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Abstract
Despite its success in financial markets and other domains, collective intelligence seems to fall short in many critical
contexts, including infrequent but repeated financial crises, political polarization and deadlock, and various forms of bias and
discrimination. We propose an evolutionary framework that provides fundamental insights into the role of heterogeneity
and feedback loops in contributing to failures of collective intelligence. The framework is based on a binary choice model of
behavior that affects fitness; hence, behavior is shaped by evolutionary dynamics and stochastic changes in environmental
conditions. We derive collective intelligence as an emergent property of evolution in this framework, and also specify
conditions under which it fails. We find that political polarization emerges in stochastic environments with reproductive
risks that are correlated across individuals. Bias and discrimination emerge when individuals incorrectly attribute random
adverse events to observable features that may have nothing to do with those events. In addition, path dependence and
negative feedback in evolution may lead to even stronger biases and levels of discrimination, which are locally evolutionarily
stable strategies. These results suggest potential policy interventions to prevent such failures by nudging the “madness of
mobs” towards the “wisdom of crowds” through targeted shifts in the environment.
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Significance statement

Collective intelligence refers to the group knowledge and wisdom that emerges from the collaboration and com-
petition among many individuals. Despite its ubiquity and significance in financial markets and other domains,
collective intelligence is not easy to achieve and can also fail dramatically under certain conditions. Examples include
infrequent but repeated financial crises, political polarization and deadlock, and various forms of bias and dis-
crimination. We propose an evolutionary framework that provides fundamental insights into the failure of collective
intelligence by answering the following questions: In what environments are polarization and discrimination likely
emerge? What are the drivers behind these phenomena? And more importantly, how can we avoid “collective
ignorance” and promote collective intelligence instead? We derive collective intelligence as an emergent property of
evolution and specify conditions under which it fails. Political polarization emerges in stochastic environments with
reproductive risks that are correlated across individuals. Bias and discrimination emerge when individuals incorrectly
attribute random adverse events to observable features that may have nothing to do with those events. Moreover, path
dependence and negative feedback in evolution may lead to even stronger levels of discrimination. These results
suggest potential policy interventions to prevent such failures by nudging the “madness of mobs” towards the
“wisdom of crowds” through targeted shifts in the environment, which is likely to be more effective than attempting
to outlaw undesirable behaviors. As long as the environmental factors giving rise to these behaviors are still in force,
the banned behaviors will re-emerge in one form or another.

Introduction

Collective intelligence—a term for shared or group
knowledge and wisdom that emerges from the collaboration
and competition of many individuals—has been studied
across decades in many disciplines ranging from the cog-
nitive neurosciences to evolutionary biology to economics
and sociology to engineering and computer science.
However, despite its ubiquity and importance, collective
intelligence is not easy to achieve and can also fail,
sometimes repeatedly. One such example is the prevalence
of bubbles and crashes in financial markets (Lo, 2013), such
as the dot-com bubble in 1990s, the financial crisis of 2007–
2008, andmost recently, the financial turmoil during the first
few months of the COVID-19 pandemic. No matter how
different the latest financial frenzy or crisis appears to be,
there are usually similarities to past experience (Reinhart
and Rogoff, 2009).

Two of the most hotly debated issues today—political
polarization and discrimination—are also examples of the
failure of collective intelligence. Since the 2010s, we have
witnessed the rise of populism and nationalism as part of a
reaction against the global policies of the last 30 years in
Western democracies and beyond, not to mention gender,
religious, and other types of bias. These examples raise the
natural question of why collective intelligence falters in
these cases, but succeeds so well in so many other contexts?

In this article, we propose a formal mathematical model
of the evolution of behavior to understand failures of col-
lective intelligence by answering the following questions: In
what environments will polarization and discrimination
likely emerge? What are the key drivers behind these
phenomena? And, most importantly, how can we avoid

“collective ignorance” 1 and promote collective intelligence
instead?

We start by introducing our modeling framework, which
builds upon the binary choice model of Brennan and Lo
(2011) and Zhang et al. (2014a). We then apply this
framework to study the rise of extreme political views, after
which we turn our attention to discrimination. We conclude
by discussing the broad applicability as well as the limi-
tation of our framework, and provide several practical
policy implications for reducing or preventing failures of
collective intelligence. Given the breadth of engagement in
our chosen topic, we also provide a review of the several
distinct literatures related to our work in the Supplementary
Material.

Modeling framework

When any behavior has consequences for fitness, evolu-
tionary principles apply. The actions underneath polariza-
tion and bias—which political views to adopt and whether
to discriminate against a particular group—yield different
economic (or, in an evolutionary context, reproductive)
consequences for individuals in different environments. In
addition, the nature of risks in the environment also affect
what behavior will emerge, and these behaviors may not
always agree with individual rationality (Zhang et al.,
2014a; 2014b).

Our framework consists of an initial population of hy-
pothetical individuals (not necessarily human) that live for
one period of unspecified length, and engage in a single
binary decision that has consequences for the random
number of offspring they will generate asexually. To the
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extent that their behavior is linked to fecundity, only the
most reproductively successful behaviors will flourish, due
to the dynamics of evolution.2 Although obvious from an
evolutionary biologist’s perspective, this observation yields
surprisingly specific implications regarding the types of
behavior that are sustainable over time, behaviors that are
likely to be innate to most living organisms due to the
simplicity and generality of the binary choice framework.
The evolved behavior will be collectively intelligent to the
extent that it maximizes the population growth rate, but it
may also generate other undesirable consequences in certain
environments.

To illustrate the basic intuition behind this approach, we
first present a simple numerical example before turning to
the formal model.3 Consider a population of individuals,
each facing a binary choice between one of two possible
actions, a and b. Environmental conditions will be positive
70% of the time, and action a will lead to reproductive
success, generating 3 offspring for the individual. Envi-
ronmental conditions will be negative 30% of the time, and
action a will lead to 0 offspring. Action b has exactly the
opposite outcomes—whenever a yields 3 offspring, b yields
0, and whenever a yields 0, b yields 3. From the individual’s
perspective, always choosing a, which has the higher
probability of reproductive success, will lead to more off-
spring on average. However, if all individuals in the pop-
ulation behaved in this “rational” manner, the first time that
a negative environmental condition occurs, the entire
population would become extinct. Assuming that offspring
behave identically to their parents, the “always choose a”
behavior cannot survive over time. For the same reason,
“always choose b” is also unsustainable.

In fact, in this special case, the behavior with the highest
fitness over time is for each individual to choose a 70% of
the time, and b 30% of the time, matching the probabilities
of reproductive success and failure. The group of indi-
viduals exhibiting this probability-matching behavior will
achieve the maximum possible growth rate, and eventually,
this behavior will dominate the entire population. As a
result, it appears as though selection operates at the group
level, and that this group—all individuals who randomize
their actions with 70% probability—is the fittest from the
perspective of reproductive success.4

This simple but abstract example illustrates the principle
that a given behavior may seem irrational, but when viewed
in the broader context of a given environment, can come to
dominate the population because individuals engaging in
such behavior will reproduce more quickly in that envi-
ronment than those with other behaviors. To alter such
behavior, we must look to the environment that gave rise to
this adaptation and change that environment, otherwise the
behavior will persist.

We present the formal model in the next section, which is
based on Brennan and Lo (2011) and Zhang et al. (2014a).

Table 1 summarizes the key parameters and constraints in
our model.

Formal model

We begin with a population of individuals that live for one
period, produce a random number of offspring asexually
and only once, and then die. During their lives, individuals
make only one decision: they choose from two actions, a
and b, and this results in one of two corresponding random
numbers of offspring, xa and xb. Note that xa and xb can be
correlated, and their joint distribution represents the entirety
of the implications of an individual’s actions for fitness.

We impose a factor structure for xa and xb, that is,
suppose there are two independent environmental factors, λ1
and λ2, that determine fitness, and xa and xb are both linear
combinations of these two factors

xa ¼ βaλ1 þ ð1� βaÞλ2
xb ¼ βbλ1 þ ð1� βbÞλ2 (1)

where λ1 and λ2 are nonnegative, and βa and βb are between
0 and 1.5 Because these factors affect the fitness of all
individuals in the population, we refer to them as systematic,
and we assume that:

(A1) λ1 and λ2 are independent random variables with
some well-behaved distribution functions, such that (xa, xb)
and log(pxa + (1 � p)xb) have finite mean and variance for
all p 2 [0, 1], βa 2 [0, 1], and βb 2 [0, 1]; and

(A2) (λ1, λ2) is independent and identically distributed
(IID) over time and identical for all individuals in a given
generation.

We shall henceforth refer to (βa, βb) as an individual’s
characteristics. For each action, individuals’ fitness in-
volves a tradeoff between exposure to these two factors.

We give two examples of such factor structure to provide
intuition for the key idea of the model. In the context of the
evolution of hypothetical animals, λ1 might represent
weather conditions and λ2 might represent the topography of
the terrain. An animal can choose to hunt on the mountain
(action a) or in the forest (action b). The success of hunting
on the mountain is highly dependent on the weather, cor-
responding to a high value of βa. On the other hand, because
the forest provides shelter against extreme weather, the
success of hunting in the forest depends mostly on its to-
pography, corresponding to a low value of βb.

In the context of social evolution in humans, λ1 might
represent the degree of globalization in a society, and λ2
might represent the amount of natural resources available
locally, such as crude oil. An individual then faces the
choice of opening a manufacturing facility (action a) or an
oil refinery (action b). The success of the manufacturing
facility depends on the degree of globalization, which
provides access to cheap labor globally, corresponding to a
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high value of βa. However, the success of the oil refinery
obviously depends on the availability of crude oil locally,
corresponding to a low value of βb.

Our framework is general, in the sense that we embed in
xa and xb—or equivalently, in factors and individual
characteristics—the entire biological machinery that is
fundamental to evolution, that is, genetics, but which is of
less direct interest to social scientists than the link between
behavior and fitness. If action a leads to higher fecundity
than action b for individuals in a given population, the
particular set of genes that predispose individuals to select a
over b will be favored by natural selection, in which case
these genes will survive and flourish, implying that the
behavior “choose a over b” will flourish as well.

Using this framework, we show below that the degree of
globalization as a factor can affect the emergence of extreme
political views, and that the crime rate of racially catego-
rized groups is another factor that can affect the emergence
of discriminatory behaviors.

Individual behavior

Suppose each individual chooses action a with some prob-
ability p 2 [0, 1] and action bwith probability 1� p, denoted
by the Bernoulli random variable Ip, hence the number of
offspring of an individual is given by the random variable

xp ¼ Ipxa þ ð1� IpÞxb,
where

Ip ¼
(
1 with probability p
0 with probability 1� p:

We shall henceforth refer to p as the individual’s behavior since
it completely determines how the individual chooses between
actions a and b. Note that p can be 0 or 1, which corresponds to
deterministic behaviors. Generally, p can also be between 0 and
1, which corresponds to randomizing behaviors.

In this framework, an individual is completely charac-
terized by its behavior p and characteristics (βa, βb). We

shall henceforth refer to f ≡ (p, βa, βb) as an individual’s
type. To complete the specification of our model, we as-
sume that offspring behave in a manner identical to their
parent, that is, they have the same characteristics (βa, βb),
and choose between a and b according to the same p;
hence, the population may be viewed as comprising many
different types, each indexed by the triplet f. The as-
sumption that offspring from a type-f parent are also of the
same type f implies perfect genetic transmission of be-
havior from one generation to the next (that is, once a type
f, always a type f).

Although clearly unrealistic from a biological perspective,
this simplification highlights and clarifies the impact of
evolutionary dynamics on behavior, allowing us to derive the
growth-optimal behavior explicitly.6 However, Brennan et al.
(2018) have extended thismodel to allow for mutation, which
we shall also consider in our framework below.

In summary, an individual i of type f = (p, βa, βb)
produces a random number of offspring

xp,βa ,βbi ¼ Ipi x
βa
a,i þ ð1� Ipi Þxβbb,i (2)

where

xβaa,i ¼ βaλ1 þ ð1� βaÞλ2
xβbb,i ¼ βbλ1 þ ð1� βbÞλ2

(3)

Here, individuals are indexed by i. In a given generation,
individuals with the same characteristics βa and βb yield
identical fitness as shown in (3), hence we may omit the
subscript i wherever it is unambiguous.

Population dynamics

Now consider an initial population of individuals that
contains an equal number of all types, which we nor-
malize to be 1 each without loss of generality. Suppose
the total number of type f = (p, βa, βb) individuals in
generation T is nfT . Because n

f
T grows exponentially over

time T, we consider the exponential growth rate of the
population size, T�1 log nfT . Under assumptions (A1)

Table 1. Model parameters and constraints.

Parameters/Constraints Explanation

a and b Two actions for each individual to choose from.
xa ≥ 0 and xb ≥ 0 Random numbers of offspring that correspond to choice a and b.
λ1 ≥ 0 and λ2 ≥ 0 Two environmental factors that determine fitness, independent and identically distributed (IID) over time and

identical for all individuals in a given generation.
βa 2 [0, 1] and βb 2 [0, 1] Individual characteristics that determine the loading of its fitness on factors.
p 2 [0, 1] Individual behavior, defined as the probability to choose action a.
f ≡ (p, βa, βb) An individual’s type, which is the unit of selection in evolution because it completely characterizes an individual.
μ(p, βa, βb) Log-geometric-average population growth rate for individuals of type f = (p, βa, βb).
f ∗ ¼ ðp∗,β∗a,β∗bÞÞ The growth-optimal type that yields the fastest population growth rate.

4 Collective Intelligence



and (A2), it is easy to show that T�1 log nfT converges in
probability to the log-geometric-average growth rate

μðp, βa, βbÞ ¼ E

h
log

�
pxβaa þ ð1� pÞxβbb

�i
, (4)

as the number of generations and the number of individuals
in each generation increase without bound.7 Note that the
term inside the logarithm of (4) is written as a linear
combination of xβaa and xβbb , the fitness of actions a and b.
Because selection occurs at the level of type f = (p, βa, βb), it
is also useful to define

α1 ¼ pβa þ ð1� pÞβb
α2 ¼ pð1� βaÞ þ ð1� pÞð1� βbÞ (5)

so that (4) can be rewritten as

μðp, βa, βbÞ ¼ E½logðα1λ1 þ ð1� α1Þλ2Þ�, (6)

where the term inside the logarithm is a linear combination
of factors λ1 and λ2. It is easy to see that α1 + α2 = 1, and we
shall henceforth refer to (α1, α2) as the factor loadings of
type-f individuals. Equations (4) and (6) characterize the
log-geometric-average growth rate of individuals as a
function of their type f in terms of both behavior p and
characteristics (βa, βb).

8

Over time, because the population grows exponentially,
individuals with the largest growth rate will dominate the
population at a geometric rate, as specified in the following
result:9

Proposition 1. Under assumptions (A1) and (A2), the
optimal factor loading, α∗1, that maximizes the log-
geometric-average growth rate (6) is given by

α∗1 ¼

8>><
>>:

1 if E½λ1=λ2�> 1 and E½λ2=λ1�< 1
solution to ð8Þ if E½λ1=λ2� ≥ 1 and E½λ2=λ1� ≥ 1
0 if E½λ1=λ2�< 1 and E½λ2=λ1�> 1

(7)

where α∗1 is defined implicitly in the second case of (7) by

E

�
λ1

α∗1λ1 þ ð1� α∗1Þλ2

�
¼ E

�
λ2

α∗1λ1 þ ð1� α∗1Þλ2

�
: (8)

Furthermore, based on (7), the growth-optimal type,
f ∗ ¼ ðp∗, β∗a, β∗bÞ, is given explicitly in Table 2.

The three possible scenarios in (7) reflect the relative
fitness of the two factors. α∗1 ¼ 1 corresponds to behaviors
and characteristics with a full loading on λ1, which is
growth-optimal if λ1 exhibits unambiguously higher ex-
pected relative fecundity; α∗1 ¼ 0 will be growth-optimal if
the opposite is true; and having a balanced loading between
λ1 and λ2 will be growth-optimal if neither factor has a clear-
cut reproductive advantage.

The growth-optimal characteristics and associated op-
timal behaviors in Table 2 show that, when α∗1 is 1 or 0, one
of the factors, either λ1 or λ2, is significantly more important
than the other, and the growth-optimal strategy places all the
weight on the more important factor. However, when α∗1 is
strictly between 0 and 1, a combination of factors λ1 and λ2
will be necessary to achieve the maximum growth rate.
Individual characteristics ðβ∗a,β∗bÞ need to be distributed in
such a way that one of the two choices of action puts more
weight on one factor, while the other choice puts more
weight on the other factor. Eventually, the behavior p* will
randomize between the two choices and achieve the growth-

Table 2. Growth-optimal type f ∗ ¼ ðp∗,β∗a,β∗bÞ for the binary choice model.

Growth-optimal characteristics Growth-optimal behavior

If α∗1 ¼ 1 fðβa,βbÞ : βa ¼ 1 or βb ¼ 1g

p∗ ¼

8>>>>>><
>>>>>>:

α∗1 � β∗b
β∗a � β∗b

¼ 1 if β∗a ¼ 1,β∗b ≠ 1

α∗1 � β∗b
β∗a � β∗b

¼ 0 if β∗a ≠ 1,β
∗
b ¼ 1

arbitrary if β∗a ¼ β∗b ¼ 1

If α∗1 ¼ 0 fðβa,βbÞ : βa ¼ 0 or βb ¼ 0g

p∗ ¼

8>>>>>><
>>>>>>:

α∗1 � β∗b
β∗a � β∗b

¼ 1 if β∗a ¼ 0,β∗b ≠ 0

α∗1 � β∗b
β∗a � β∗b

¼ 0 if β∗a ≠ 0,β
∗
b ¼ 0

arbitrary if β∗a ¼ β∗b ¼ 0

If 0 < α∗1 < 1 fðβa,βbÞ : ðβa � α∗1Þðβb � α∗1Þ ≤ 0g
p∗ ¼

8><
>:

α∗1 � β∗b
β∗a � β∗b

if β∗a ≠ β
∗
b

arbitrary if β∗a ¼ β∗b
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optimal combination of factors. This is a generalization of
the “adaptive coin-flipping” strategies described by Cooper
and Kaplan (1982), who interpret this behavior as a form of
altruism, because individuals who engage in this behavior
seem to be acting in the interest of the population at the
expense of their own individual fitness.10

The results in Table 2 also highlight the fact that evolution
can lead to multiple coexisting types of individuals. It is
mathematically possible that types with different characteristics
(βa and βb) and different behaviors (p) will lead to the same
factor loading ðα∗1Þ. They may superficially appear to be doing
very different things, but each group of individuals will balance
these two actions in its own way, based on its own charac-
teristics. The environmental factor plays an important role in
this process, since the ultimate reason that these groups are able
to coexist is because they have the same factor loadings. Just as
“All roads lead to Rome,” our results show that in evolution,
“All sustainable behaviors lead to survival,” that is, those
behaviors satisfying the growth-optimality condition in Table 2.

Binary choice model of
political polarization

We first apply our framework to explain the emergence of
coordinated groups, groups whose individual members
appear to act with a single purpose, such as unions, military
alliances, and patient advocacy groups, among others. Here,
we focus on extreme political views as an example to il-
lustrate the emergence of political polarization.

The key lies in the fact that the fitness of individuals share
several common factors. The consequences of this one
feature—which is the evolutionary instantiation of the adage
“the enemy ofmy enemy is my friend”—are enormous, giving
rise to seemingly coordinated behavior among subsets of
individuals, or groups, purely through evolutionary dynamics.

Consider a hypothetical island isolated from the rest of
the world. There are two factors that determine the fitness of
any individual on this island. The first factor, λglob, repre-
sents the degree of globalization where, without loss of
generality, we assume that larger values represent higher
degrees of globalization.11 The second factor, λother, rep-
resents everything else that may be relevant to an indi-
vidual’s fitness. This is obviously an oversimplification, but
more general specifications will become obvious once we
present the analysis for this simpler setting.12

A simple example

To develop intuition about the model, we first consider the
special case in which the factors are specified by the fol-
lowing Bernoulli distribution

λglob ¼
(
4, with probability q
1, with probability 1� q

, λother ≡ 2 (9)

In each period, the degree of globalization is either 4 or 1,
and the higher values of the probability q represent a higher
average degree of globalization. On the other hand, we may
simply assume that all other factors are represented by a
constant factor λother without loss of generality.

An individual on this island lives for one period, has one
opportunity to choose one of two political attitudes
(actions)—pro-globalization or anti-globalization—that
determines its fitness, and then dies immediately after re-
production. The number of offspring is given by xanti if the
individual chooses to be anti-globalization, and xpro if the
individual chooses to be pro-globalization.

xanti ¼ βantiλglob þ ð1� βantiÞλother
xpro ¼ βproλglob þ

�
1� βpro

�
λother

(10)

The characteristics βanti and βpro determine how an indi-
vidual’s chosen action affects its fitness through the two
factors. Different individuals may possess different char-
acteristics. Here we focus on two specific types of indi-
viduals: those who benefit from globalization, and those who
are harmed by it. Higher values of λglob are more conducive to
fitness for those who benefit from globalization, therefore
yielding a positive characteristic if the individual chooses
to be pro and embrace globalization. We use βbenefitpro ¼ 1 to

represent this characteristic. On the other hand, if the
individual chooses to be anti, they do not benefit from
globalization, and their fitness is purely determined by
other factors. We use βbenefitanti ¼ 0 to represent this
characteristic.

On the other hand, for those who are harmed by glob-
alization, choosing to be anti and supporting policies that
limit globalization can promote their fitness when the level
of globalization is high. Therefore, they have a positive
characteristic βharmanti ¼ 1. In contrast, when they choose to be
pro, their fitness is purely determined by other factors:
βharmpro ¼ 0.

To summarize, we use the superscript “benefit” or
“harm” to represent these two types of individuals, and their
fitness is determined by

xbenefitanti ¼ λother, xharmanti ¼ λglob
xbenefitpro ¼ λglob, xharmpro ¼ λother

(11)

The behavior p in this example represents the probability of
choosing the “anti-globalization” action. In other words,
lower values of p corresponds to more “pro-globalization”
behaviors. We have the following result characterizing the
growth-optimal behavior in this example:
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Proposition 2. Under assumptions (A1) and (A2) and the
environment specified by (9) and (10), the population
growth rate in (4) can be evaluated explicitly as

μbenefitðpÞ ¼ q logð4� 2pÞ þ ð1� qÞlogð1þ pÞ
μharmðpÞ ¼ q logð2þ 2pÞ þ ð1� qÞlogð2� qÞ , (12)

and the behavior (value of p) that maximizes this growth
rate is

pbenefit ¼

8>>>>>>><
>>>>>>>:

1, if q ≤
1

3

2� 3q, if
1

3
< q <

2

3

0, if q ≥
2

3

(13)

pharm ¼

8>>>>>>><
>>>>>>>:

0, if q ≤
1

3

3q� 1, if
1

3
< q<

2

3

1, if q ≥
2

3

(14)

We plot pbenefit and pharm in Figure 1. As the average degree
of globalization (q) increases, the growth-optimal behavior
for individuals who benefit from globalization (pbenefit) (that
is, leaning pro) decreases, while the growth-optimal be-
havior for individuals who are harmed by globalization
(pharm) (that is, leaning anti) increases. This is due to the fact
that as selection pressure on the globalization factor in-
creases, these two groups of individuals are forced by the
environment to choose the political views that benefit their
respective interests, that is, fitness.13

This example illustrates a primitive form of polarization.
When the average degree of globalization is either too low
or too high, two distinct groups of individuals emerge. They
coexist through the evolutionary process, but within each
group, individuals share the same characteristics. A par-
ticular behavior must be paired with a particular set of
characteristics to achieve the optimal growth rate. Note that
the individuals in (13) and (14) are optimal only in the group
sense. In fact, from any individual’s perspective, the
survival-maximizing behavior is to always choose the action
with higher average fitness (p = 0 or 1). The continuous
spectrum of growth-optimal behaviors in Figure 1 only
emerges because a group possesses survival benefits above and
beyond an individual. In our framework, these benefits arise
purely from stochastic environments with systematic risk.14

The usual conception of group selection in the evolutionary
biology literature is that natural selection acts at the level of the
group, instead of at the more conventional level of the indi-
vidual (or the gene), and that interaction between members
within each group is much more frequent than interaction

among individuals across groups. In this case, similar indi-
viduals are usually clustered geographically. However, in our
model, individuals do not interact at all. Nevertheless, the fact
that individuals with the same behavior generate offspringwith
like behavior makes themmore likely to cluster geographically
and appear as a “group.”

In reality, the environment is generally nonstationary.
Factor distributions change over time, and old factors fade
while new factors emerge. In fact, the change in the envi-
ronment can itself be a consequence of previous adaptations.
We see this in the history of globalization itself. From the Silk
Road dating back to the 2nd century BCE, to the World Trade
Organization established in 1995, the course of globalization
has always been fueled by a number of historical factors, such
as the desire to trade local goods for exotic products, or to gain
access to cheap labor. Imagine that the environment (λglob,
λother) experiences a sudden shift. To an outside observer,
behaviors among individuals in this population will become
increasingly similar after the shift, creating the appearance—
but not necessarily the reality—of intentional coordination,
communication, and synchronization. If the reproductive cycle
is sufficiently short, this change in population-wide behavior
may seem highly responsive to environmental changes, giving
the impression that individuals are learning about their envi-
ronment. This is indeed a form of learning, but it occurs at the
population level—a form of collective learning—not at the
individual level, and not within an individual’s lifespan.

The general case

The factor distribution in (9) can be easily generalized to
any arbitrary number of offspring

Figure 1. Growth-optimal behavior pbenefit for individuals who
benefit from globalization, and pharm for individuals who are
harmed by globalization. The horizontal axis shows the
probability q in (9). The vertical axis and the color bar show the
growth-optimal behavior, p*, in different environments
parameterized by q. Blue indicates the “pro-globalization” action,
while dark red indicates the “anti-globalization” action.
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λglob ¼
(
C1, with probability q

1, with probability 1� q
,

λother ¼
(
C2, with probability r

1, with probability 1� r

(15)

We assume, without loss of generality, that one of the out-
comes for each factor yields exactly one offspring while the
other is parameterized by C1 and C2, since it is the relative
fitness between these two outcomes that matters. In addition,
probabilities q and r parameterize the average level of the two
factors. In Figure 2, we show the growth-optimal behavior for
both the “Benefit” group and the “Harm” group, f Benefit and f
harm, as functions of these environmental parameters.

Figure 2(a) shows the case with a moderate level of
globalization over time (q = 0.5). The plot in the first row

shows the growth-optimal behavior for those who benefit
from globalization (f Benefit). As the fitness for the global-
ization factor (C1) increases, individuals tend to be pro
(blue), but as the fitness for the other factor (C2) increases,
individuals tend to be anti (dark red). The plot in the second
row shows the growth-optimal behavior for those who are
harmed by globalization (f harm), which are the opposite of
the behaviors for the “Benefit” group, in the sense that f harm

= 1 � f Benefit. The plot in the last row shows the absolute
difference between the growth-optimal behaviors of the two
groups of individuals, |f Benefit � f harm|, which is a simple
measure of polarization. When the “Benefit” group and the
“Harm” group show opposing behaviors, the level of po-
larization is high (dark blue).

Figure 2(b) shows the same set of growth-optimal
behaviors when the average level of globalization is

Figure 2. Growth-optimal behaviors for both the “Benefit” group and the “Harm” group, f Benefit and f harm, as functions of
environmental parameters. (2a): moderate globalization with q = 0.5. (2b): high globalization with q = 0.9. The first row shows f Benefit;
the second row shows f harm; the last row shows the absolute difference, that is, polarization: |f Benefit � f harm|.
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high (q = 0.9). Compared to the behaviors in Figure 2(a),
when the average globalization shifts toward a higher
level, behaviors shift accordingly as well. As a result, the
same environmental conditions (the region of the (C1,C2)-
plane) that generated unity before may lead to polarization
in this environment.

The simple example here considers two groups of indi-
viduals: those who benefit from globalization
ðβ benefit

pro ¼ 1, β benefit
anti ¼ 0Þ and those harmed by globalization

ðβ harm
pro ¼ 0, β harm

anti ¼ 1Þ. In this stylized example, both groups
coexist while different political views emerge. In reality, there
is a spectrum of individuals in the population who benefit from
or are harmed by globalization to varying degrees. This
corresponds to a continuum of characteristics (β) associated
with the globalization and “other” factors. As a result, the
population will consist of a more diverse set of political views,
spanning the entire range from pro to anti. The ultimate po-
litical composition in the population is determined by the
mixture of individuals with different characteristics.

Binary choice model of bias
and discrimination

Our framework can also be used to understand the emergence
of bias and discrimination, as well as to determine their un-
derlying causes and what can be done to counteract these
causes. We use racial discrimination as the main example of
bias in this section, but the same principles apply more broadly
to other kinds of bias and discrimination, including gender,
sexual orientation, religion, socioeconomic strata, and so on.

A simple example

We consider a hypothetical world with a population composed
of two racial groups: a majority group which we refer to as the
“Andorians,” and a minority group which we refer to as the
“Tellarians.” Group membership is unambiguous, mutually
exclusive (an individual is a member of one and only one
group), immutable, and observable by all.15 There are two
factors that determine each individual’s fitness: λA and λT.
They represent social interactionswith Andorian and Tellarian
individuals, respectively. An individual who interacts with
Andorian individuals is subject to the Andorian factor, λA,
whereas an individual who interacts with Tellarian individuals
is subject to the Tellarian factor, λT. λA and λT are independent
random variables with the following distributions

λA ¼
(
1, with probability q

2, with probability 1� q
,

λT ¼
(
1, with probability r

2, with probability 1� r

(16)

Without loss of generality, we have assumed that each factor
only takes two possible values: a low fitness of 1, which
happens in the context of an adverse event related to that
group,16and a high fitness of 2, which represents the normal
case. Here, we use q and r to represent the probability of the
adverse event for the Andorian and the Tellarian groups,
respectively, which we refer to as the “adverse probability”
for simplicity. For example, with a (small) probability r, if
an adverse event happens in an interaction with the Tellarian
individual, anyone with an interaction with that individual
will experience low fitness in that period.

Historically, the Tellarian community has been politi-
cally underrepresented, with less access to education and
economic opportunity. As a result, this greater inequality
has led to a higher crime rate for the Tellarian community
compared to the average population. Note that the higher
crime rate is not because of race, but the result of a com-
plicated set of determinants, including less access to re-
sources historically. However, in this model, individuals
observe only each other’s race, modeled here as group
membership, which they use as a marker in the absence of
any other information. The true underlying causes of higher
crime rates, such as a lack of educational opportunity or
socioeconomic status, are assumed to be unobservable, a
key assumption.

We now focus on the perspective of an Andorian, who
faces a decision between one of two actions—whether or
not to discriminate against a Tellarian—which determines
their fitness. We assume that an Andorian’s number of
offspring is given by xdiscriminate if the individual chooses to
discriminate, and xnot discriminate if the individual chooses not
to discriminate

xdiscriminate ¼ λA
xnot discriminate ¼ βλT þ ð1� βÞλA (17)

If an Andorian chooses to discriminate against a Tellarian, it
avoids any interactions with that individual, and therefore,
its fitness will be subject only to λA. On the other hand, if an
Andorian does not discriminate, its fitness is subject to both
λT and λA. Here, β represents the percentage of Tellarians in
the population, hence the weight on the factor λT.

17

For a particular behavior p (the probability to discrim-
inate against a Tellarian), the population growth rate in (4) is
a function of the environment (that is, the adverse proba-
bilities, q and r) and the characteristic (β). In this simple
case, as in the example of political polarization in the
previous section, we can characterize the growth-optimal
behavior explicitly:

Proposition 3. Under assumptions (A1) and (A2) and the
environment specified by (16) and (17), the population
growth rate can be evaluated explicitly as
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μ pð Þ ¼ q 1� rð Þlog 1þ β � pβð Þ
þ 1� qð Þr log 1� β þ pβð Þ
þ 1� qð Þ 1� rð Þlog 2� pð Þ,

(18)

and the behavior (that is, the value of p) that maximizes this
growth rate is

p∗ ¼

1, if r≥
2q

1þq

1� qr�2qþ r

ð2qr�q� rÞβ, if
ð2�βÞq

ð1�2βÞqþð1þβÞ<r<
2q

1þq

0, if r≤
ð2�βÞq

ð1�2βÞqþð1þβÞ

:

8>>>>>>>><
>>>>>>>>:

(19)

Equation (19) is the behavior that yields the highest growth
rate and therefore characterizes the behavior favored by natural
selection. Recall that p* = 1 corresponds to fully discriminatory
behavior. We plot p* in Figure 3 with two different population
group percentages. Figure 3(a) shows a world with an equal
number of Andorian and Tellarian individuals (β = 0.5), and
Figure 3(b) shows a world with only 20% Tellarians (β = 0.2).

In both cases, when the adverse probability associated with
Tellarians (r) is low compared to the adverse probability as-
sociated with Andorians (q), no discrimination emerges. As r
increases relative to the adverse probability for Andorians (q),
discrimination emerges, that is, p* increases from 0 to 1. This is
because individuals who choose to avoid interactions with
Tellarians gain an evolutionary advantage by reducing their
exposure to the factor λT and the higher adverse probability r on
average. This effect emerges from the fact that in our model,
race is the only observable marker of the individuals in the
population and the true underlying causes of the higher adverse
probability are not observable. This phenomenon is also referred
to as statistical discrimination (Phelps, 1972; Arrow, 1973).

In addition, we can observe from the first case of (19) that
the environment leading to full discrimination (p* = 1) does

not depend on the percentage of Tellarians in the population
(β). It is only a function of the adverse probability, q and r.
This is also clear by comparing Figure 3(a) and (b). In both
cases, when the adverse probability associated with Tell-
arians is high compared to that for Andorians

�
r ≥ 2q

1þq

�
, full

discrimination emerges.
On the other hand, when Tellarians are the minority (β =

0.2), the regionwhere individuals have partially discriminatory
behavior shrinks (given by the middle case in (19), where p* is
strictly between 0 and 1). This implies that when the group in
consideration consists of a small fraction of the entire pop-
ulation, the boundary of the environmental conditions leading
to no discrimination and full discrimination is sharper.

In our simple example, the key to the emergence of
discrimination is the fact that race is the only observable
feature of individuals. However, these implications will
likely remain true even if other attributes of the individuals
are partially observable, given the insight of the memory/
prediction framework by Hawkins and Blakeslee (2004),
who argue that we store memory patterns and use them to
predict what will happen in the future. When individuals
experience a random adverse event in association with a
Tellarian, they tend to attribute it to the Tellarian’s race
because it is the most easily observable marker, leading to
discrimination against Tellarians. Based on a similar hy-
pothesis, Bordalo et al. (2016) develop a model of ster-
eotyping based on the representativeness heuristic (Tversky
and Kahneman, 1983): agents overweight the prevalence of
a trait in a group when that trait appears to be highly
representative of the group in question. This is, however, not
the root cause of the adverse event. In other words, it is
much too easy to confuse correlation with causation.

We have seen that the difference in relative adverse
probabilities, q and r, can lead to serious biases and dis-
criminatory practices. Next, we are able to strengthen our
results by showing that even when the two groups have
equal probabilities of adverse events, or even in certain
cases when Tellarian individuals have a lower probability of

Figure 3. Growth-optimal behaviors, p*, as a function of environmental parameters. (3a): percentage of Tellarians in the population β =
0.5. (3b): percentage of Tellarians in the population β = 0.2.
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adverse events than their Andorian counterparts, discrimi-
nation can still emerge.

Feedback loops

Discrimination against Tellarians in the general population
affects the Tellarian community adversely. For example,
those individuals who participate in discriminatory behavior
against Tellarians may contact law enforcement more often,
leading to a higher incidence of false accusations against the
Tellarian community. They may develop more hostile be-
haviors toward the Tellarian community, reducing educa-
tional and economic opportunities for the Tellarian
community, which further increases the probability of an
adverse event associated with Tellarians.

Another less obvious type of feedback comes from the
increasing popularity and prevalence of engagement-based
recommender systems on news and social media platforms.
When presented with new information (which may be a
news broadcast or a social media post), humans tend to
anchor towards what they originally believe (Tversky and
Kahneman, 1974). As a result, even a small initial bias
acquired randomly can be reinforced and amplified through
feedback based on a recommender algorithm.

To incorporate this feedback loop into our model, we
make the following assumption:

(A3) Factor λT’s distribution in generation T is given by

λT ¼ 1, with probability ~r : ¼ r
�
1þ τpT�1

�
2, with probability 1� ~r

�
(20)

where pT�1 represents the average behavior in the pop-
ulation in the previous generation, T � 1.

When the level of bias is higher in the population (that
is, when pT�1 is higher), the adverse probability associated
with Tellarians ð~rÞ is higher. Here, τ represents the intensity
of the feedback effect. For example, when τ = 1, the ad-
verse probability is, at most, twice when everyone dis-
criminates against Tellarians, compared to when no one
discriminates. A higher value of τ implies higher multiples
of this effect.

Note that the factors in (16) are identically distributed
over time. In other words, they do not depend on time, nor
on realizations of the past evolution of results. In contrast,
the factor in (20) introduces path dependency into the
evolutionary process, because it depends on the past real-
izations of population behavior. As a result, λT is no longer
stationary over time. This simple change generates a sur-
prisingly rich set of new implications.

We first use simulation methods to develop an intuition
for the effect of different intensities of negative feedback.
We consider a world that starts from an equal number of

individuals in the population with 11 different behaviors:
p 2 {0, 1/10, 2/10, …, 1}. Figure 4 shows the evolution of
the relative frequency of these behaviors over 10,000
generations, given different environmental conditions.

Figure 4(a)–(c) depict simulations of an environment
with equal adverse probabilities for Tellarians and An-
dorians (q = r = 0.2), with the feedback intensity, τ, in-
creasing from 0 (no feedback) to 1 (the adverse probability
is doubled with full discrimination in the population).18

Figure 4(a) corresponds to an environment with no feed-
back, and the behavior p* = 0 (no discrimination) quickly
dominates the population. This also corresponds to the
growth-optimal behavior in the upper right corner of Figure
3(a). As the feedback intensity increases to τ = 0.6, as shown
in Figure 4(b), positive p* (partial discrimination) emerges.
Finally, as the feedback intensity increases to τ = 1, as
shown in Figure 4(c), p* = 1 (full discrimination) quickly
dominates the population.

In addition, Figure 4(d) illustrates an environment in
which Tellarians have a lower probability of an adverse
event than Andorians (r < q). Given conditions of strong
feedback (τ = 2), fully discriminatory behavior (p* = 1) still
dominates the population. This is because the feedback
intensity is so high that discrimination quickly worsens the
adverse probability for the Tellarian population, leading to
severe discrimination against the population, despite the fact
that the Tellarian population starts with a more favorable
adverse probability.19

More generally, despite the challenging complexities of a
nonstationary and path-dependent environment created by
the feedback mechanism, we can analytically quantify the
growth-optimal behavior, p*, implicitly. The factor with
feedback in (20) is mathematically equivalent to the simple
environment we considered in (16), except that the adverse
probability associated with Tellarians, r, is replaced by the
feedback-adjusted adverse probability, ~r. Therefore, a be-
havior can survive in the long run only when it satisfies the
growth-optimal condition (19), with r replaced by the
feedback-adjusted ~r, hence we have:

Proposition 4. Under assumptions (A1)–(A3) and the en-
vironment specified by (17), the growth-optimal behavior,
p*, with feedback must satisfy the following fixed-point
condition

p∗ ¼ Bound10

0
@1� q~r � 2qþ ~r�

2q~r � q� ~r
�
β

1
A

¼ Bound10

	
1� ðqþ 1Þrð1þ τp∗Þ � 2q

½ð2q� 1Þrð1þ τp∗Þ � q�β

 (21)

where Bound10ðxÞ ¼ maxð0,minð1,xÞÞ represents a function
that bounds the behavior to lie within the closed unit
interval.
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Equation (21) is a necessary, but insufficient, condition
for any behavior to survive in the long run. Due to its
nonlinearity, the growth-optimal behavior, p*, implied by
(21) may not be unique for some environments. However,
without intervention, only one behavior is stable and able to
persist in each environment, for which we need to define the
new notion of a locally evolutionarily stable strategy.

Locally evolutionarily stable strategies

An evolutionarily stable strategy (ESS), first introduced by
Maynard Smith and Price (1973),20 is a strategy that is
impermeable to other strategies when adopted by a pop-
ulation in adaptation to a specific environment. In other
words, it cannot be displaced by an alternative strategy,
which may be novel or initially rare. In game-theoretical
terms, an ESS is an equilibrium refinement of the Nash
equilibrium concept, given that a Nash equilibrium is also
“evolutionarily stable.” Once fixed in a population, natural
selection alone is sufficient to prevent alternative (or
mutant) strategies from replacing it.

We define a locally evolutionarily stable strategy
(L-ESS) to be one that is stable locally. In other words, it is a
strategy that cannot be displaced by any local perturbation
of that strategy. 21

Definition 1. A L-ESS behavior, p*, is one for which any
local perturbation in the average population behavior
fp : p ¼ p∗ þ εg leads to a growth-optimal behavior, p0,
given by (19) that is closer to p* than p, |p0 � p*| < |ϵ|.

In other words, when randomness in the environment
causes the average behavior of the population, p, to
change around the growth-optimal behavior, p*, the
perturbed pwill lead to a new behavior that is very close
to the original growth-optimal behavior. As a result,
evolutionary dynamics itself will always bring the
population back to the original growth-optimal be-
havior, p*. In this sense, such behaviors are locally
stable from an evolutionary perspective. The L-ESS is
an additional requirement to the growth-optimal be-
havior, p*, implied by the fixed-point condition (21).
Without intervention, only L-ESS behaviors can persist
in the long run. When there is no or little feedback in the
environment (that is, when τ is small), behaviors im-
plied by (21) are always L-ESS. However, as the
feedback intensity increases, non-L-ESS behaviors can
emerge.

Figure 5 shows an environment with strong feedback
intensity (τ = 2). Recall that the nonlinearity of the fixed-
point condition (21) can lead to multiple solutions of p*, and
we compare the L-ESS (Figure 5(a)) and non-L-ESS be-
haviors (Figure 5(b)). The dashed triangular regions22

represent the set of environments where the fixed-point
condition (21) leads to one L-ESS and one non-L-ESS
behavior. In this region, the non-L-ESS behaviors are
less discriminatory, and the strong feedback intensity
nudges the population to evolve towards fully discrimi-
natory behaviors.

In addition, Figure 5(c) shows the differences in pop-
ulation growth rates between the L-ESS behavior and

Figure 4. The evolution of 11 behaviors, p 2 {0, 1/10, 2/10, …, 1}, over 10,000 generations. The vertical axis represents the relative
frequency of each behavior, and the horizontal axis represents time. (4a): equal adverse probability (q = r = 0.2), no feedback τ = 0; (4b):
equal adverse probability (q = r = 0.2), mild feedback (τ = 0.6); (4c): equal adverse probability (q = r = 0.2), more feedback (τ = 1); (4d):
lower Tellarian adverse probability (q = 0.2, r = 0.15), even more feedback (τ = 2).
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non-L-ESS behavior. We refer to this as the “L-ESS excess
growth rate”

Proposition 5. Under assumptions (A1)–(A3) and the en-
vironment specified by (17), if (21) yields multiple solutions
where the L-ESS behavior is more discriminative than the
non-L-ESS behavior ðp∗L�ESS > p

∗
non�L�ESSÞ, the L-ESS ex-

cess growth rate is always negative, which means that the
L-ESS behavior will always yield a lower growth rate than
non-L-ESS behavior.

This example demonstrates that path dependency can lead
to evolutionary outcomes with slower growth rates than
otherwise achievable, and the population ends up with a
suboptimal growth rate compared to a world without feedback.

In the context of our model, L-ESS behavior implies that
the Andorian individual will always avoid any interaction
with the Tellarian individual, a state of “collective

ignorance” that could otherwise be improved with greater
diversity in the population.23

Feedback can lead to greater bias

With our understanding of L-ESS behavior, we can now
finally show the variation in growth-optimal behavior in
environments with different feedback intensities. We have
the following intuitive but important result:

Proposition 6. Under assumptions (A1)–(A3) and the en-
vironment specified by (17), as the feedback intensity, τ,
increases, discriminatory behaviors are more likely to
emerge, in the sense that they dominate the population for
increasingly larger regions of environmental conditions, as
parameterized by the adverse probabilities, q and r, for the
Andorian and the Tellarian groups, respectively.

Figure 5. Comparison of L-ESS and non-L-ESS behaviors for an environment with strong feedback intensity (τ = 2). (5a): L-ESS growth-
optimal behaviors implied by the fixed-point equation (21); (5b): non-L-ESS growth-optimal behaviors if the fixed-point equation (21)
yields multiple solutions, otherwise we plot the unique solution from (21) which is L-ESS; (5c): L-ESS excess growth rate as defined in (22),
which is the difference in growth rates between the L-ESS behavior and the non-L-ESS behavior.

L� ESS excess growth rate ¼
(
μ p∗L�ESS

� �� μ p∗non�L�ESS

� �
, if 21ð Þ yields multiple solutions

0, otherwise
: (22)
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Figure 6 shows L-ESS behaviors for different levels of
feedback intensity and demonstrates Proposition 6. As τ
increases from 0 (Figure 6(a)) to 2 (Figure 6(d)), dis-
criminatory behaviors dominate the population for in-
creasingly larger regions of environmental conditions.
When feedback is absent from these evolutionary dynamics
(Figure 6(a)), discrimination only emerges when Tellarians
have a higher probability of adverse events than Andorians.
However, when the feedback intensity is high (Figures 6(c)
and (d)), full discrimination prevails, even in environments
where the adverse probability for Tellarians is lower than
that for Andorians.

These results emphasize the central role feedback plays in
the emergence of bias and discrimination. By combining the
observation that individuals tend to attribute the occurrence of
random adverse events to the only observable characteristic,
race (Hawkins and Blakeslee, 2004), with the negative
feedback from those random adverse events, our model has
demonstrated the power of these forces in generating wide-
spread bias and discrimination in the population.

These results shed light on the evolutionary dynamics
behind the emergence of biases not only toward the
Tellarian community (which is of course fictional), but
also other forms of bias and discrimination. From the
policy perspective, these results emphasize the impor-
tance of preventing the effects of negative feedback in the
greater population. One example is to proactively provide

more educational and economic opportunities among
disadvantaged groups. This does not directly eliminate the
negative feedback, but will indirectly help to reduce its
impact by elevating their socioeconomic status and re-
ducing their adverse probabilities. Another example is to
enforce regulations that cut through such (sometimes
unconscious) negative feedback mechanisms. These ac-
tions together will create more favorable environments for
collective intelligence to emerge rather than allowing
collective ignorance to propagate, and can potentially
reduce, and eventually reverse, selection pressure behind
the emergence of bias and discrimination.

Path-dependent evolution and initial conditions

When feedback loops exist in the environment, evolution
may become path dependent. Therefore, the dominant
behavior that emerges in a given population will sometimes
depend on the initial composition of that population. We
consider evolution in populations that begin with non-
uniform initial distributions of behaviors in this section.

Figure 7 demonstrates that two realizations of an evo-
lutionary system under the same environment can lead to
different growth-optimal behaviors, and different initial
populations can also lead to different growth-optimal be-
haviors. Like the simulations illustrated in Figure 4, we
simulate the evolution of 11 behaviors, p 2 {0, 1/10, 2/10,

Figure 6. L-ESS behaviors, p*, as a function of environmental parameters, when there is feedback. The feedback intensity, τ, increases
from 0 in (Figure 6(a)) to 2 in (Figure 6(d)).
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…, 1}, for an environment with equal adverse probabilities
for the Tellarian and Andorian populations (q = r = 0.2),
and with a feedback intensity τ = 1.

We use n0 to denote the frequency of different behaviors
in the initial population. Figure 7(a) and (b) show two
simulation runs of the evolution for an initial population
with little bias: n0 = (0.8, 0.02, 0.02, …, 0.02). In other
words, 80% of the initial population starts with no dis-
crimination (p = 0). After 2000 generations, p = 0 dominates
the population in the first case, whereas p = 1 dominates in
the second case.

In contrast, Figure 7(c) shows the evolution for an initial
population with a substantial amount of bias: n0 = (0.02,
0.02, …, 0.02, 0.8), hence 80% of the initial population
starts with fully discriminatory behavior (p = 1). Not sur-
prisingly, p = 1 dominates.

When the initial population is non-uniform, some behaviors
may quickly become extinct before they have a chance to
spread. In fact, if we allow a small amount of mutation in each
generation—modeled as in Brennan et al. (2018), that is, with
some small probability, for example, 0.1%, that offspring of
type-p parents will be, in fact, type p0 ≠ pwhere p0 is uniformly
distributed in [0, 1] � {p}—discrimination will again dom-
inate, even if the initial population begins with very little bias.
Figure 7(d) shows such an example.24

This result underscores the fact that public policy may be
able to guide a society towards different outcomes by

purposefully imposing a strong prior belief onto the pop-
ulation. This may be achievable by encouraging fairer
beliefs through early education, and by providing more
accurate portrayals of other cultures to counteract inaccurate
stereotypes. From the perspective of our binary choice
model, these policies would nudge the initial population
such that its subsequent evolution may lead to a less dis-
criminatory society collectively.

Discussion

We present an evolutionary framework based on a binary
choice model subject to evolutionary dynamics and sto-
chastic environments that affects the fitness of a differen-
tiated population. This framework yields collective
intelligence in the form of sophisticated rational behaviors
that emerge out of an initial population in which all possible
behaviors are equally represented (Brennan and Lo, 2011,
2012). Within the same model, we can also specify con-
ditions under which this collective intelligence breaks
down, especially under conditions where agents face cor-
related fitness, or in the presence of path-dependent feed-
back. This offers one explanation of the emergence of
political polarization, bias, and racial discrimination.

The root cause of these failures is complexity, particu-
larly with respect to population heterogeneity, stochastic
environments, and feedback mechanisms. Yet it is precisely

Figure 7. Path dependency of evolution in an environment with equal adverse probability (q = r = 0.2) and feedback τ = 1.We show the
evolution of 11 behaviors, p 2 {0, 1/10, 2/10, …, 1}, over time, with different starting populations. The vertical axis represents the
relative frequency of each behavior, and the horizontal axis represents time. (7a): the initial population has low discrimination, n0 = (0.8,
0.02, 0.02,…, 0.02); (7b): a different simulation run with the same conditions as in (7a); (7c): the initial population has high discrimination,
n0 = (0.02, 0.02,…, 0.02, 0.8); (7d): the initial population has low discrimination, n0 = (0.8, 0.02, 0.02,…, 0.02), and behaviors have a
0.1% mutation rate.

Lo and Zhang 15



in such complex environments that we are in most need of
collective intelligence. Our results show that it is the
complexity within the evolutionary process—not the
complexity of the task (the task in our model is a simple
binary choice)—that can undermine collective intelligence,
which is far more subtle and challenging a problem.25

Of course, our model has several limitations and is by
no means a complete description of reality. Even a partial
description would involve the interplay between sophis-
ticated human behavior and highly complex nonstationary
environments with multiple unknown factors. However,
our approach offers a starting point for describing and
understanding the fundamental principles behind the
emergence of these failures of collective intelligence. A
natural next step for future research is to develop more
realistic models and conditions under which such failures
can be expected.

Some of the biggest challenges facing humanity can only
be solved through a collective and global effort. They
include not only dealing with political polarization and
discrimination, but also climate change, various life-
threatening diseases, economic and social inequality, and
the spread of disinformation. Extensions of our framework
may help to explain the spread of disinformation and belief
polarization, another example of the failure of collective
intelligence (Haghtalab et al., 2021). This is closely related
to political polarization and racial discrimination because
the spread of disinformation facilitates the formation of
these biases. With the advent and popularity of engagement-
based recommender systems on news and social media
platforms, disinformation has a much greater chance of
propagating across the population. One of the great insights
of Tversky and Kahneman (1974) is that humans tend to
anchor towards their original beliefs. When first presented
with new information, either through a news service, or
simply a Twitter post, regardless of its authenticity, there
will always be a group of people who happen to share a
similar belief, even if that belief is false. Regardless of the
small size of this initial group, through engagement-based
recommendations their beliefs can be amplified rapidly
throughout the population. This effect, in turn, will cause
recommender algorithms to serve up similar information
more frequently, reinforcing these false beliefs in a vicious
cycle.

So how can we prevent failures of collective intelli-
gence? Our evolutionary perspective suggests that the key is
to foster environments under which the desired behavior—
collective intelligence—will emerge naturally through
evolutionary dynamics, instead of simply regulating against
the undesired outcome which could create selective pres-
sures that make matters worse. In our example of global-
ization, the fundamental cause of the emergence of
polarization is the sharp difference in personal outcomes
that comes with global integration: some individuals benefit,

while others suffer. Constructing the right tools for those who
are harmed by the polarizing factor—options such as ex-
tended education and providing employment opportunities in
the new industrial landscape—is likely to be more effective
than simply “shutting down” globalization.

More generally, proactively providing educational, so-
cial, and economic opportunities to counteract negative
feedback loops, encouraging more accurate beliefs among
current and future generations through early exposure, and
shaping the environment to favor collective intelligence are
likely to be more successful policies than attempting to
outlaw undesirable behaviors. As long as the environmental
factors giving rise to these behaviors are still in force, the
banned behaviors will re-emerge in one form or another.

Continuing with our example of Andorians and Tell-
arians, if bias and discrimination already exist against the
Tellarians, an obvious policy may be to simply criminalize
such discrimination. This can lead to more forced inter-
actions between the Andorians and the Tellarians, which in
turn causes everyone to have a higher factor exposure to the
Tellarians. However, since bias already exists in the pop-
ulation (since the Tellarians will have a higher probability of
adverse events either initially, or through negative feedback
loops), this will lead to more Andorians experiencing ad-
verse events from their interactions with Tellarians, inevi-
tably leading to even stronger negative feedback (and even
higher adverse probabilities) for the Tellarians—a cognitive
tendency that is difficult to change (Hawkins and Blakeslee,
2004). As a result, direct attempts to outlaw bias and dis-
crimination against the Tellarians may actually make
matters worse. In this sense, our society needs not only more
integration among different groups (Anderson, 2010) but,
more importantly, measures to ensure that negative feed-
back does not reinforce itself after the integration.

These simple examples illustrate how seemingly well-
intended policies can create more selective pressure for
collective ignorance to emerge. The fundamental reason is
that they are addressing the symptoms, not the root cause, of
these failures of collective intelligence. We do not model the
objective function that policy makers should use for
managing societal issues such as polarization and dis-
crimination, but implicit in our framework is the fitness of
different types of individuals that determines their survival.
Therefore, as representatives of a given group of constit-
uents, policy makers can reasonably be expected to focus on
what improves the long-term fitness (in the economic sense)
of those constituents. Our evolutionary framework provides
a lens through which the underlying causes—the envi-
ronment in which these failures emerge—can be identified
so as to construct more productive policies.

Using history as a mirror, these implications are even
more relevant now as we experience the Artificial Intelli-
gence (AI) revolution (Makridakis, 2017; Diamandis and
Kotler, 2020). Just as in the Industrial Revolution 200 years
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ago, and modern globalization over the past 50 years, the AI
revolution will increase aggregate productivity while in-
evitably leading to another major shift in the industrial
landscape and composition of the labor market. In this
process, some individuals will benefit while others may be
harmed. The policy suggestions outlined in this article,
including extended education for those whose jobs have
been replaced by AI, and providing children with equal
access to education, particularly in STEM and AI-related
subjects, are more pressing than ever.

Acknowledgements

Research support from the MIT Laboratory for Financial Engi-
neering is gratefully acknowledged. We thank Zach Church,
Jessica Flack (editor), Steven A. Frank, Wendy Liu, David C.
Schmittlein, Harriet A. Zuckerman, and an anonymous reviewer
for helpful comments and discussion, and Jayna Cummings for
editorial assistance. The views and opinions expressed in this
article are those of the authors only, and do not necessarily rep-
resent the views and opinions of any institution or agency, any of
their affiliates or employees, or any of the individuals acknowl-
edged above.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, au-
thorship, and/or publication of this article.

ORCID iD

Ruixun Zhang  https://orcid.org/0000-0002-7670-8393

Supplemental Material

Supplemental material for this article is available online.

Notes

1. Here, we use “collective ignorance” to broadly refer to either
lack of knowledge or simply bad judgment, which includes the
phenomena of polarization and discrimination as special
cases.

2. Of course, certain “traits” are more likely to be biologically
inherited than what is usually referred as “rational economic
behaviors.” However, recent developments in neuro-
economics (Camerer et al., 2005; Glimcher and Fehr, 2013)
suggest that these economic behaviors may also have a bio-
logical origin. For example, studies have found that the ac-
tivity of a specific brain region correlates with risk-taking and
risk-averse behavior (Tom et al., 2007).

3. See Brennan and Lo (2011) for a more detailed discussion of
this example, and Zhang et al. (2014a) for extensions of the
binary choice model to explicitly allow for factor structures.

4. The mathematical intuition behind why probability matching
is the growth-optimal behavior lies in the fact that the pop-
ulation growth rate, 3 × p70% × (1� p)30%, is maximized when
p = 70%. When the assumption of 3 offspring is replaced by,
for example, 1.5, the population becomes extinct regardless of
p. See Brennan and Lo (2011) for a more general discussion on
how probability matching emerges in evolution and Lo et al.
(2021) for experimental evidence on probability matching in
financial decision-making.

5. Zhang et al. (2014a) provide a general model with multiple
factors. For expositional simplicity and without loss of gen-
erality, we consider a two-factor model here.

6. We use the term “growth-optimal” instead of the shorter term
“optimal” to distinguish our focus on the behavior that
emerges through evolutionary dynamics from the optimizing
behavior of rational agents that economists typically take for
granted. Growth-optimal behavior is generally not optimal
from the individual’s perspective.

7. See Supplemental Material for proof.
8. This result corresponds to the well-known principle of geo-

metric mean fitness (Seger and Brockmann, 1987) in evolu-
tionary biology. For evolutionary systems that do not
necessarily maximize geometric mean fitness, see, for ex-
ample, Frank (1990) and Lo et al. (2018) (relative success),
McNamara (1995) (accounting for actions of kin), and an
excellent review in Frank (2011a). Another possible direction
to extend this framework is to consider fidelity in transmission
(Lewis and Laland, 2012; Montrey and Shultz, 2020) and
allow for mutation (King, 1972; Taddei et al., 1997; Drake
et al., 1998; Brennan et al., 2018).We thank Steve A. Frank for
bringing this important point to our attention.

9. This proposition is proved in Brennan and Lo (2011) and
Zhang et al. (2014a), which we reproduce here for com-
pleteness. Proofs of all propositions are provided in the online
Supplemental Material.

10. The risk-spreading behavior is also closely related to kin
selection. Yoshimura and Clark (1991) show that a risk-
spreading polymorphism can exist only for groups. Yoshimura
and Jansen (1996) argue that a risk-spreading adaptation is a
form of kin selection (Cooper and Kaplan 1982), in which the
strategies of kin are important in stochastic environments even
if no interactions exist. McNamara (1995) introduces the
profile of a strategy and relates the geometric-mean fitness to a
deterministic game.

11. By globalization, we mean the growing interaction and in-
tegration among individuals, institutions, and economies
worldwide.

12. See Rodrik (2018, 2020) for more extensive discussions about
globalization and the emergence of populism. As Rodrik
states, “Globalization is probably not the only force at play in
the rise of extreme political views. Changes in technology, rise
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of winner-take-all markets, erosion of labor-market protec-
tions, and decline of norms restricting pay differentials all
have played their part. These developments are not entirely
independent from globalization, insofar as they both fostered
globalization and were reinforced by it.”With that awareness,
we use globalization as a single factor in our model to illustrate
its role in shaping political views, using it to develop the
intuition to apply our model to other factors.

13. Although it appears that groups of individuals emerge,
evolutionary dynamics operate on the behaviors or strategies
of these individuals. Individuals with the same behavior
share the same fitness, and therefore rise and fall together via
evolution.

14. See Brennan and Lo (2011) and Zhang et al. (2014a) for more
discussions about individual versus group optimality, where
the stochastic nature of the environment is key. This also
relates to the extensive literature on the role of stochastic
environments in evolutionary biology (Lynch and Lande,
1993; Burger and Lynch, 1995; Pekalski, 1998, 1999,
2002; De Blasio, 1999; Burger and Gimelfarb, 2002) and
behavioral ecology (Real and Caraco, 1986; Stephens and
Krebs, 1986; Deneubourg et al., 1987; Harder and Real, 1987;
Pasteels et al., 1987; Mangel and Clark, 1988; Hölldobler and
Wilson, 1990; Kirman, 1993; Thuijsman et al., 1995;
Smallwood, 1996; Keasar et al., 2002; Ben-Jacob, 2008). In
particular, Fretwell (1972), Cooper and Kaplan (1982), and
Frank and Slatkin (1990) observe that randomizing behavior
can be advantageous in the face of stochastic environmental
conditions. See also Frank (2011a, 2011b, 2012a) for an
excellent review.

15. We have deliberately chosen to use fictitious races borrowed
from science fiction to lower the tension that accompanies a
discussion of these highly emotionally charged issues, and
also to illustrate the generality of our analysis. In particular,
our framework can be applied to any marginalized group.

16. Examples of adverse events might include crimes, disease, or
economic hardship, among others, as long as the adverse event
represents a systematic factor for the particular group in
consideration.

17. β is exogenous in our framework. However, one can consider
extensions where the weight on the two factors, λT and λA, are
in turn determined by the percentage of Tellarians in the
population. This may generate time-varying patterns and
cycles of discrimination levels in the population. We thank an
anonymous reviewer for this point.

18. For this set of simulations, we fix the fraction of the Tellarian
population at β = 0.5.

19. Readers may wonder why the non-discriminatory behavior (p* =
0) cannot persist in this case, which will become clear as we
discuss the notion of locally evolutionarily stable strategies below.

20. See also Maynard Smith (1982).
21. There is also a large literature in evolutionary biology on the

local properties and stability for ESSs, including convergence
stability (Christiansen 1991), neighborhood invader strategy

(Apaloo 1997), frequency-dependent ESS (Pohley and
Thomas 1983), evolutionarily singular strategies (Geritz
et al., 1998), and sets of equilibrium strategies (Thomas
1985). See Apaloo et al. (2009) for a comparison of these
concepts. We thank Steve A. Frank for bringing this to our
attention.

22. The left boundary is not, strictly speaking, linear, but we refer
to the region as triangular for simplicity.

23. For example, Jones et al. (2013) document that sharing varied
perspectives, talents, and worldviews is beneficial to human
interaction and institutional performance. They also demon-
strate the resistance elicited in response to diversity, and the
benefits that arise when it is overcome.

24. See Brennan et al. (2018) for a more detailed discussion of the
role mutation plays in the context of the binary choice model.

25. We thank an anonymous reviewer for bringing this important
point to our attention.
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