9, that is, there is no bureau 
record or investigation on file about this customer. 
We have multiple such data points in the dataset that 
are not included for training or testing purposes. The 
extreme points used in our analysis are included in 
Exhibit 6.

Regulators are interested in verifying the validity 
of the model’s output and analyzing its behavior. We 
preprocessed features for these extreme customers 
using the WoE encoding, which leads to extreme val-
ues being assigned to one of the bins. Due to this bin-
ning, the model was able to produce valid predictions. 
For case 1, the output is Pr(Default) = 0.53, which 
implies that the person may or may not default with 
almost equal probability. Because this data point is 
sampled randomly, we cannot comment on the accu-
racy of the prediction. For case 2, the model’s pre-
diction is Pr(Default) = 0.75, which implies that, when 
there is no information about the person on file, the 
person is likely to default, hence preventing lenders 
from approving credit for such individuals with no infor-
mation in their credit file.

To understand the behavior of the model in the 
proximity of extreme points, we use the LIME model 
approximation. For cases 1 and 2, we present the 
LIME approximation in Exhibit 7. In both cases, the 
predictions from the LIME model are close to the orig-
inal model predictions. For extreme customer 1, the 

model’s output is 0.53 and the LIME prediction is 0.53. For extreme customer 2, the 
model’s output is 0.75 and the LIME prediction is 0.68. We also compute the R2 for 
the LIME linear model, which is 99.6% and 88.8%, respectively, for the two customers. 
These results demonstrate that the approximations are fairly trustworthy and may be 
useful to regulators to learn more about the model’s behavior in extreme scenarios.

In this section, our key contributions include a proof-of-concept demonstration 
of the use of explainable AI methods for generating explanations in model fairness 
testing and stress testing that may be able to assist regulators in their duties.  
Next, we discuss the use of model interpretability for loan applicants.

Interpretability for Loan Applicants: Counterfactual Suggestions

Loan applicants are interested in two major aspects of model interpretability. The 
first is to learn the reason behind their denial or approval, and the second is how 
to modify the features that might change their classification in the future. Explana-
tions for the reason behind denial or approval can be obtained from the techniques 
discussed in the previous sections. In this section, we discuss the methodology of 
generating instructions for reversing the model’s classification using state-of-the-art 

EXHIBIT 6
Extreme Customers (data points)

NOTES: The first point is sampled, assuming features are mul-
tivariate Gaussian. The second point is obtained by setting 
all feature values to -9 (no bureau record or investigation). 
Because the data point 1 is sampled from a multivariate 
Gaussian distribution, it may contain feature values that are  
not coherent.

Feature

ExternalRiskEstimate
MSinceFirstLOC
MSinceNewestLOC
AvgAgeOfLOC
NumLOCNotDelq
NumLOC60PlusDaysDelq
NumLOC90PlusDaysDelq
PercentLOCNeverDelq
MSinceMRecentDelq
MaxDelqLast12M
MaxDelqEver
NumTotalLOC
NumLOCInLast12M
PercentInstLOC
MSinceNewLOCReqExPastWeek
NumLOCReqLast6M
NumLOCReqLast6MExPastWeek
FracRevLOCLimitUse
FracInstLOCUse
NumRevLOCWBalance
NumInstLOCWBalance
NumBankOrNatlLoansWHighUtil
PercentLOCWBalance

Model Prediction

Data Pt 1

131
935

99
467

89
6
5

100
115

16
13

125
6

88
35
13
12
71

100
23
25
21

100

0.53

Data Pt 2

–9
–9
–9
–9
–9
–9
–9
–9
–9
–9
–9
–9
–9
–9
–9
–9
–9
–9
–9
–9
–9
–9
–9

0.75
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models in the literature and make appropriate modifications to the existing models 
to generate realistic instructions for reverse classification.

Applicants are interested in counterfactuals that provide information about the 
steps that might change the decision of the model. Consequently, the counterfactuals 
being generated should have the following properties: reverse classification (i.e., the 
model prediction for the counterfactual should be reversed from the original deci-
sion), proximity (i.e., the counterfactual should be close to the original data point), 
and diversity (i.e., there should be multiple different counterfactuals from which an 
individual is able to choose).

EXHIBIT 7
LIME Explanations for the Two Extreme Scenarios (case 1: an extreme sample, case 2: no information in file)

NOTES: The regulators obtain the linear approximation using the LIME model in the proximity of an extreme sample. In both cases, 
the LIME approximation is close to the model’s output. For extreme customer 1, the model’s output is 0.53 and the LIME prediction 
is 0.53. For extreme customer 2, the model’s output is 0.75 and the LIME prediction is 0.68. The R2 of LIME is 99.6% and 88.8%, 
respectively. The LIME models are Σ(FeatureValue) · (LIME - Coefficient) whose coefficients are represented by the horizontal lines. We 
can observe that for extreme case 1, the model gives its maximum importance to the percentage of lines of credit that are installment 
lines of credit; for extreme case 2, the model gives its highest importance to the months since the newest request for a new line of 
credit excluding those requested in the past week. This analysis can be extended to different extreme conditions.

Original Prediction = 0.53 LIME Prediction = 0.53

PercentlnstLOC
NumLOCReqLast6M

ExternalRiskEstimate
FracRevLOCLimitUse

PercentLOCNeverDelq
NumBankOrNatlLoansWHighUtil

FraclnstLOCUse
MSinceNewLOCReqExPastWeek

NumLOC60PlusDaysDelq
NumLOCReqLast6MExPastWeek

MaxDelqEver
NumLOC90PlusDaysDelq

NumLOClnLast12M
NumRevLOCWBalance

MSinceFirstLOC
AvgAgeOfLOC

MaxDelqLast12M
MSinceNewestLOC

NumLOCNotDelq
PercentLOCWBalance

NumTotalLOC
NumlnstLOCWBalance

MSinceMRecentDelq

–0.10 0.10 0.15 0.20 0.25–0.05 0.00 0.05

Panel A: Case 1—Feature Contribution Panel B: Case 1—LIME Model
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Panel C: Case 2—Feature Contribution
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NumLOCReqLast6MExPastWeek

NumLOC90PlusDaysDelq
NumLOClnLast12M

NumRevLOCWBalance

MSinceFirstLOC

MaxDelqLast12M
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MSinceMRecentDelq
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NumTotalLOC

–0.010 0.010 0.015 0.020–0.005 0.000 0.005

Original Prediction = 0.75 LIME Prediction = 0.68

Panel D: Case 2—LIME Model
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We generate counterfactuals using the state-of-the-art method, diverse counter-
factual explanations (DiCE) (Mothilal, Sharma, and Tan 2020). This method learns 
the counterfactuals, ci, for a data point y optimizing over the requirements of the 
counterfactual. In particular, it learns the ci’s by minimizing the following loss:

( ( ), ) ( , ) ( , , ,  )
1

1
1

2 1 2L loss f c y dist c y diversity c c c
i

k

i
i

k

i k∑ ∑= + λ − λ ⋅
= =

where the first part is the reverse classification loss (cross entropy for our applica-
tion), the second part is the proximity to the original data point (average L1 distance), 
and the third part is the diversity component (determinant of kernel matrix given by 
the distance between counterfactuals). λ1 and λ2 are the weights for proximity and 
diversity components, respectively. The exact details of the implementation of dif-
ferent loss function components can be found in Mothilal, Sharma, and Tan (2020).

We study a few illustrative examples and analyze the properties of the counter-
factuals generated using DiCE.13 Counterfactuals can be generated using other algo-
rithms as demonstrated in Gomez et al. (2020). We use DiCE because it implements 

the diversity functionality while generating counterfac-
tuals. We analyze the importance of diversity next.

Applicants classified as noncreditworthy are inter-
ested in the steps that can make them creditworthy. 
The steps suggested must be practical enough for 
an applicant to implement. Some features are inher-
ently impossible for individuals who are deemed non-
creditworthy to improve. For example, the maximum 
delinquency ever in days cannot be decreased: It is 
an event that happened in the past and cannot be 
changed. Likewise, the total number of lines of credit 
established cannot be increased because the person 
has been turned down from opening a new line of 
credit.

In our system, the features that are impossible 
to modify are incorporated as constraints in the opti-
mization of loss L. Exhibit 8 shows an example of 
the set of suggestions to become creditworthy for an 
individual who is deemed noncreditworthy. All of the 
suggestions are possible to implement, though some 
might be difficult. In cases in which it is hard for an 
individual to implement certain changes, they may be 
able to choose from a diverse set of counterfactuals 
to reverse the classification.

In Exhibit 8, the first counterfactual suggests 
increasing the months since the applicant’s most 
recent delinquency to more than four years. How-
ever, this requires an individual to wait for four years 
while making payments for all their lines of credit. In 
this case, the individual may instead choose to fol-
low another set of steps, as suggested by the third 
counterfactual: increasing the percentage of lines 
of credit never delinquent (by decreasing the total 

13 We use the publicly available implementation of the DiCE algorithm, found at https://github.
com/interpretml/DiCE.

EXHIBIT 8
The Steps Toward Creditworthiness Suggested  
to an Individual Deemed Noncreditworthy

NOTES: Following these steps, an individual should be able to 
decrease the noncreditworthy probability predicted by the ML 
model. Because some suggestions may be difficult for an indi-
vidual to follow, we provide multiple diverse counterfactuals. 
The first counterfactual suggests changing the months since 
the most recent delinquency from the value of 0–4 months to 
greater than 48 months, which means that person should not be 
delinquent for the next four years. In the second counterfactual, 
one of the suggestions is to decrease the total number of lines 
of credit to 0–1 (by closing accounts). The third counterfactual 
suggests decreasing the number of lines of credit to increase 
the percentage of lines of credit never delinquent, and decrease 
the number of line of credit requests in the most recent six 
months prior to applying for a new line of credit. Providing mul-
tiple diverse counterfactuals allows the option of selecting the 
most convenient option for an individual.

Feature

MSinceMRecentDelq
NumLOCReqLast6M

Pr(Default)

AvgAgeOfLOC
NumTotalLOC
NumLOCReqLast6M

Pr(Default)

PercentLOCNeverDelq
NumLOCReqLast6M

Pr(Default)

Original Value

0–4
2–4

0.63

75–98
9–14
2–4

0.63

0–82
2–4

0.63

New Value

48−
1–2

0.44

98−
0–1
1–2

0.43

98−
1–2

0.31
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lines of credit), along with decreasing the number 
of lines of credit requests made in the six months 
prior to applying for a new line of credit. Similarly, 
diversity-constrained counterfactual suggestions can 
be made for all individuals who are deemed noncred-
itworthy, and individuals can follow the steps that are 
most convenient to their circumstances.

Likewise, the people who are classified as credit-
worthy would like to maintain their creditworthy status. 
Hence, they would like to know which actions to avoid 
that might make them noncreditworthy. Exhibit  9 
presents one such example. The applicant in Exhibit 9 
might face a credit denial if they take steps such as 
opening up new lines of credit, decreasing the lines of 
credit that are not currently delinquent, increasing the 
fraction of revolving lines of credit, and making new 
requests for a line of credit in the six months prior to 
applying for another line of credit. These steps result 
in the noncreditworthy probability, as suggested by 
the model increasing from 0.09 to 0.58, which may 
lead to a denial of credit. From these counterfactuals, 
the applicant thus knows the steps not to take that 
otherwise may decrease their creditworthiness.

To gauge the ability of DiCE to generate counter-
factuals, we run it for all test data points (total: 1,973) 
and count the number of points for which the coun-
terfactuals were successfully found. In Exhibit 10, we 
show that increasing the proximity constraint leads to 
a decrease in the average number of feature changes 
in the counterfactuals obtained. We also observe 
that increasing the proximity constraint leads to a 
decrease in the number of successfully generated 
counterfactuals. An optimal algorithm to generate 
counterfactuals for an individual thus is to start with 
a high value for the proximity constraint and slowly 
decrease it until a counterfactual is found.

Using DiCE and related counterfactual generating 
methods, we can generate suggestions for loan applicants, as discussed earlier. One 
limitation of the counterfactual generation algorithm is the inability to take feature 
relationships into consideration. For example, if one of the generated counterfactuals 
suggests decreasing the number of the total lines of credit, that also leads to modi-
fications in the features that depend on the total number of lines of credit. This type 
of relationship, however, is ignored in the present method. Solving this problem would 
involve the intervention of an expert who is familiar with the relationship between the 
model’s features and can encode them as constraints in the counterfactual generation 
optimization process. We leave this for future studies.

Interpretability for Researchers and Data Scientists: Simple Rules  
to Summarize the Dataset

One aspect of interpretability of particular interest to data scientists is the sum-
marization of the data and the model and answering key interpretability questions 
for other stakeholders. A global view of the data and the model is able to give the 

EXHIBIT 9
The Steps That Can Make a Creditworthy-Deemed 
Individual Noncreditworthy, as Suggested by the 
Algorithm

NOTES: In simple English, if the individual decreases the number 
of lines of credit not currently delinquent, opens up multiple new 
lines of credit leading to a decrease in the average age of their 
lines of credit, made multiple requests for lines of credit in the 
past six months, and increases the fraction of their revolving 
line of credit, then the individual will be deemed noncredit-
worthy.

Feature

AvgAgeOfLOC
NumLOCNotDelq

Pr(Default)

NumLOCReqLast6M
FracRevLOCLimitUse

Original Value

60–75
12–17

0.09

0–1
13–29

New Value

4–29
4–6
1–2
77−

0.58

EXHIBIT 10
Proximity Analysis

NOTES: By increasing the proximity constraint (λ1), the number 
of changes required for generating a successful counterfactual 
decreases, and the number of data points for which successful 
counterfactuals are generated also decreases. An optimal algo-
rithm to generate counterfactuals for an individual is to start 
with a larger proximity constraint and slowly decrease it until a 
counterfactual is found.

Mean No.
of Feature
Changes

3.96
3.35
2.66

Proximity
Constraint
(λ1)

0.5
1.5
5.0

Loss Value
(distance)

0.054
0.045
0.035

No. of Success
Counterfactual

Found

1,961
1,909
1,854
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researcher an idea about any possible problems with the model. It can additionally 
help them to present a summary of the model to managers or regulators. In this 
section, we discuss methods that may help data scientists to demystify these 
black-box models for their particular needs. The key contribution in this section 
includes applying data-driven ILP and decision trees to generate a dataset summary, 
which is not discussed in earlier sections.

We have already discussed the first aspect of interpretability, the summarization 
of the model. A good summary of the model includes determining the most important 
features that contribute to the model’s prediction. Using the methods described in the 
previous sections (LIME and SHAP), data scientists can obtain the most important 
features and know their contribution to the model’s overall prediction. For example, 
Exhibit 5 illustrates that the feature “months since the newest request for a new line 
of credit (excluding those requested in the past week)” is the most important feature 
in the model. The model summary also includes information about the relationship 
between the input and output of the model. Additionally, from Exhibit 5, Panel A, we 
can observe that higher values of the fraction of all revolving line of credit limits in 
use increase the noncreditworthy probability.

Another important aspect for researchers is the summarization of the dataset. 
It involves discovering the intrinsic relationships within the dataset. To this end, we 
aim to learn a set of simple rules that can summarize the dataset. Tree-based clas-
sification approaches can be used to learn such rules. A tree classifier is a set of 
if–else statements that determines the classification of a data point. As illustrated 
in Exhibit 1, the best optimal tree classifier with our dataset achieves an accuracy 
of 74.12%. However, the complexity of rules obtained from the best optimal trees 
classifier makes these rules difficult to analyze and interpret.

To obtain rules that are simple to understand, the decision tree must be con-
strained to a smaller depth, with fewer features at every node. Consequently, we use 
a simpler and interpretable optimal tree to obtain more easily analyzed rules. This 
simple optimal tree is shown in Exhibit 11. Here, we show two simple rules that can 
achieve an accuracy of 72.28%. The rules state that a person will default on a loan 

EXHIBIT 11
Explainable Optimal Tree Model Used to Learn Simple Rules Summarizing the Dataset

NOTE: The rules state that a person will default on a loan (i.e., be classified as noncreditworthy) if the number of months since a new 
line of credit has been requested (excluding the past week) is greater than 1 and the external risk estimate is less than 75, or the 
number of months since a new line of credit has been requested (excluding the past week) is less than or equal to 1 and the external 
risk estimate is less than 68.

1

2

3

Predict 0
p = 65.02%

Predict 0
p = 75.57%

4 6 7Predict 1
p = 66.33%

Predict 0
p = 64.55%

Predict 1
p = 75.07%

<–0.0425 ≥–0.0425

MSinceNewLOCReqExPastWeek

ExternalRiskEstimate ExternalRiskEstimate

<0.6205 ≥0.6205 <–0.2805 ≥–0.2805

Predict 1
p = 52.21%

5 Predict 1
p = 61.35%

1
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(i.e., be classified as noncreditworthy) if the number of months since a new line of 
credit has been requested (excluding those requested in the past week) is greater 
than 1, and the external risk estimate is less than 75, or if the number of months 
since a new line of credit has been requested (excluding those requested in the past 
week) is less than or equal to 1, and the external risk estimate is less than 68.

We use ILP to learn an even simpler set of rules with a small decrease in accu-
racy compared to the rules generated from the optimal trees model. As discussed 
earlier, ILP generates rules that are composed of a single condition; for example, 
using the rule ExternalRiskEstimate < 72 to classify people into noncreditworthy and 
creditworthy groups can achieve an accuracy of 70.65%.

In addition to ILP, there exist multiple other rule-finding methods in the literature. 
The ILP approach, however, stands out in terms of its simplicity and ability to learn 
more effective rules. For example, anchors (Ribeiro, Singh, and Guestrin 2018) can 
be used for generating rules based on data points that are in close proximity. The 
logistic rule regression/generalized linear rule model described in Wei et al. (2019) 
is another rule-based model, but it leads to multiple rules that are difficult to analyze 
together. Similarly, the Boolean rule column generation method described in Dash, 
Günlük, and Wei (2018) gives a set of rules to describe a dataset, but it requires 
users to divide feature values into different bins before learning the rules. Data bin-
ning limits the quality of the generated rules because the binning algorithm may not 
select the optimal thresholds for the rule.

Using the methods discussed earlier, data scientists should be better able to 
summarize datasets and demystify models. Obtaining a good summary of the data-
set and an understanding of the model will help in the creation of better classifiers.

CONCLUSION

In this article, we examine several different ML models and use suitable tools to 
create explanations of their respective functions according to the needs of different 
stakeholders involved in credit risk management. We use state-of-the-art interpre-
table ML techniques, including LIME, SHAP, and DiCE, and adapt them to our use 
case. We demonstrate the importance of domain-specific knowledge in order to 
explain these black-box models. These domain-specific constraints must be obtained 
from experts in the field, and they can produce pragmatically valid suggestions and 
explanations.

Our results demonstrate that, with the right tools, even black-box ML models 
are able to answer a series of important questions for credit risk modeling. These 
questions include: Why does the model classify a data point in a certain way? 
What small changes in feature values could reverse the model’s classification of an 
individual? How does the model behave in extreme scenarios? What relationships 
did the model learn? Are the models biased? What is the minimal summary of the 
dataset?

Answering these questions not only fulfills the legal requirements specified by 
regulators for the use of ML models in credit risk management but also provides 
borrowers, lenders, and data scientists with answers to questions that they may 
desire from ML models. Improvements in the interpretability of ML models can not 
only accelerate their adoption but also help domain experts troubleshoot their inner 
workings, which in turn drives the model to iterate toward higher accuracy and be 
tailored to its domain.

Many problems in finance and economics have a common mathematical rep-
resentation and internal statistical structure and may therefore benefit from our 
framework to interpret the black-box ML models used to analyze them. These include 
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loan defaults, mortgage prepayments, Federal Reserve rate decisions, corporate 
merger and acquisition decisions, asset return maximization, and insurance claims, 
among others. Our study is a step in the direction of bridging the gap between these 
black-box models and their use in a real-world setting.

Future work can extend our explainability analysis by incorporating second-order 
effects into the explainability algorithms (LIME and DiCE) in order to generate more 
practical counterfactual suggestions and explanations. It may also be of interest to 
compare the insights derived from these explainability tools to the traditional factors 
used for credit risk forecasting by involving an expert in the process. Finally, large 
real-world datasets, in particular those including macroeconomic and demographic 
features and the size of loan requests, should be used to extend the model’s capa-
bilities, in order to help quantify its overall fairness, response to stress testing, and 
the monetary impact due to the superior performance of black-box ML models.

APPENDIX

DATASET DETAILS

Glossary of Relevant Credit Modeling Terms

The following definitions provide helpful context for the description of the dataset’s 
features.

 1. Line of credit: An agreement to provide credit
 2. Revolving line of credit: A line of credit with a maximum amount that the borrower 

can choose to use each month. The most common example is a credit card.
 3. Installment line of credit: A line of credit with a fixed loan amount and a fixed 

monthly payment. A mortgage is a common example.
 4. Delinquent: A line of credit is delinquent if its payments are not made in a timely 

manner.
 5. Utilization: The amount still owed divided by the total amount borrowed; the 

fraction of available credit currently in use.

Explanation of Predictor Features

In addition to the binary target variable (risk classification), each credit applicant is 
characterized by 23 predictor features, 21 continuous and 2 categorical. These consist 
of the following:

 1. A condensed version of the borrower’s credit risk computed by FICO using all 
credit bureau information (ExternalRiskEstimate)

 2. Months since the very first line of credit was established (MSinceFirstLOC)
 3. Months since the newest line of credit was established (MSinceNewestLOC)
 4. Average age in months of all existing lines of credit (AvgAgeOfLOC)
 5. Number of lines of credit not currently delinquent (NumLOCNotDelq)
 6. Number of lines of credit that have ever been 60 or more days delinquent (Num-

LOC60PlusDaysDelq)
 7. Number of lines of credit that have ever been 90 or more days delinquent (Num-

LOC90PlusDaysDelq)
 8. Percentage of lines of credit that have never been delinquent (PercentLOCNev-

erDelq)
 9. Number of months since the most recent delinquency (MSinceMRecentDelq)
 10. Maximum delinquency in days in the past year (MaxDelqLast12M)
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 11. Maximum delinquency ever in days (MaxDelqEver)
 12. Total number of lines of credit established (NumTotalLOC)
 13. Number of lines of credit established in the past year (NumLOCInLast12M)
 14. Percentage of lines of credit that are installment lines of credit (PercentInstLOC)
 15. Months since the newest request for a new line of credit excluding those requested 

in the past week (MSinceNewLOCReqExPastWeek)
 16. Number of requests for new lines of credit in the last six months (NumLOCRe-

qLast6M)
 17. Number of requests for new lines of credit in the last six months excluding those 

requested in the past week (NumLOCReqLast6MExPastWeek)
 18. Fraction of all revolving credit limits in use (FracRevLOCLimitUse)
 19. Fraction of all installment lines of credit in use (FracInstLOCUse)
 20. Number of revolving lines of credit with outstanding balances (NumRevLOCWBal-

ance)
 21. Number of installment lines of credit with outstanding balances (NumInstLOCW-

Balance)
 22. Number of bank loans and national loans (a subset of all revolving trades) with an out-

standing balance of at least 75% of the credit limit (NumBank/NatlLoansWHighUtil)
 23. Percentage of lines of credit with outstanding balances (PercentLOCWBalance)

Data Cleaning

Our dataset contains special values, negative integers that are interpreted symboli-
cally and do not hold any numeric significance. As a result, we cannot directly feed them 
into our ML models. We either have to drop them or encode them appropriately. A large 
fraction of the data points in our HELOC dataset contains at least one special value 
(7,957 of the 10,459 data points). Hence, dropping all such data points is infeasible.

In addition, the dataset has 588 records that solely contain the special value -9 
for all feature values. Three hundred thirty-one of these data points are labeled as 
noncreditworthy and 266 as creditworthy. This is a problem for any model because 
the same input vector will produce opposite target labels. This happens because a 
borrower will receive a special value if they do not need to be investigated or if they 
have no bureau record at all, that is, they have no credit history. Such data points are 
dropped in our analysis.

We find special values are concentrated in 9 of our 23 input features. A standard 
technique for dealing with special values is to replace them with the mean values of the 
respective feature. A simple example illustrates that this is not a meaningful approach for 
our dataset. If a borrower has never had a delinquency, they will have the -7 (condition 
not met) special value for the feature “months since most recent delinquency.” Clearly, 
replacing the feature value with the mean is not correct because they will be moved from 
a desirable value of the feature to a less desirable one. To handle these special values, 
we used binning techniques, which are described in the next section.

Data Preprocessing

The records in our dataset contain special values, which require a careful approach. 
We deal with special values by discretizing continuous features into bins. The advantage 
of binning is that special values can be treated as a separate bin, and any outliers can 
be consolidated. Once a binning schema has been decided, a feature can be represented 
using one-hot encoding and WoE encoding.

In one-hot encoding, a feature that contains n bins can be represented as an 
n-dimensional vector f. If a feature value belongs to bini then the value of its k dimension, 
fk = 1 if k = i and 0 otherwise, for k ∈ [0, n). The drawbacks of one-hot encoding are that 
bins are treated as unordered categories, and sparsity is introduced. Sparse features 
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can result in overfitting and biased parameters in a model if the training dataset is small. 
In addition, for continuous variables, there is no clearcut formula to define the binning 
schema, and choosing it manually can be suboptimal.

WoE encoding is a popular statistical technique used in the credit rating industry 
(Siddiqi 2012). It is used to automatically recode the values of continuous and categorical 
predictor variables into discrete bins and to assign each bin a WoE value. The bins are 
determined such that they will produce the largest differences with respect to the WoE 
values. Additionally, monotonicity constraints can be specified to ensure that WoE values 
are strictly increasing or decreasing in feature values.

The formula for WoE encoding is derived from entropy theory and the information 
value. For bini, the WoE value can be computed as follows:

 WoE ln
Relative frequency of goods
Relative frequency of bads

100i = 











⋅  

where the relative frequency of goods is defined as the ratio of the number of credit-
worthy individuals in bini to the total number of creditworthy individuals, and the relative 
frequency of bads is defined as the ratio of the number of noncreditworthy individuals in 
bini to the total number of noncreditworthy individuals.

Intuitively, the WoE value of a bin provides a measure of its predictive ability to sepa-
rate creditworthy and noncreditworthy applicants. An important benefit of WoE encoding 
is that it can be used to treat missing values and outliers without introducing sparsity. As 
WoE values are on the same scale, we can use them to compare the univariate effects of 
bins on the target variable within a feature or across all features. Its drawback, like most 
binning techniques, is that it results in a loss of information. However, models trained on 
WoE encoded data have a better performance than other methods.

Data Visualization

Before using the dataset to train ML models, we analyze its properties using a few 
exploratory data visualization techniques. Exhibit A2 visualizes the 23 × 23 correlation 
matrix of our dataset, identifying higher correlation values with lighter shades. We find 
three pairs of features with correlations greater than 0.8.

 1. The total number of lines of credit (NumTotalLOC) and the number of lines of 
credit that are not currently delinquent (NumLOCNotDelq)

 2. The number of lines of credit that have been 60+ days delinquent (NumLOC60Plus-
DaysDelq) and the number of lines of credit that have been 90+ days delinquent 
(NumLOC90PlusDaysDelq)

 3. The number of requests for new lines of credit in the past six months (NumLO-
CReqLast6M) and the number of requests for new lines of credit in the past six 
months excluding the past week (NumLOCReqLast6MExPastWeek)

Model Implementation Details

The class distribution of the dataset in the fivefold cross-validation is presented 
in Exhibit A1. By visual inspection, it demonstrates that the dataset is reasonably 
balanced. We give details of the implementation for the different ML models used in 
our evaluation.

For optimal trees, we used the Julia implementation available from the Interpretable 
AI website.14 We performed a grid search over a depth from 1 to 10, and the number of 
features used for the deciding split at each node from the set 1,2,3,4,5,10,15,20,23.  

14 https://docs.interpretable.ai/v1.0/.
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The optimal tree (black box) is the best-performing model 
of all the parameter combinations. Its parameters are 
depth = 2 and the number of features = 10. The optimal 
tree (interpretable) model corresponds to a model depth 
= 2 and a number of features = 1.

We used the scikit-learn implementation of the ran-
dom forest classifier.15 A grid search was performed 
on the number of estimators (trees) from 1 to 150.  
The best-performing model consisted of 140 trees.

The NN (WoE) model was implemented using the 
scikit-learn implementation of MLPClassifier. We per-
formed a grid search over the different architectures 
and the L2-regularization constant. The best-performing 
model had three hidden layers consisting of five units 
each, and an L2-regularization penalty constant of 0.5. 
Other parameters were set to the default values.

The NN (one-hot) model was implemented using 
tensorflow-keras. This was done to ensure the availabil-
ity of gradients from the model for the counterfactual 
generating algorithm (DiCE). The best-performing model 
had one hidden layer, with the number of nodes = 20. It 
was trained using the Adam optimizer with a learning rate 
of 0.01. The activation type used was the rectified linear 
unit, and an L1-regularization penalty of 0.001 was used.

We used a publicly available implementation of 
SHAP.16 We used a publicly available implementation of 
LIME17 and modified it to incorporate the feature correla-
tion in the data sampling. We used a publicly available 

implementation of DiCE18 and modified it by specifying features that cannot be changed. 
We implemented ILP using tensorflow-keras.

15 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.
html.

16 https://github.com/slundberg/shap.
17 https://github.com/marcotcr/lime.
18 https://github.com/interpretml/DiCE.

EXHIBIT A1
Fivefold Cross-Validation Data Distribution

NOTES: yi = 1 corresponds to the data point (i.e., individual) who defaulted. The dataset is fairly balanced.

Count of yi = 1
(train)

4,118
4,088
4,094
4,111
4,101

Fold
Number

1
2
3
4
5

Count of yi = 0
(train)

3,770
3,801
3,795
3,778
3,788

Count of yi = 1
(test)

1,010
1,040
1,034
1,017
1,027

Count of yi = 0
(test)

963
932
938
955
945

EXHIBIT A2
23 × 23 Correlation Matrix

NOTES: The lighter shades represent highly correlated feature 
pairs. As expected, the diagonal has the lightest shade because 
it represents the correlation of a feature with itself.
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