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Designing an Illumination-Aware Network
for Deep Image Relighting

Zuo-Liang Zhu, Zhen Li , Rui-Xun Zhang , Chun-Le Guo , and Ming-Ming Cheng , Senior Member, IEEE

Abstract— Lighting is a determining factor in photography
that affects the style, expression of emotion, and even quality
of images. Creating or finding satisfying lighting conditions,
in reality, is laborious and time-consuming, so it is of great
value to develop a technology to manipulate illumination in
an image as post-processing. Although previous works have
explored techniques based on the physical viewpoint for relighting
images, extensive supervisions and prior knowledge are necessary
to generate reasonable images, restricting the generalization
ability of these works. In contrast, we take the viewpoint of
image-to-image translation and implicitly merge ideas of the
conventional physical viewpoint. In this paper, we present an
Illumination-Aware Network (IAN) which follows the guidance
from hierarchical sampling to progressively relight a scene from
a single image with high efficiency. In addition, an Illumination-
Aware Residual Block (IARB) is designed to approximate the
physical rendering process and to extract precise descriptors
of light sources for further manipulations. We also introduce a
depth-guided geometry encoder for acquiring valuable geometry-
and structure-related representations once the depth information
is available. Experimental results show that our proposed method
produces better quantitative and qualitative relighting results
than previous state-of-the-art methods. The code and models are
publicly available on https://github.com/NK-CS-ZZL/IAN.

Index Terms— Relighting, portrait relighting, rendering,
illumination manipulation, geometry encoder.

I. INTRODUCTION

RELIGHTING, which aims to change the illumination
settings of an image under given lighting conditions,

has recently attracted widespread interests [1]–[7]. Its high
practical value promotes its applications across a variety
of fields, including mobile imaging, augmented virtual real-
ity, post-processing image editing and e-commerce products
visualization.
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Thanks to the booming of deep learning [8]–[10], deep
relighting methods [2], [3], [3]–[6], [11]–[15] have signifi-
cantly accelerated the development in the field of relighting.
With the assistance of powerful representation ability of deep
neural networks, it becomes possible for these methods to
relight scenes under more ambiguous inputs and complicated
environments. Most of previous methods [3], [6], [12]–[15]
inherit the overall framework of conventional methods and
some modified NeRFs [16]–[18] can also be utilized for
relighting. However, these methods suffer from huge data
requirements to fit a single scene and weak generalization
ability. So a new framework which can ease constraints on data
and be utilized in generalized scenarios has been expected.

Recently, Murmann et al. proposed an indoor scene multi-
illumination dataset [19] which can be used for real scene
relighting. They set up a new point of view in the field of
relighting, which regards image relighting as an image-to-
image translation task. After Helou et al. proposed a novel
outdoor scene synthetic dataset (i.e., VIDIT [20]) and orga-
nized the image relighting competitions in AIM 2020 [7]
and NTIRE 2021 [21] based on it, this viewpoint attracts
more attentions. The viewpoint considers the unavailability
of accurate lighting information in real-world applications,
so only image pairs or triplets with depth information are
provided for training, lacking specific illumination informa-
tion. Since relighting is highly ill-posed when accurate illumi-
nation properties are unknown [22], [23], this task therefore
becomes more challenging. For example, Ramamoorthi and
Hanrahan [22] demonstrate that the difference between low-
frequency texture and lighting effects is hard to distinguish for
most situations.

To tackle relighting on such ill-posed condition, we hope to
get inspiration from rendering frameworks. However, instead
of previous physics-based networks which directly estimate
rendering-related parameters with supervisions by laboriously
designed losses. We intend to figure out specific network and
modules corresponding with rendering process and design a
network intrinsically suitable to relighting without supervi-
sions for intermediate parameters. We mainly establish links
between our proposed network and typical ideas of conven-
tional rendering in following aspects: 1) Hierarchical sampling
strategy [24], which has shown its ability and efficiency in
voxel rendering. 2) Spherical harmonic lighting [25], which
parameterizes light source with bases of different frequencies.
3) Physics-based rendering under the spherical harmonic light-
ing [25], [26], which can be modeled without integral and
needs only multiplication.
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According to above discussions, we propose an
Illumination-Aware Network (IAN) for accurate deep
image relighting in this paper. Specifically, as a simulation
of hierarchical sampling, a pyramid-like architecture is
deployed for progressively changing the lighting condition
in an image from coarse to fine. In addition, inspired by
the idea of physics-based rendering model, we elaborately
design an illumination-aware residual block in a two-branch
structure. With the guidance from spherical harmonic
lighting which decouples light into components of different
frequencies, we utilize convolutions with diverse dilation rates
to obtain samples under different frequencies and design a
statistical-coupled attention branch as illumination descriptor
extractor, which models light by diverse statistics. Another
branch preserves local geometry- and reflectance-related
information. Finally, the multiplication of the illumination
descriptor and the geometry-related information implicitly
serves as an approximation of rendering under spherical
harmonic lighting assumption. Besides, considering that
depth information is available in many applications, we also
introduce a depth-guided geometry encoder which takes the
depth map, surface normal, and positional encoding as the
inputs, aiming to extract multi-scale geometry and structure
information to assist the relighting task.

We evaluate the proposed network on the VIDIT [20]
dataset with the absence and the presence of depth infor-
mation, which correspond to the settings of AIM 2020 [7]
and NTIRE 2021 [21] challenges, respectively. Our proposed
method outperforms all comparison methods, including the
champion solutions of AIM 2020 [7] and NTIRE 2021 [21]
both quantitatively and quantitatively. Besides, we also per-
form evaluations on the Adobe Multi-Illumination dataset
which contains real indoor scene, and our results still obtain
the best performance in comparison with other methods. Then
we apply our method on a portrait relighting dataset (i.e., DPR
dataset [4]) and our method surpasses previous methods by a
large margin, demonstrating the superiority and robustness of
our proposed method.

In summary, our contribution is three-fold:
• We design an illumination-aware network (IAN) which

implicitly inherits the idea of physics-based rendering
to perform image relighting. Through extensive experi-
ments, we show that our proposed method achieves bet-
ter performance than other methods while maintaining
promising computational efficiency.

• We propose an illumination-aware residual block (IARB)
which implicitly conducts rendering process and is suit-
able for relighting task.

• We introduce a depth-guided geometry encoder to fully
extract the geometry- and structure-related features from
additional information (e.g., depth, normal, and linear
positional encoding). These features assist the network
to obtain favorable relighting results.

II. RELATIVE WORKS

Numerous image relighting methods have been proposed
in the literature. Based on the usage of convolutional neural

network, we divide these methods into two groups: conven-
tional physics-based method and deep network based methods.

A. Conventional Physics-Based Methods

Conventional physics-based methods focus on building
explicit assumptions and models to approximate effects of
illumination in reality efficiently. These assumptions [27]
greatly reduce dimensions of light transport function into low-
dimensional subspace [27]–[29] in order to ease the difficulties
in calculation.

Though dimensions of light transport function are highly
reduced, fitting a reasonable function still needs hundreds of
images of a scene by brute-force searching [1], [30]. Subse-
quently, to reduce the number of required samples to perform
relighting, some works [31], [32] take advantages of the local
coherence of light transport matrix in lower dimensions [33]
and others [34] involve in human interactions. Decompos-
ing rendering-related factors from given images of a scene
[34]–[36] is a widely used strategy in relighting, which is
known as inverse renderer. Geometry, material, and illumi-
nation are usually predicted separately at first. By directly
controlling these explicit factors, these methods can re-render
given scene and obtain relighting results of good quality.

However, these methods require a complex calibration
process, huge computational costs, storage resources, and
even specialized hardware (e.g., panorama camera and drone).
Rendering-related factors (e.g., geometry, surface reflectance,
and environmental illumination) are either estimated by com-
plicated system or measured by specific equipment. The for-
mer leads to the accumulation of errors in the whole process
and the latter limits the general applications of these methods.
Besides, numerous input images with strict constraints are
needed to fit a model for a single scene. In contrast, our
method is data-driven, and the training data is easy to acquire
and access. Once the model is trained, only a single image is
needed to perform relighting and the pretrained model can be
generalized into diverse scenes.

B. Deep Network Based Methods

Recently, deep neural networks [10], [37] have shown
their potentials on illumination-related manipulation [38]–[41],
which promotes the development of deep network based meth-
ods for relighting task. There are mainly three viewpoints to
design relighting networks, namely physics-based viewpoint,
neural radiance field viewpoint, and image-to-image transla-
tion viewpoint.

1) Physics-Based Viewpoint: Physics based neural network
derives from conventional physics-based methods and these
methods replace parts of original system with neural net-
works. Owing to the strong representation ability of neural
network, Ren et al. [42] and Xu et al. [3] simplify the esti-
mation process of light transport function with sparse samples.
Inspired by the idea of decomposition, some methods [6],
[12]–[14], [43] employed different networks with the guid-
ance of corresponding losses to factor an image into multiple
components, including albedo, normal, shading, etc. To avoid
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accumulation of errors in decomposition and re-rendering pro-
cedure, some concurrent methods only insert the lighting priors
(i.e., spherical harmonics [3], [4] and environment map [5])
into the network for directly obtaining the desired relighting
results. These methods also inherit disadvantages of conven-
tional physics-based methods. For instance, multiple calibrated
images and lighting priors are expensive and laborious to
acquire and usually absent in real-world applications. Though
the accumulation of errors is eased by robustness of neural
network, it is still a problem pending to be further solved.

2) Neural Radiance Field Viewpoint: Neural radiance fields
directly construct continuous representations for scenes, para-
meterized as a basic MLP network. Since Mildenhall et al.
proposed NeRF [44], numerous works have attempted to
optimize it. Some works [16], [45] improve the abilities
or extend the application scenarios of vanilla NeRF [44].
NeRV [16] enhances the ability for recovering relighting 3D
scene representations and NeRF in the wild [45] succeeds in
modeling ubiquitous, real-world phenomena in uncontrolled
images. Attributed to the representation ability of GAN,
GIRAFFE [17] and GARF [18] make scenes editable. These
successive works enable to manipulate light condition in a
scene, which can be used in relighting. The major disad-
vantage of these methods is their limited ability in gener-
alization. One pretrained model can only take effect on a
single scene. Besides, their inputs contain 3D camera pose and
position information, which is inaccessible in some scenarios.
In the contrary, our method needs no position information of
real-world and can take effect on various scenes. Our method
also benefits from few parameters and low computational cost.

3) Image-to-Image Translation Viewpoint: Mur-
mann et al. [19] attempt to discard explicit graphics
prior and regarded the image relighting as the image-to-
image translation problem. Shared with similar settings,
Helou et al. proposed a virtual image dataset [20] for
illumination transfer and held image relighting competitions
(i.e., AIM 2020 [7] and NTIRE 2021 [21]). The competitions
mainly include two tracks named ono-to-one relighting
and any-to-any relighting. These proposed datasets and
competitions motivate researchers to think relighting task
from a brand-new viewpoint, namely image-to-image
translation viewpoint. Some works involve and adjust existing
modules or networks which have shown their representation
abilities in other fields. Puthessery et al. , winners of AIM
2020, proposed WDRN [46] which employs the wavelet
transformation for efficient multi-scale representations. Gafton
and Maraz [47] applied pix2pix [48] to their framework and
utilize adversarial learning to further improve the quality of
the generated images. Yang et al. [49] took the corresponding
depth map into consideration and designed a depth-guided
relighting network based on an RGB-D saliency detection
method [50]. This type of methods is easier to train than ones
from another two viewpoints, for they relieve the constraints
exerted on input. These methods consider relighting of
general cases, which makes general applications possible.
However, existing methods underperform above-mentioned
two viewpoints and how to fully explore their ability remains
to be solved. Our work follows image-to-image translation

viewpoint and extends its boundary of performance. Besides,
we blend physics-based ideas implicitly and design modules
intrinsically suitable to relighting task.

III. APPROACH

We define that Iin represents the input image under a
pre-defined illumination condition. Igt represents the ground
truth under the desirable illumination condition. Single image
relighting aims to translate the input image Iin to another
image Iout whose illumination condition is similar with Igt

through a relighting network G. Considering relighting task
commonly does not take substantial environmental changes
into account, so above images are from the same scene if
without particular explanation.

In terms of task definition, we partially follow AIM 2020 [7]
and NTIRE 2021 [21] competitions, which divides relighting
task into 2 cases, namely one-to-one relighting and any-to-any
relighting. We firstly focus on the former case in the com-
petitions [7], [21] where input and target illuminant settings
are pre-determined and fixed for all scenes. In this setting, the
output image is formulated as Iout = G(Iin , gopt) where Iin is
the input and gopt is some optional guidance. Besides, the any-
to-any relighting setting in the competitions [7], [21] has only
40 pre-defined illumination condition and cannot fully validate
the ability of our model in arbitrary illumination relighting.
So we consider a more generalized setting that contains a
continuous space of illumination and extend our method to
this condition. An additional target light prior l p is needed,
and the output is formulated as Iout = G(Iin , gopt , l p)

In this section, we present an illumination-aware net-
work (IAN) which enables high-resolution relighting image
generation of arbitrary scenes. Specifically, we propose a
pyramid-like network architecture (see Sec. III-A) along with
residual learning strategy. This network architecture progres-
sively manipulate effects of light in order to generate relight-
ing images with fine-grained details and global consistency.
Besides, an illumination-aware residual block (IARB) (see
Sec. III-B) is proposed to parameterize attributes of light
source and to leverage the extracted illumination descriptor for
an implicit rendering process. To further utilize depth informa-
tion, which can be estimated from RGB images or captured
by advanced sensors, we propose a depth-guided geometry
encoder (DGGE) (see Sec. III-C) shared among levels.

A. Illumination-Aware Network

As the main body of our network (see Fig. 1), a pyramid-like
network architecture [51], [52] utilizes multi-scale information
from input images and conducts image relighting in a coarse-
to-fine manner. We will introduce this architecture in this
section.

For relighting task, owing to the diverse effects of light
which entangle with scene attributes, complex information
from low-level features (e.g., texture and edge) to high-
level features (e.g., class of object) is needed and accounts
for the final relighting results. To capture information in
various semantic levels, we utilize U-Net [53] like struc-
ture which is proven to be effective in numerous previous
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Fig. 1. Overview of the proposed illumination-aware network (IAN). The proposed network is designed as a pyramid-like structure and processes images
in a coarse-to-fine manner. Geometry- and structure-related information is provided from depth-guided geometry encoder which will be demonstrated in
Sec. III-C. In this figure, ICSC, ILSC and CLSC denote image content, intra-level, and cross-level skip connections, respectively. IARB represents the
proposed illumination-aware residual block which will be shown in Sec. III-B. The output of the l-th level is up-sampled by bicubic interpolation and is
concatenated with unprocessed image as input for the (l − 1)-th level.

works [4], [5], [46]. However, a single U-Net is insufficient to
tackle with relighting task. Firstly, due to the highly ill-posed
property of relighting and diverse effects of light among
scales, achieving high-quality relighting results by a single
step is too complicated for a single U-Net. Besides, since
the resolution of an input image is high and a single-level
network has a limited receptive field, such network only con-
centrates on local features and ignores global cues. Since local
features are easily affected by the material and color of the
object, it is hard to extract intrinsic attributes of light from
them. Consequently, we observed that the results from vanilla
U-Net [53] are trapped into local minima due to the disability
of vanilla U-Net in capturing global light information.

Considering above-mentioned difficulties, we resort to tra-
ditional rendering framework to get inspiration. In the field
of voxel rendering, hierarchical sampling strategy [24] is
designed to tackle similar problems. This strategy arranges
voxel rendering in a progressive manner to fulfill this
process effectively and efficiently. As previous works revealed
[15], [54], relighting task can be seen as a re-rendering
process. So hierarchical sampling strategy intrinsically ben-
efits to relighting task. Moreover, humans tend to focus on
overall low-frequency and tone changes before they take
local structures into account, which refers to a global-to-local
architecture.

Motivated by above rendering strategy and human prefer-
ence, we further extend U-Net [53] to a pyramid-like archi-
tecture. Compared with the previous one, the receptive field
of this network is tremendously enlarged and is sufficient to
capture global information. This design eases the difficulties of
task assigned to each pyramid level and promotes the quality
of final relighting results.

This pyramid-like architecture has 3 levels in total noted
as G0, G1, G2 from bottom to top. The full resolution input
image and the 2×/4× bicubic down-sample ones are denoted
as Iin , I↓2

in and I↓4
in , respectively. The outputs of G0, G1,

G2 are Iout0 , Iout1 and Iout2 . G0 takes Iin and I↑2
out1 which is

2× bicubic up-sampled output of G1 as input. G1 takes I↓2
in

and I↑2
out2 which is 2× bicubic up-sampled output of G2 as

input. G2 only takes I↓4
in as input, for no previous output is

available. For each level, an encoder down-samples features
for 2 times and a decoder up-samples them correspondingly,
which resembles a U-Net [53]. A bottleneck comprised of
4 illumination-aware residual blocks bridges the encoder and
the decoder. We will detail this residual block in Sec. III-B.

To alleviate illumination invariant information loss during
encoding, we utilize intra-level skip connections (ILSC) as:

Di = Di + Ei , (1)

where Di and Ei denote the features from encoder and decoder
at the same pyramid level, respectively. i represents the times
of down-sampling at current level. Since all features involved
in the above equation are in the same pyramid level, we ignore
the superscript which presents the number of pyramid level.

As higher levels already modeled global illumination
changes, we preserve them when modeling local influences
of light. Besides, every level is similarly assigned to relight
image in a residual manner, so information is intrinsically
shared among levels. It is more reasonable to refine features
of previous level instead of encoding brand-new features in
each level. To achieve the proposals, we introduce a cross-level
skip connection (CLSC). This skip connection directly feeds
information from a smaller scale to a larger one at the decoder
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Fig. 2. Structure of the proposed illumination-aware residual block (IARB).
This delicate block implicitly embeds rendering process and is able to utilize
various statistics under diverse sampling frequencies to obtain an accurate
light descriptor. Along with a target light projector, IARB further enables the
manipulation of light condition.

side in order to reinforce scale-specific information learning in
current resolution. This strategy also contributes to decoupling
light effects on different scales, for the upper level only needs
to take charge of modeling global information, regardless of
local details that lower levels take charge of. The CLSC can
be formulated as:

Dl
i = Dl

i + [Dl+1
i ]↑2, (2)

where l represents the level in the pyramid-like structure, and
[Dl+1

i ]↑2 represents bilinear up-sampled features for 2 times
from previous level.

Although the CLSC succeeds in preserving illumination
invariant information, detailed textural information is hard to
fully reconstruct during decoding. As the domain of inputs and
outputs of the network are consistent, differing from the vanilla
U-Net [53] designed for segmentation, an image content skip
connection (ICSC) is used to directly deliver input images to
the output side of network for retaining fine-grained textural
details. Besides, the CLSC makes decoders aware of cross-
scale information, while encoders are blind to it. To extract
the most beneficial features at the encoder side, up-sampled
output from previous level is taken as part of input, which
helps encoders be aware of cross-scale information as well.
Eventually, entire pipeline is formulated as:

Ioutl =
{

Gl(I↓2l

in ) + I↓2l

in l = 2

Gl(cat(I↓2l

in , I↑2
outl+1

)) + I↓2l

in otherwi se
(3)

where cat represents a concatenation operator.

B. Illumination-Aware Residual Block

Physics-based rendering model which has shown its strong
ability in computer graphics is defined as:

I (x, ωo) =
∫

�
f (x, ωi , ωo)L(x, wi )n · ωi dωi , (4)

where f (x, ωi , ωo) denotes Bidirectional Reflectance Distrib-
ution Function, L(x, wi ) is the radiance that arrives at the point
x from the incoming direction ωi , n is the surface normal at
current position, and ωo is the outgoing direction. Inspired
by this, we attempt to design a module to implicitly embed

this process into our network, as shown in Fig. 2. Due to
the difficulties in directly calculating integral in Eqn. (4), we
utilize the spherical harmonic lighting to approximate original
light condition. We replace the integral and L(x, wi ) with
c j � Y j where Y j is the j -th spherical harmonic basis and
c j is its coefficient. Finally, Eqn. (4) is rewritten as Eqn. (5):

I (x, ωo) =
∑

j

[ f (x, ωi , ωo) � (n · ωi )]︸ ︷︷ ︸
sur f ace at tributes

�[c j � Y j ]︸ ︷︷ ︸
light

, (5)

where � represents the element-wise scalar product and · is
the dot product.

The Eqn. (5) can be divided into 2 parts. The first part
f (x, ωi , ωo) � (n · ωi ) is mainly related to the geometry
and texture attributes of objects. The second part c j � Y j

describes the attributes of light. Corresponding to the two
parts of Eqn. (5), we hope to design a module which has
two abilities accordingly. One is the illumination-aware ability.
We hope this module to extract a credible spatial-invariant
illumination descriptor which represents a specific group of
spherical harmonic coefficients implicitly. Then this descriptor
is projected into a desirable descriptor which offsets the effects
of old illumination and exerts influences of new one. Another
is the geometry-maintenance ability. This module should pre-
serve local surface features which contain textures, surface
normals, and positional information.

We first describe how to design a module that can extract the
light descriptor under the spherical harmonic lighting assump-
tion, which represents the lights by several bases in different
domain. The coefficients of bases in spherical harmonic light-
ing are calculated as Eqn. (6):

c j =
�∑
ω

Flight (ω) · Y j , (6)

where Flight (ω) is the function which represents the global
illumination and � is the set of frequencies.

Noted that the convolution in the spatial domain is the mul-
tiplication in frequency domain, we intuitively utilize kernels
with diverse dilation rates which bring diverse sample rates
as different bases in spherical harmonic lighting. In practice,
we utilize dilation rates ranging from 1 to 3 and stack several
modules to simulate dilation rates in a larger range. The
outputs of dilation convolutions are formulated as:

Rori = {Rd0, Rd1, Rd2}. (7)

Besides, the concatenation and the linear projection can be
seen as a generalized case of summation (The summation can
be written as sum = wT f when wT = 1T/N , where f is the
concatenated feature and N is the dimension of f ). Thus,
we replace the summation with the concatenation and the
linear projection, and we convert the convolution in the spatial
domain to the multiplication in the frequency domain to build
the connection between the proposed illumination-aware resid-
ual block (IARB) with Eqn. (6). The approximation of Eqn. (6)
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in our IARB can be formulated as:

Descμ = Linear(cat( fk ∗ f f ))
F−→

k∈K∑
k

[wk · F f (ω)]

· Fk(ω), (8)

where Fk(ω) and F f (ω) are the representation of convolution
kernels and features in the frequency domain respectively, fk ,
f f are their representations in the spatial domain respectively
( fk ∗ f f ∈ Rori ), wk is the weight in linear projection for
the j -th kernel, K is the set of kernels, F presents the
Fourier transformation and ∗ is the convolution operation.
Now we obtain the first item Descμ to describe attributes
of light source. Besides, we also introduce Descσ which is
the deviation of features to measure non-linear relations for
a better model of lighting. Then considering the invariance
of the illumination condition in a scene, we conduct a global
average pooling before linear projection to obtain a 1D feature
to diminish influences caused by spatial positions. In practice,
Descμ and Descσ are calculated as:

Descμ = Fμ(μ),μ = [μ1, . . . μc], (9)

μi = 1

H × W

H,W∑
j,k

Ri ( j, k), (10)

Descσ = Fσ (σ ), σ = [σ1, . . . , σc], (11)

σi =

√√√√√ 1

H × W

H,W∑
j,k

(Ri ( j, k) − μi )2, (12)

where μi and σi are the mean and standard deviation of the
i -th channel of features Rori respectively.

Except for the branch to extract attributes of light, another
branch is designed to preserve spatial information correlated
with normals, textures. Eventually, this module has two com-
ponents corresponded to two above-mentioned abilities, and
we obtain two items which represent surface attributes and
light conditions respectively as:

Descμ + Descσ

2
∼ [c j � Y j ], (13)

Rori ∼ [ f (x, ωi , ωo) � (n · ωi )]. (14)

So the rendering process in Eqn. (5) express as Eqn. (15) in
network and Rrr is the re-rendered feature:

Rrr = Rori � Descμ + Descσ

2
. (15)

For matching the original feature space, we use a 3×3 convo-
lutional layer to compress the re-rendered feature Rrr . Even-
tually, due to the orthogonality of spherical harmonic lighting,
this module can modify a subset of lighting components with-
out influencing others. We thus can simply add the re-rendered
feature to the original one, and the output feature Fout is
calculated as:

Fout = C f (Rrr ) + Fin . (16)

To fully model light conditions under a spherical harmonic
setting, we utilize multiple modules to re-render different
lighting components as the summation process in Eqn. (5).

In order to further enable manipulation of light condition,
we design a target light projector which receives parameterized
light as input and produces its descriptors as illumination
guidance for IARBs. The modified IARB for manipulation
of light condition calculates the illumination descriptor as

Descμ/σ = Fμ/σ (cat(μ/σ, l p)), (17)

where l p is the target illumination prior under spherical har-
monic lighting assumption. Compared with the previous SOTA
method in the portrait relighting task (i.e., DPR [4]), our
method designs a unique way for arbitrary illumination manip-
ulation. DPR [5] directly concatenates image features with
lighting features from the encoder and feeds them into its
decoder. This way broadcasts the 1D lighting parameters to a
3D tensor whose size matches that of the image, which brings
highly redundant and memory consumption. Considering the
invariance of global illumination in a scene, the network
should describe illumination in a 1D representation. Accord-
ing to this intuition, we investigate the attention mechanism
for lighting prior injection and progressively manipulate the
illumination condition. To the best of our knowledge, our
method is the first one which utilizes the attention mecha-
nism to represent illumination conditions. Owing to the atten-
tion mechanism, we maintain the lighting parameters in the
1D shape in the entire procedure, which achieves a better
efficiency.

C. Depth-Guided Geometry Encoder

Depth is important information for relighting task to make
the network understand 3D dependencies. In order to take
fully advantages of depth, we further introduce surface normal
derived from depth, which is strongly related to the local
brightness of surface and the orientations of reflected light.
Besides, normal fetches detailed structural information and
is conducive to local structure preservation. We firstly select
depth and normal as additional inputs which promote net-
work to understand more complicated geometric and struc-
tural information for guiding relighting. When only depth is
given, we can calculate surface normal based on the following
formulation:

	nx,y = (
∂ Dx,y

∂x ,
∂ Dx,y

∂y ,−1)

|	nx,y| ,

= (
Dx+1,y−Dx−1,y

2 ,
Dx,y+1−Dx,y−1

2 ,−1)

|	nx,y| . (18)

Besides, the convolution is shift-invariant, which means
image patches at any position are treated equally, while the
intensity of incident light depends on the global position in
an image. The convolution is blind to such global positional
information [55], [56]. To alleviate this problem, we utilize
positional encoding, which encodes global distance into local
patches to assist the convolution to be aware of global distance.
Widely used sinusoidal positional encoding [57] encodes posi-
tional information through sine and cosine functions with
different periods. It needs lots of channels and is memory-
consuming in the high-resolution case. So we choose to use a
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Fig. 3. Illustration of depth-guided geometry encoder (DGGE). DGGE has
5 levels in total and each level in the form of “[ReLU-Conv] ×2”. This encoder
is used to extract geometry-and structure-related features from additional
information.

Fig. 4. Two groups of methods in the respect of guidance usage. The
first group named ‘single-branch method’ simply concatenates RGB images
with guidance and the second one named ‘multi-branch method’ individually
encodes images and guidance. Our method belongs to the second group.

light-weight linear positional encoding based on the Cartesian
coordinate that encodes positional information by a 2D feature:

P E(x, y) = 2 · [ x

W
,

y

H
] − 1. (19)

The value range of the linear positional encoding is [−1, 1].
We feed the above three guidance (i.e., depth, normal, and

positional encoding) into the proposed depth-guided geometry
encoder (DGGE) to extract geometry- and structure-related
features as illustrated in Fig. 3, aiming to assist the network in
understanding geometric relationships in scenes and in recov-
ering structure details in shadows. To establish connections
among levels for encoding the shared information, we design
an encoder shared among levels. The DGGE has 5 stages and
provide 5 intermediate feature maps in total. We attempt to uti-
lize as much information from depth as possible, so we densely
merge features into the main stem. To achieve dense merg-
ing, 5 intermediate feature maps are overlappingly divided
into 3 groups as {C0, C1, C2}, {C1, C2, C3}, {C2, C3, C4}.
Besides, this design is memory-efficient and suitable to relight-
ing on the high resolution. These groups of features corre-
spond to 3 levels of network. Then they are merged with
RGB features extracted by the encoders in the pyramid-like
architecture:

El
i = El

i + Cl+i . (20)

In this way, we enrich those RGB features by extracting
geometry- and structure-related information.

1) Discussions: Basically, the existing relighting methods
can be divided into two groups in the respect of guidance
usage, as illustrated in Fig. 4. The first group of methods [21],
[58] concatenate RGB images with guidance and feed them
together into a single-branch network. However, they ignore

the diversity in the distributions of RGB images and guided
information, leading to inferior results. The second group of
methods [58] develop an additional branch to individually
extract guided information. Our method belongs to this group
as well. Along with this idea, we make several modifications
for a further improvement in performance. Except for depth,
we detect two extra guided information (i.e., surface normal
and linear positional encoding). Surface normal derived from
depth serves as an indispensable role in traditional render-
ing. Linear positional encoding considers the bias caused
by diverse positions in the image while convolutions alone
are unable to recognize such bias due to its shift-invariance.
Besides, we reveal that the finest information on the original
resolution is crucial. Nevertheless, previous methods [58] only
fuse features after down-sampling. We also take efficiency into
account. Previous methods (e.g., MBNet [49] and ADNet [21])
utilize complicated modules to conduct information fusion,
which lead to highly redundant. Our method proves that
simple addition operation is sufficient, which is friendly for
high-resolution applications in practical usage.

D. Implementation Details

Our proposed network is jointly trained by optimizing
reconstruction loss and grayscale SSIM loss to balance the
fidelity of color and regional consistency of luminance.

1) Loss Function: SSIM loss [59] has been widely used in
relighting task [15], [46], [49], [60] to enhance the structure
consistency. Since L1 loss has already supervised color fidelity,
we intend SSIM loss [59] to pay more attention to illumination
consistency rather that color consistency. Thus, we further alter
it to grayscale version as

LSS I M(φ(Iout ), φ(Igt )) = 1 − SSI M(φ(Iout ), φ(Igt )). (21)

where φ means the function that converts color image into
grayscale one, Iout is a relighting image and Igt is the
ground truth. Gradient loss are also utilized to yield sharper
results [19], which can be formulated as

LGradient =
∑

x

∑
y

∥∥∇ Iout (x, y) − ∇ Igt (x, y)
∥∥

2,

∇ I (x, y) = (
∂ I (x, y)

∂x
,
∂ I (x, y)

∂y
),

∂ I (x, y)

∂x
= I (x + 1, y) − I (x − 1, y),

∂ I (x, y)

∂y
= I (x, y + 1) − I (x, y − 1), (22)

where I (x, y) means pixel value of I at position (x, y).
For the l-th level, the total loss is

Ll(Iout , Igt ) = αL1(Iout , Igt ) + βLSS I M(φ(Iout ), φ(Igt ))

+ γ LGradient (Iout , Igt ). (23)

All levels of the pyramid-like architecture utilize the same
form of the loss function. So the final loss is

L =
2∑

l=0

μl Ll(Iout , Igt ). (24)
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TABLE I

DETAILS OF ENCODER, DECODER, AND LIGHT PROJECTION MODULES

We assign the same weight for each level, where μ0 = μ1 =
μ2 = 1.0. The choice will be discussed in Sec. IV-C.

2) Network Details: In practice, our network has three lev-
els and each level shares the same encoder-bottleneck-decoder
structure, which has 2.67M parameters in total. The detailed
structure is presented in Tab. I, where (k×k, ch, s) represents a
k × k convolution with stride s whose output has ch channels.
The bottleneck consists of 4 IARBs. In IARB, channels of
each dilated convolution are 48 as well. Note that IARB has
convolutions with 3 different dilation rates, the intermediate
channels are 144, and we utilize a 3 × 3 convolution to
reduce number of channels back to 48. The structure of light
projection module (i.e., Projector) is also presented in Tab. I.
X → Y means a linear layer which project an X-dimension
input to a Y -dimension output.

IV. EXPERIMENT

A. Datasets

We train and test our proposed method on the Virtual Image
Dataset for Illumination Transfer (i.e., VIDIT [20]), which is
utilized in AIM 2020 [21] and NTIRE 2021 [7] competitions.
It contains 15,600 images rendered by Unreal Engine 4 which
are captured from 390 virtual different outdoor scenes. Mis-
cellaneous objects with various surfaces and materials appear
in VIDIT [20] dataset, such as metal, wood, stone, water,
plant, fabric, smoke, fire, plastic, etc. The illumination settings
are all the combinations of 5 color temperatures (2500K,
3500K, 4500K, 5500K and 6500K) and 8 light directions
(N, NE, E, SE, S, SW, W, NW). The size of images is
1024 × 1024 and corresponding depth maps of the same size
are provided as well. Similar with AIM 2020 and NTIRE
2021 competitions, we mainly force on 2 specific illumination
settings (θi = North, Ti = 4500K ; θo = East, To = 6500K )
for one-to-one relighting task. Specifically, we convert images
under illumination setting (θi = North, Ti = 4500K ) to ones

under another (θo = East, To = 6500K ). 300 images in total
are used for training and 45 images are used for validation.
This setting is the same as when we participated the one-to-
one relighting track [21] in NTIRE 2021 competition. Under
this setting, our team named ‘MCG-NKU’ achieves the best
performance on the VIDIT [20] validation set.

Besides, we validate the proposed method on a dataset
which captures from indoor scenes, i.e., Multi-Illumination
dataset [19]. This dataset consists of 1016 interior scenes
in 95 different rooms throughout 12 residential and office
buildings. Each scene is filled with miscellaneous objects
and clutter of various materials, which decorate in a typical
domestic and office style. All images are photographed under
25 pre-determined illumination settings. 25400 images whose
size is 1500 × 1000 and dense material labels segmented
by crowd workers are provided. HDR images obtained by
merging exposures are furnished as well. In our experiment,
we take dir_0 as input illumination settings and dir_17 as
output illumination settings in dataset to train all methods for
evaluation. On this dataset, 985 images are used for training
and 30 images are used for validation.

We also conduct experiments on a domain-specific relight-
ing dataset which is proposed by DPR [4] (i.e., DPR
dataset). The DPR [4] dataset is built on the high-resolution
CelebA [61] dataset (i.e., CelebA-HQ) which contains 30,000
face images from the CelebA [61] dataset with size of
1024 × 1024. For each image, they randomly select 5 light-
ing conditions from a lighting prior dataset to generate relit
face images, leading to 138,135 relit images. The authors of
DPR [4] do not release their test dataset and detailed test
setting, so we separate the images for the last 100 human faces
under two diverse light conditions as test pairs. The remainder
pairs are used for training in our experiment.

B. Training Details

The parameters of our IAN are initialized by Xavier initial-
ization [62]. We use Adam [63] optimizer during training.

On VIDIT [20] dataset, we train the network for 24k itera-
tions in total and utilize horizontal flip as data augmentation.
Specifically, We select images of light source in the west and
utilize horizontal flipping to fabricate images of light source
in the east. We directly feed full resolution images whose
size is 1024 × 1024 into network. The weights of losses
are set to α = 1.0, β = 0.5, γ = 0.0. For other compar-
ison methods, we keep training settings in original papers
for ones which conducted experiments on the VIDIT [20]
dataset and use our training settings for ones which did not.
On Multi-Illumination [19] dataset, we train our network for
120k iterations. We remove the DGGE when train on this
dataset, for depth or normal information is unavailable. For
a fair comparison, the weights of losses are set to α = 1.0,
β = 0.0, γ = 0.5, following the setting for training the
baseline on Multi-Illumination [19] dataset. Due to the lim-
itation of GPU memory, we crop images to 992 × 992 in
training. For fair comparison, all comparison methods on
Multi-Illumination [19] dataset are trained under the same
setting. Our IAN is trained under our setting as mentioned
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TABLE II

QUANTITATIVE EVALUATION FOR DIFFERENT LEVELS

in Sec. IV-A. Owing to the light projection module, one
pretrained model of our IAN can manipulate arbitrary light
condition. We utilize both the official pretrained model and
retrain DPR [4] under our setting for comparison. Both meth-
ods are trained for 144k iterations on full resolution images,
and we follow the loss setting in their paper [4] as α = 1.0,
β = 0.0, γ = 1.0.

For all experiments, learning rate is set to 1e − 4 and batch
size is set to 5. We train our IAN on one NVIDIA RTX TITAN
and each 10k iterations consume about 6 hours.

C. Ablation Studies

In this section, we show ablation studies we conduct to
set forth the effectiveness of our method and give detailed
analyses about the proposed modules. We mainly investi-
gate four factors influencing the performance of our pro-
posed network. We validate the effectiveness of the proposed
illumination-aware residual block (IARB) firstly and then dis-
cuss the choice of loss weights. Besides, various skip con-
nections which are introduced in our work are experimented.
At last, diverse additional information fed to DGGE will be
analyzed. All ablation studies are conducted on the VIDIT [20]
dataset.

1) Number of Levels: Image pyramid is an effective tool
to utilize multi-scale information. With the increase of levels,
total calculating cost will slightly grow, due to the decrease
of image scale in each newer level. However, introducing
excessive levels brings redundant parameters and may lead
to over-fitting problem. We thus examine how the number of
pyramid level effects the performance of network and find
a balance between efficiency and performance. We conduct
experiments for L = 1, 2, 3, 4 and the results are shown
in Tab. II.

As Tab. II shown, performance continuously increases when
the number of pyramid level grows. However, quantities of
parameters need to be stored when too many levels are
involved in, which makes the network less efficient. So we
finally set the number of pyramid levels L to 3.

2) Choice of Loss Weights: The loss weights of three levels
in the network are set individually. In this part, we inves-
tigate how the choice of loss weights influences the final
performance.

We first conduct experiments on loss weights among levels.
Intuitively, it is beneficial to increase loss weight with respect
to the level, for the eventual aim of network is to obtain
high-resolution relighting results on the finest level. However,
if we increase loss weights on finer levels too much, the
network will degrade to a single large UNet-like network
and loss its ability in progressive modeling. Contrarily, if we
decrease loss weights, network undoubtedly outputs results

TABLE III

QUANTITATIVE EVALUATIONS FOR LOSS WEIGHTS AMONG LEVELS

TABLE IV

QUANTITATIVE EVALUATIONS FOR IARB

ignored local details, which hinders the performance of the
network. We conduct experiments to prove above hypothesis.
As shown in Tab. III, the results reveal that neither increasing
nor decreasing is a good option. We finally select to assign the
equal weight on each level, which shows the best performance
in our experiments.

3) Investigation on IARB: The proposed IARB serves as an
important role in the IAN, which is designed based on the
conventional ideas of rendering. In this section, we confirm
the effectiveness of components of IARB in Tab. IV and in
Fig. 7. How the number of IARBs influences the performance
is shown in Tab. V.

In Tab. IV, ‘vanilla’ represents vanilla residual block [10],
‘w/o att’ means IARB without our statistical-coupled attention
mechanism, ‘w/o dilated’ denotes vanilla residual block with
our proposed attention, ‘mean att’ represents dilated residual
block with only mean attention and ‘std att’ denotes dilated
residual block with only standard deviation attention.

From Tab. IV, we can see that the performance decreases
dramatically without the proposed statistical-coupled attention
mechanism, indicating the significance of decoupling illu-
mination descriptors. Only involving attention mechanism is
also insufficient for acquiring accurate illumination descriptor
under diverse frequencies. Without distant samples obtained
by dilated convolution, receptive field of the block is con-
strained and acquired descriptors thus become unreliable.
We also examine mean attention and standard deviation atten-
tion, respectively, which proves the effectiveness of these
illumination-related statistics. In particular, standard deviation
brings the most striking improvement, which indicates this sta-
tistic has a strong correlation with high frequent components
of light as discussed in Sec. III-B.

Besides, we display the qualitative results from these vari-
ants in Fig. 7. We can see that compared with other variants,
our full model is superior in these aspects. Among all results
from the first and second row, only our full model can generate
shadows in correct direction and position. Without the usage of
two-branch structure, the ‘vanilla’ and ‘w/o att’ module cannot
extract precise light information. So we observe shadows from
these variants are in wrong directions as shown in the first
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Fig. 5. Representative results (w/o guidance). We select methods in AIM 2020 [7], including DRN [64], WDRN [46]. We also select prestigious image-to-image
translation method pix2pix [48] and portrait relighting method DPR [4].

Fig. 6. Representative results (w/guidance). We compare our method with award-winning methods in NTIRE 2021 [21], including MBNet [49] and OIDDR-
Net [15].

and second row. Without dilated conventions, the ‘vanilla’
and ‘w/o dilated’ module fail to capture long-distance depen-
dencies which are crucial for the consistency of illumination.
As a result, generated shadows or relit surfaces from these
variants are hollow or broken. Besides, only mean descriptor
or deviation descriptor is insufficient to model the attributes
of light source. So surface in the results of ‘mean att’ and
‘std att’ which should be relit remains dark in the last row.
Owing to a large receptive field from dilated convolutions and
precise modeling of light by diverse statistics, our method
generates relighting images of high visual quality. Through
these examples, we reveal the strong ability of proposed IARB

in modeling light and relighting images. Without our IARB,
the ability of network in illumination-awareness is highly
reduced, and it cannot extract precise attributes of light source
for further light manipulation.

Besides, we conduct experiments on number of IARBs in
order to further prove the effectiveness of our proposed module
and to find the optimal number in practical usage. We experi-
ment the number from 1 to 6 and the results is in Tab. V. While
the number of IARBs increases, the performance increases
correspondingly, which proves that IARB indeed benefits to
relighting task. However, due to inaccessibility of large mount
of data, the performance reaches a plateau, which indicates
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Fig. 7. Qualitative comparisons between our IARB with other variants. The results reveal the strong ability of proposed IARB in modeling light and relighting
images.

TABLE V

QUANTITATIVE EVALUATION FOR DIFFERENT NUMBER OF BLOCK(S)

TABLE VI

QUANTITATIVE EVALUATION FOR DIVERSE SKIP CONNECTIONS. ‘W/ ’
AND ‘W/O’ REPRESENT ‘WITH’ AND ‘WITHOUT’, RESPECTIVELY

network saturates after number of blocks exceeds 4. So we
eventually select 4 blocks in our settings.

4) Investigation on Skip Connections: Previous works [4],
[46], [65] introduce skip connections aiming to ease the
difficulty of training or to share information among scales.
We utilize various skip connections in our network as well.
In our work, three kinds of skip connections are introduced and
named cross-level skip connection (CLSC), intra-level skip
connection (ILSC), and image content skip connection (ICSC),
respectively.

In this section, we conduct experiments about these skip
connections and discuss their contributions in the proposed
network. Tab. VI shows how objective metrics changes when
we remove specific skip connections. As demonstrated in
Sec. III-A, CLSC enables the networks to be aware of global

Fig. 8. Once we remove cross-level skip connection, reconstruction informa-
tion from high levels is hard to transfer across levels, which makes network
likely to generate images whose local and global illumination is incoherent.
We highlight artifacts in images by red rectangle boxes.

illumination when higher levels refine local details. Once we
remove CLSC, we can observe conflicts between local details
and global illumination, which leads to severe artifacts in
relighting images as shown in Fig. 8. ILSC and ICSC aim
to transfer illumination invariant attributes to decoder side
directly. If we remove ILSC or ICSC connections, the detailed
structures and object textures are hard to reconstruct, leading
to the performance drop.

5) Investigation on Depth-Guided Geometry Encoder:
Depth-guided geometry encoder (DGGE) uses provided depth
information, estimated surface normal and the positional
encoding as input. These additional information is evaluated
as in Tab. VII by removing depth, surface normal, and linear
positional encoding, respectively. Full model means utilizing
all aforementioned guidance. Bare model means the model
that removes DGGE, indicating there is no additional input
information. Results reveal that surface normal brings the
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TABLE VII

QUANTITATIVE EVALUATION FOR DIFFERENT ADDITIONAL INFORMATION
IN DGGE. ‘LPE’ MEANS LINEAR POSITIONAL ENCODING

Fig. 9. Normal is the most significant information among all additional
information. Without it, network cannot reconstruct detailed structures in dark
environment.

biggest performance gain among all additional information.
Specifically, on the condition that we remove surface normal
from DGGE, the performance of proposed network drops
1.37dB while performance only drops 0.13 dB if we remove
depth map. In our observations, we find that removing normal
results in blurring artifacts and ambiguous edges (see Fig. 9).
This phenomenon indicates that normal is an essential cue for
local structure reconstruction. This result is consistent with
the subjective metrics of results from the model guided by
different information.

Besides, linear positional encoding is used as a spatial
inductive bias to assist the network in capturing global struc-
ture with high fidelity. As shown in Tab. VII, after removing
positional encoding, PSNR drops slightly while SSIM [66]
drops heavily, which indicates that positional encoding exerts
the influence on structural consistency.

D. Comparisons With State-of-the-Art Methods

In this section, we compare our method with other state-
of-the-art (SOTA) relighting methods. The methods without
depth guidance are mainly from AIM 2020 [7] competition,
including WDRN [46] which won the first position of AIM
2020 [7] and DRN [64] which achieves the best PSNR score.
The methods with depth guidance are from NTIRE 2021 [21]
competition1, including MBNet [49] which won the first posi-
tion of NTIRE 2021 [21] and OIDDR-Net [15] which is the
runner-up method. Besides, we select pix2pix [48] which is a
typical image-to-image translation method and DPR [4] which
is a SOTA portrait relighting method for further comparison.
For DPR [4], we train a variant which removes light prediction
module, because accurate light setting to train light prediction
module is not provided in one-to-one relighting task. For
quantitative comparison, PSNR and SSIM [66] metrics are
applied on RGB channel of relit results. Moreover, the LPIPS
metric [67], which is proven to be highly correlated with
human ratings [68], is also used for evaluation.

1Results of NTIRE 2021 competition are available at https://
competitions.codalab.org/competitions/28030#results and our team name
is NK_ZZL.

Fig. 10. Comparison about performance, computational cost and number of
parameters.

TABLE VIII

QUANTITATIVE EVALUATION ON THE VIDIT [20] DATASET

1) Efficiency: In this part, we give quantitative comparison
about efficiency of relighting methods. Three main factors are
selected for comparison, i.e., performance, computational cost,
and the number of parameters. We use the number of com-
posite multiply-accumulate operations [69] (Multi-Adds/Macs)
for a single image as the measurement of computational cost.
We assume the input image size to be 1024×1024 to calculate
Multi-Adds. This comparison is conducted on the VIDIT [20]
dataset. As illustrated in Fig. 10, our proposed method uses
relative few parameters and Macs to achieve the best perfor-
mance than previous SOTA methods with or without additional
guidance.

2) VIDIT Dataset: Compared with methods in AIM
2020 [7] which lacks of additional guidance, our method
outperforms them by a large margin in both distortion- and
perception-oriented metrics. With extra guidance, the perfor-
mance of our proposed method still surpasses the existing
SOTA methods. Except for comparisons on objective metrics,
we also show representative results to compare perceptual
quality of these methods and to further illustrate effectiveness
of our method. In Fig. 5, we show the qualitative comparison
results of methods without guidance. Though network trained
without geometric and structural guidance, we can see that it
has the ability to reconstruct coarse object structure prelim-
inarily as shown in 3-rd row of Fig. 5. For these methods
with guidance, the results are shown in Fig. 5. After utilizing
guidance, our method can provide more consistent illumination
and structural details with high fidelity as shown in the first
and third row of Fig. 6.

3) Adobe Multi-Illumination Dataset: We further apply
our experiments to a real scene dataset, i.e., Adobe Multi-
Illumination Dataset. As mentioned in the paper [19], we
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Fig. 11. Representative results on multi-illumination dataset. We present enlarged noteworthy patches in the lower right corner of overall images for detailed
comparison.

Fig. 12. Qualitative comparison on the DPR [4] dataset. Enlarged noteworthy patches are presented in the lower left corner of overall images for detailed
comparison, and visualizations of target light are presented in the upper right corner.

mask chrome sphere and gray sphere which can be used as
a prior to describe environment illumination during training

and test phases. Qualitative and quantitative results are shown
in Tab. IX and Fig. 11, respectively. In Fig. 11, the first and
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Fig. 13. Qualitative results on the DPR [4] dataset with arbitrary light conditions. The first row is visualizations of target spherical harmonic lights. Input
images in the first column are relit by above lights accordingly.

TABLE IX

QUANTITATIVE EVALUATION ON ADOBE MULTI-ILLUMINATION DATASET.
RELIGHTER IS THE OFFICIAL BASELINE WHICH IS PROPOSED IN [19]

second row illustrate our method produces specular reflection
on the surface of bottle with the best quality, which others
either highlight wrong positions or cannot handle specular
reflection at all. The third and fourth row illustrate that our
proposed method can generate more realistic shadows. Tab. IX
reveals quantitative comparison with previous methods and the
performance of our proposed method is superior in the real
scene dataset as well.

4) DPR Dataset: We extend our network to handle relight-
ing task with arbitrary lighting condition and evaluate it
on the DPR [4] dataset which is a portrait relighting
dataset. To ensure the fairness, when compared with the
previous SOTA method DPR [4], we present both results
from the official pretrained model (i.e., DPR(official)) and
them from the retrained model under our training setting
(i.e., DPR(retrained)).

TABLE X

QUANTITATIVE EVALUATIONS ON THE DPR [4] DATASET

The results in Fig. 12 reveal that with simple modifica-
tion, our method can tackle various light condition. When
DPR [4] attempts to recast shadows, it frequently introduces
obvious artifacts near edges of shadows, as the first to third
rows shown. From the fourth row, we observe inconsistent
effects of illumination in DPR [4]. These results indicate that
though DPR [4] supervises light attributes in spherical har-
monic manner, it cannot fully take advantages of such explicit
light condition. Instead, the results provided by our method
have natural brightness change of high visual quality without
obvious artifacts or undesirable sudden change of brightness.
These results prove that implicitly injecting light condition into
network is a better idea, which reduces explicit accumulation
of errors. Besides, we provide visual results under various
light condition in Fig. 13. By only modified the illumina-
tion branch, the network enables relighting for arbitrary light
condition, which proves that our IARB can faithfully extract
illumination-related information and this descriptor is effective
when re-render the input image. The quantitative results shown
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in Tab. X. Both PSNR and SSIM values of our method surpass
DPR [4] by a large margin, which reveals the effectiveness
of our network. In summary, our design purpose is consistent
with the final results, and it is proven that the IARB is suitable
for relighting task.

V. CONCLUSION AND PROSPECT

In this paper, we thoroughly investigate previous relighting
methods from diverse viewpoints and get inspirations from
ideas of the conventional physical based rendering. Accord-
ing to these inspirations, we design an illumination-aware
network intrinsically suitable to the relighting task and
deploy an illumination-aware residual block which approx-
imates conventional rendering process to assist relighting.
Besides, we employ a depth-guided geometry encoder and
utilize additional information beyond RGB images to acquire
geometry- and structure-related information which benefits to
relighting. Adequate comparisons with previous SOTA meth-
ods and ablation studies reveal the effectiveness and efficiency
of our proposed method.

However, there exists room for future improvement. Based
on our observations in practice, we list the following aspects
that should be emphasized in future work.

• Relighting specular objects and transparent objects to be
more realistic (see Fig. 11 Row 1-2).

• Completing textures of relighting regions according to
surrounding patches or global style (see Fig. 6 Row 1-3).

• Utilizing inaccurate or sparse guidance which is more
practical in reality to generate comparable results.
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