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SUMMARY

Bayes’ rule is a fundamental principle that has been applied across multiple disci-
plines. However, few studies have addressed its origin as a cognitive strategy or
the underlying basis for generalization from a small sample. Using a simple binary
choice model subject to natural selection, we derive Bayesian inference as an
adaptive behavior under certain stochastic environments. Such behavior
emerges purely through the forces of evolution, despite the fact that our popu-
lation consists of mindless individuals without any ability to reason, act strategi-
cally, or accurately encode or infer environmental states probabilistically. In addi-
tion, three specific environments favor the emergence of finite memory—those
that are Markov, nonstationary, and environments where sampling contains
too little or too much information about local conditions. These results provide
an explanation for several known phenomena in human cognition, including devi-
ations from the optimal Bayesian strategy and finite memory beyond resource
constraints.

INTRODUCTION

Bayes’ rule is a powerful inferential paradigm widely used in disciplines ranging from biology and cognitive

science to signal processing and information theory to economics and finance. Cognitive scientists have

applied Bayesian models to understand human inductive learning and generalization (Tenenbaum et al.,

2006), visual scene perception and concepts (Lake et al., 2015), language processing and acquisition

(Chater and Manning, 2006; Xu and Tenenbaum, 2007), and causal learning and inference (Steyvers

et al., 2003; Griffiths and Tenenbaum, 2005), among other topics (Griffiths et al., 2008). Financial economists

have also applied Bayes’ rule to portfolio analysis (Black and Litterman, 1992; Pástor and Stambaugh, 2000;

Avramov and Zhou, 2010). Evolutionary biologists and behavioral ecologists have studied the role of Bayes’

theorem in biological evolution (Greaves and Wallace, 2006; Leitgeb and Pettigrew, 2010a, b; Okasha,

2013; Castellano, 2014; Campbell, 2016). One striking result from this line of inquiry is that the Bayes ‘‘pol-

icy’’—that is, the choice of an organism’s behavior that maximizes its conditional expected reproductive

output—is evolutionarily optimal under a simple model of deterministic strategy when individuals face risks

independent of each other (Okasha, 2013). More generally, Suchow et al. (2017) have pointed out the deep

correspondence between certain evolutionary dynamics and Bayesian inference, leading to the reinterpre-

tation of evolutionary processes as Bayesian inference algorithms.

Despite its successful applications across multiple domains, few studies have addressed two fundamental

questions about the origin of Bayesian inference: how did humans acquire the cognitive capabilities for

making Bayesian inferences, and why do these capabilities differ so much from one individual to the

next? It is difficult to reconcile the perfect Bayesian strategy with known deviations in actual human

behavior. Two examples of these deviations are the result that human subjects follow Bayesian strategies

on average, but not individually (Goodman et al., 2008; Vul et al., 2014), and subjects make decisions based

on a small number of samples, instead of computing the fully Bayesian answer (Griffiths and Tenenbaum,

2006; Mozer et al., 2008; Vul and Pashler, 2008; Xu and Tenenbaum, 2007; Sanborn and Griffiths, 2008).

In this article, we provide an evolutionary explanation for behaviors that are consistent with Bayesian infer-

ence, which shows that such inferences are, in fact, an emergent product of natural selection. Using a binary

choice model in which individuals make decisions based on observed data, we first show that decision-

making emerges based on the posterior distribution of environmental states, implying that behaviors

and heuristics that resemble Bayesian inferences are a natural outcome of evolution. Here, we use the
iScience 24, 102853, August 20, 2021 ª 2021 The Author(s).
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term ‘‘resemble’’ intentionally because the Bayesian heuristics we derive are conditional on an evolution-

arily endogenous utility function and do not include an explicit probabilistic representation of the environ-

ment. In other words, evolution leads to behaviors and heuristics with the appearance—but not the reality

in the strict mathematical sense—of Bayesian inference. (We thank an anonymous reviewer for pointing out

this subtle but important point.)

In addition, we identify three factors that constitute intelligence from an evolutionary perspective,

including the ability to increase average fitness, to positively correlate with variations in fitness, and to

reduce risk when fitness has high variance. The Bayesian heuristics we derive combine all three of these

characteristics.

Finally, we demonstrate that finite memory naturally emerges in certain environments, including Markov

environments, nonstationary environments, and environments where sampling contains too little or too

much information about local conditions. This provides an evolutionary justification for decision-making

with small sample sizes and offers a new rationale for limitations on memory that go beyond biological

resource constraints (Anderson and Milson, 1989; Lieder and Griffiths, 2020). Our results underscore the

importance of environmental conditions in shaping human behavior.

Our model consists of an initial population of individuals that live for one period of unspecified length and

engage in a single binary decision that has implications for the random number of offspring they will

generate. To the extent that their behavior is linked to fecundity, only the most reproductively successful

behaviors will flourish due to the forces of natural selection. The link between different behaviors and their

reproductive success, described by a probability distribution function F, is crucial in our framework.

Embedded in F is the biological machinery that is fundamental to evolution, i.e., genetics, but this is of

less direct interest to economists than the link between behavior and reproductive success. In this sense,

the behaviors we derive are reflective of this link, F, rather than of the true underlying probabilities of

different states in the world. This is consistent with Hoffman (2016)’s interface theory of perception, which

argues that our perceptions of the world do not necessarily represent the world accurately, serving as an

interface that allows us to interact with objective reality, while we remain blissfully ignorant of the

complexity of that reality. (We thank an anonymous reviewer for pointing out this important connection

to Hoffman’s interface theory of perception.)

Darwin’s ground-breaking work on natural selection (Darwin, 1859) has had an impact far beyond studies

of biological adaptation. Evolutionary principles have been successfully used to understand human psy-

chology (Buss, 1995) and economic behavior (Lo and Zhang, 2018), including altruism (Hirshleifer, 1977),

cooperation (Nowak, 2006), the origin of utility functions (Robson, 1996; Zhang et al., 2014), and the dy-

namics of financial markets (Lo, 2017). By studying the impact of selection on behavior rather than genes,

we are able to derive evolutionary consequences for behavior that cut across details of species, physi-

ology, and genetic origin. In the same way that different levels of magnification of a microscope reveal

different details of a specimen, applying evolutionary principles to behavioral variation leads to insights

that may be of greater relevance for economics, psychology, and cognitive sciences. Our focus on

behavior as the subject of selection serves as an alternate lens through which the effects of evolution

may be studied.
THE BINARY CHOICE MODEL

Consider a population of individuals that live for one period, produce a random number of offspring asex-

ually, and then die. Each individual makes only one decision during its life, a choice between one of two

possible actions, a and b, which results in one of two corresponding random numbers of offspring, xa
and xb. We use st to denote the state of its environment in period t. It determines the joint distribution

of xa and xb. The state, st , is observable to individuals after period t. We use St = fst� 1 ; st� 2 ;/ g to denote

the information available to individuals in period t.

In our notation, the state, st , is an abstract representation of any information relevant to the environment.

For example, when a tribe has a decision to build a shelter either by a river or on a plateau, st might be in-

formation related to the local weather, used to determine which option will be safer against the elements.

When a squirrel decides to forage for food either on the ground or in the trees, st might be information

about the location of the food relative to the location of predators. When a driver decides whether to
2 iScience 24, 102853, August 20, 2021
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turn left for the tunnel or right for the bridge at a crossing, st might be the traffic conditions for both

alternatives.

We assume that, once conditioned on state st , ðxa ; xb Þ are independently and identically distributed over

time and identical for all individuals in a given generation. In other words, if two individuals choose the

same action a, both will produce the same number of random offspring xa. In such environments, the repro-

ductive risks are systematic, in the sense that all individuals share the same risk. The environment is jointly

determined by both st and ðxa ;xb Þ, which are described by a well-behaved probability distribution function

F ð , Þ (see Assumptions 1 and 2 in method details).

After observing all available information, S, each individual chooses action awith a probability f ðS Þ˛ ½0; 1 �
and b with a probability 1 � f ðS Þ, where f ð , Þ is a function that maps information into a probability. We

shall henceforth refer to f ð , Þ as an individual’s ‘‘behavior’’ since it completely determines the individual

choice between a and b given the available information, S. (We drop the subscript t for notational conve-

nience.) Offspring behave in a manner identical to their parents, i.e., they choose between a and b accord-

ing to the same function f ð , Þ. Therefore, the population may be viewed as being segmented into groups

of distinct types f ð , Þ.

The role of F is critical in our framework, as it represents the entirety of the implications of an individual’s

actions for reproductive success. If action a leads to higher fecundity than action b for individuals in a given

population, the particular set of genes that predispose individuals to select a over b will be favored by nat-

ural selection, in which case these genes will survive and flourish, implying that the behavior ‘‘choose a over

b’’ will flourish as well. This abstraction essentially defines two equivalent classes of actions that have

different implications for reproduction, i.e., all actions yielding the same reproductive fitness are consid-

ered equivalent in our framework.

The specification of F also captures the fundamental distinction between traditional models of population

genetics andmore recent applications of evolution to behavior; the former focuses on the natural selection

of traits (determined by genetics), whereas the latter focuses on the natural selection of behavior. Although

behavior is obviously linked to genetics, the specific genes involved, their loci, and the mechanisms by

which they are transmitted from one generation to the next are of less relevance to economic analysis

than the ultimate implications of behavior for reproduction, which is captured by F.

Our binary choice model can be more easily understood through a simple concrete environment that we

will use throughout this article. Consider an environment where the weather can either be sunny or rainy,

and individuals will need to decide whether to build shelter by the river or on the plateau. The reproductive

success of each action is specified as follows:
Action Sunny Rainy

a (river) xa = c xa = 0

b (plateau) xb = 0 xb = c
This is a special case of the general environment in our model. At time t, with some probability pt , the envi-

ronment is sunny, and choice a yields c > 0 offspring, while choice b yields none.With probability 1 � pt , on

the other hand, the environment is rainy, in which case the reproductive outcome is reversed. The proba-

bility of a sunny day, pt , summarizes the impact on the environment in the state, st . We can think of st as any

variable that affects weather, such as season or temperature.

In this article, we impose various assumptions on the state st and determine the type of behavior that

emerges in each environment.
BAYESIAN BEHAVIORS IN STATIONARY ENVIRONMENTS

We first consider the case in which the state, st , is stationary (see Assumption 4 of method details). In this

case, we can explicitly characterize how fast the population grows as a function of the behavior. Denote by

n
f ð,Þ
t the total number of offspring of type f ð , Þ in generation t. It is easy to show that T � 1logn

f ð,Þ
T , the log
iScience 24, 102853, August 20, 2021 3
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population divided by time, converges to the log geometric average growth rate (see method details

(Equation 13):

aðf ð , ÞÞ =defEðxa ;xb ;SÞ½logðf ðSÞxa + ð1� f ðSÞÞxbÞ� (Equation 1)

as time T increases without bound, where Eðxa ; xb ;SÞ is the expected value taken over the joint distribution of

the environment. Maximizing (1) yields the evolutionarily dominant behavior in this environment, which we

refer to as the ‘‘growth-optimal’’ behavior:

f �ðSÞ =
8<
:

1 if Eðxa ;xb jSÞ
�
xb
�
xa
�
<1

solution to ð3Þ if Eðxa ;xb jSÞ
�
xa
�
xb
�
R1 and Eðxa ;xb jSÞ

�
xb
�
xa
�
R1

0 if Eðxa ;xb jSÞ
�
xa
�
xb
�
<1;

(Equation 2)

where f � ðS Þ is defined implicitly in the second case of (2) as follows:

Eðxa ;xb jSÞ

�
xa � xb

f �ðSÞxa + ð1� f �ðSÞÞxb

�
= 0$ (Equation 3)

The expected values in (2) and (3) are with respect to the joint distribution of ðxa ;xb Þ, given all available

information S.

This growth-optimal behavior is, in fact, what is implied by Bayesian inference. We can see this from two

different perspectives. First, the population dynamics between two generations in evolution (also called

the ‘‘replicator equation’’ in evolutionary biology) is given as follows:

lf ð,Þt =
a$s$ lf ð,Þt�1,Fitness

f ð,Þ
tP

gð,Þl
gð,Þ
t�1 ,Fitness

gð,Þ
t

where l
f ð,Þ
t is the relative frequency of behavior f ð , Þ in the population in generation t, and Fitness

f ð,Þ
t =

ðf ðSt Þxa;t + ð1 �f ðSt Þ Þxb;t Þ represents the fitness (that is, the random reproductive success) of

behavior f ð , Þ in generation t. This is identical to Bayes formula, where we treat l
f ð,Þ
t as the posterior,

l
f ð,Þ
t� 1 as the prior, and Fitness

f ð,Þ
t as the likelihood (see further details in (Equation 8) and (Equation 9) of

method details), an observation also shared by the recent literature in cognitive neuroscience (Suchow

et al., 2017; Czégel et al., 2020).

Second, we can view the population growth rate for behavior f ð , Þ in (1) as the expected value of a log-

arithmic utility function, where the utility is with respect to the reproductive success of this particular

behavior: f ðS Þxa + ð1 � f ðS Þ Þxb. We would like to emphasize that log utility is endogenous in our model

and results from the systematic reproductive risks in the environment (all individuals share the same risk;

see also Assumption 2 in method details). More generally, different forms of utility functions and different

levels of risk aversion emerge from evolution in environments with different compositions of systematic and

idiosyncratic reproductive risks (Zhang et al., 2014).

From this perspective, the dominant behavior in (2) corresponds to maximizing the endogenous expected

utility, where the expected value is taken over the posterior distribution of the environment, conditioned on

all available information, S. (We impose no regularity conditions on the behavior f � ð , Þ, other than it being

bounded between 0 and 1. In fact, f � ð , Þ does not even need to be continuous. See also Proposition 2 in

method details.) This phenomenon is known as conditionalization in the evolutionary biology literature

(Okasha, 2013), and this behavior is what Bayesian inference with a particular utility function would imply

because individuals will appear to behave in a manner in which decisions are made in each generation

to maximize the growth rate based on all available information at the time. (If the environment is indepen-

dent over time, there is no benefit from information about past realized states. As a result, intelligent be-

haviors are not useful, and f � ð , Þwill simply be a constant (Brennan and Lo, 2011). In the case of our sunny/

rainy example, the expected value of the probability of a sunny day, pt , is constant when the environment is

stationary. It is easy to show that the evolutionarily dominant behavior f � = E ½pt �, which is to build a shelter

by the river with the same probability as the expected value of a sunny day. This is known as ‘‘probability

matching’’ or ‘‘bet hedging’’ in the evolutionary biology literature (Frank, 2011).)

We use the phrase ‘‘appear to behave’’ in the previous paragraph because our evolutionary framework

does not require individuals to possess any Bayesian reasoning ability. In fact, we do not require individuals

to be sentient, much less having the capability of probabilistically encoding the environment or
4 iScience 24, 102853, August 20, 2021
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manipulating those probabilities according to the Bayes’ rule. In this sense, the dominant behavior may

well be simply a heuristic rather than deliberate Bayesian inference. Nonetheless, our framework shows

that even purely mindless individuals can adapt to show behaviors that are identical to Bayesian inference

through the forces of natural selection. The claim that humanminds learn and reason according to Bayesian

principles is not a claim that the human mind can implement any Bayesian inference because this can be

computationally costly and intractable (Gigerenzer, 2008; Mozer et al., 2008; Gershman et al., 2015). Rather,

Bayesian inference gives individuals a rational framework for updating beliefs about latent variables in

generative models given observed data (Tenenbaum et al., 2011).

In addition, in our framework, Bayesian-inferential behavior is with respect to the environment only to the

extent that it matters for reproductive success. It does not necessarily track the true underlying probabilities

of states of the world. In fact, as Hoffman (2016)’s interface theory of perception argues, our perceptions of

the world are not ‘‘veridical,’’ meaning that they do not necessarily represent the world accurately. (Hoffman

(2016) provides a metaphor of computer interface where files and folders are just icons and abstractions of

the true underlying transistors, voltages, magnetic fields, and megabytes of a system. In our model, the

abstraction of the environment—the joint distribution of ðxa ;xb ;S Þ—precisely defines such an interface.)

The perceptual systems with which we have been endowed by natural selection are a species-specific inter-

face that allows us to interact adaptively and successfully with objective reality, while remaining blissfully

ignorant of the complexity of that objective reality (Hoffman, 2016). This is consistent with our abstraction

of the environment that matters for reproductive success: the joint distribution of ðxa ;xb ;S Þ. In this sense,

the dominant behavior that resembles Bayesian inference is with respect to the fitness for individuals to

reproduce—not necessarily to the actual underlying environment. The problem is not that veridical percep-

tions are necessarily counter adaptive but rather that veridicality is irrelevant to adaptation (Hoffman, 2016).

The three possible behaviors described in (2) reflect the relative reproductive success of the two choices.

Choosing a deterministically will be optimal if choice a exhibits an unambiguously higher expected relative

reproductive success, while choosing b deterministically will be optimal if the opposite is true. Random-

izing between a and b, however, will be optimal if neither choice has a clear-cut reproductive advantage.

This last outcome is perhaps the most counterintuitive because it is suboptimal from an individual’s

perspective (Brennan and Lo, 2011).

Because the dominant behavior is non-deterministic in the general case, f � ð , Þ cannot be observed for

each individual based on one instance of the binary choice. It will therefore be difficult, if not impossible,

to tell if any given individual exhibits perfect Bayesian behavior. However, at the population level, f � ð , Þ
can be interpreted as the proportion of individuals that take action a, which can be easily observed. This is

consistent with the observation described earlier that perfectly Bayesian behavior is only present as an

average behavior, not in individual people nor in individual trials (Goodman et al., 2008; Vul et al., 2014).
WHAT IS INTELLIGENCE?

Our results also allow us to reexamine what constitutes intelligence from an evolutionary perspective. We

can define intelligent behavior as behavior that adapts to the environment and accelerates population

growth. The dominant behavior described in (2) is determined by the environment through the relative

fitness of the two available choices.

With r =
def

xa =xb �1 denoting the relative fitness, we are able to rewrite the population growth rate in (1),

a ðf ð , Þ Þ, as follows:

aðf ð , ÞÞzE½f ðSÞ�E½r �+Covðf ðSÞ; rÞ � 1

2
E
h
ðf ðSÞrÞ2

i
+ constant (Equation 4)

using a second-order Taylor approximation and additional regularity conditions (see method details

(Equation 22)). In this notation, intelligent behavior f ð , Þ increases the population growth rate given a

particular environment as described by the relative fitness, r.

Each of the three terms in (4) highlights a different factor in determining intelligence. The first term in (4) is

the average relative fitness, E ½r �. This states that intelligent behavior amplifies average relative fitness. The

second term in (4) is the covariance of the behavior, f ðS Þ, with relative fitness, r. In other words, intelligent

behavior is correlated with the environment, moving in the same direction as relative fitness. The third term
iScience 24, 102853, August 20, 2021 5
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is the second moment of f ðS Þr, its variance—intelligent behavior reduces risk most when relative fitness

has high variability.

The Bayesian heuristics we derived are precisely the combination of these three characteristics which, in

turn, define intelligence within our model’s evolutionary perspective. This is complementary to earlier

evolutionary definitions of intelligence (Brennan and Lo, 2012), where it is defined as behavior that is corre-

lated with reproductive success across populations in environments with idiosyncratic risks. Here, intelli-

gence is defined as behavior correlated with reproductive success over time.
FINITE MEMORY IN NONSTATIONARY ENVIRONMENTS

Our analysis has so far focused on stationary environments. In nonstationary environments, there is a trade-

off between collecting more information and waiting too long to make a decision, as the past becomes

increasingly irrelevant to the future. A balance between continuous learning and forgetting is thus neces-

sary to cope with such environments (Lughofer and Sayed-Mouchaweh, 2015). By extending our model to

nonstationary environments, we show that the degree of nonstationarity of the environment plays a critical

role in the emergence of finite memory as an adaptive trait.

In nonstationary environments, it is easy to show that T � 1logn
f ð,Þ
T , the log population divided by time, still

converges (see method details (S.20)):

mðf ð,ÞÞ= Eðxa;t ;xb;t ;StÞ½logðf ðStÞxa;t + ð1� f ðStÞÞxb;tÞ�N
t = 1

=
def

lim
T/N

1

T

XT
t = 1

Eðxa;t ;xb;t ;StÞ½logðf ðStÞxa;t + ð1� f ðStÞÞxb;tÞ�
(Equation 5)

where we use ,�N
t = 1 to denote the average over t. (Assumption 5 in method details discusses the additional

conditions of regularity needed for this result (states fst g are a-mixing). We make the intuitive assumption

that the environment forgets about the past asymptotically.) Compared to the growth rate in stationary

environments in (1), the expected log fitness is replaced by its average over time. (In nonstationary

environments that are independent over time, the dominant behavior is a constant, its explicit

formula given in Proposition 3 of method details. In terms of our sunny/rainy example, the dominant

behavior, f � = E½pt � N
t = 1, is the average expected value of a sunny day over time, which still corresponds

to probability matching in the average sense.)

We can now ask what is the dominant behavior in the population and what amount of information should

f � ð , Þ use in nonstationary environments? Continuing with our sunny/rainy example, consider an environ-

ment where the states follow a linear combination of a simple random walk (SRW) and an autoregressive

(AR) process: st = l ,SRWt + ð1 � l Þ ,ARt ðk Þ. Here, l is a constant between 0 and 1, SRWt is a simple

random walk defined by SRW0 = 0 and SRWt = SRWt� 1 + zt , and ARt ðk Þ is an AR process of order k

defined by AR0 = 0 and ARt ðk Þ = 0:9 ,k � 1
Pk

i = 1 ARt� i ðk Þ + εt . (zt is an IID Bernoulli random variable

with an equal probability of being �1 or 1, and εt is an IID standard normal random variable following

N(0,1).) The probability of a sunny day is the logistic transformation of the states that bounds it between

0 and 1: pt = logistic ðst Þ = ð1 +exp ð �st Þ Þ�1. There are two important parameters that determine

this environment: the order of the AR process (k), which determines its degree of memory over time,

and the weight for the SRW (l), which determines the degree of nonstationarity in the environment. Fig-

ure 1A shows two simulated paths of pt in environments with different degrees of nonstationarity.

Individuals only observe the state of the environment, st , but not the realization of the subprocesses, SRWt

and ARt ðk Þ. We assume that individuals use the average of the previous m observed states as their best

estimate of the next state and behave accordingly: f m ðSt Þ = logistic ðm� 1
Pm

i = 1 st� i Þ. (Strictly speaking,
individuals do not have to follow this functional form. However, this behavior is a good approximation of a

simple heuristic, and it suffices to illustrate our main point.)

Figure 1B shows the optimal amount of memory,m�, that an individual should use in a given environment to

maximize the population growth rate as functions of k and l, based on an evolutionary simulation of 30,000

generations. (To reduce noise, we run the simulation 50 times and take the median values of m� in each

environment.)
6 iScience 24, 102853, August 20, 2021



Figure 1. The adaptation of the optimal amount of memory as a function of environmental conditions

(A) Two sample paths of pt (y axis) from a simulation of 300 generations (x axis) in environments with different degrees of

nonstationarity. The blue path is generated from l = 0.1 (low nonstationarity), and the orange path is generated from l =

0.9 (high nonstationarity), both with an autoregressive lag of k = 10.

(B) The optimal amount of individual memory (shown in the color bar) in environments with a degree of memory as

parameterized by the autoregressive lag k (y axis) and a degree of nonstationarity as parameterized by the simple random

walk (SRW) weight l (x axis).
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Unsurprisingly, given a fixed degree of stationarity in the environment (l), the optimal amount of memory,

m�, increases with the order of the AR process. In other words, the greater the degree of memory exhibited

by the environment, the more memory individuals should adapt to use. In particular, when the environment

is mostly driven by the AR process (i.e., when l is very low), the optimal amount of memory, m�, equals the
maximum AR lag—that is, individuals adapt to the environment to match its memory.

Conversely, given a fixed amount of memory in the AR process, the optimal amount of memory, m�, de-
creases as the degree of stationarity (l) increases. This highlights another reason for finite memory and,

more generally, for decision-making based on limited samples: the nonstationarity of the environment.

When the environment is nonstationary and its distribution changes over time, it becomes costly for indi-

viduals to use out-dated data.

Finally, it should be observed that only an environment with high stationarity and high memory (the upper

left quadrant of Figure 1B) warrants that an individual possess a large memory, highlighting the fact that

finite memory can emerge in environments with either low memory or high nonstationarity. Indeed, in

the vast majority of the area in Figure 1B, the optimal behavior only uses one or two observed states in

the past.

This result is consistent with the well-documented phenomenon in cognitive science that human subjects

tend to make decisions based only on a small number of data points instead of computing the fully

Bayesian answer (Griffiths and Tenenbaum, 2006; Mozer et al., 2008; Vul and Pashler, 2008; Xu and Tenen-

baum, 2007; Sanborn andGriffiths, 2008; Vul et al., 2014). The small-sample phenomenon is often explained

as the consequence of costly data acquisition and Bayesian inference, whereas our model provides an

alternate—and arguably more fundamental—explanation. Nonstationary environments induce adaptation

to rapid generalization and decision-making based on a short memory, even if there is no cost for using an

infinite amount of data.

This result also provides an explanation for the recency effect documented in a wide range of disciplines

(Kahneman, 2011), which is often considered to be a bias relative to a fully rational agent. However, our re-

sults show that in nonstationary environments, the recency effect is, in fact, desirable, highlighting the key

role of the environment in shaping behavior.
SAMPLING WITH LIMITED INFORMATION

We now turn to the context of cognition with limited computational resources (Lieder and Griffiths, 2020).

We show that if obtaining and using data for inference is costly, the information contained in each data

point also determines the optimal number of data points to use. Both too much or too little information

can lead to inferences based on a small number of data points.
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Figure 2. The optimal sample size as a function of the information contained in each sample

(A) Probability, b, that the majority of samples predicts the correct state (y axis), as a function of the number of samples,m

(x axis), and the probability, q, that each sample is correct.

(B) Optimal sample sizes (shown in the color bar) given different levels of information contained in one sample (x axis) and

the magnitude of the cost, log10 ðh Þ (y axis). Greater absolute values of log10 ðh Þ indicate a lower magnitude of cost.
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Continuing with our sunny/rainy day example, we assume that the probability of a sunny day, pt , is either

p = 0.8 or 1�p = 0.2 with equal probability in each period. Once again, there are only two states in this envi-

ronment. In each period, individuals receive imperfect information about their state. The information

comes in the form of samples, D = fd1 ;d2 ; / g. Each sample, dj, tells an individual its state with an ac-

curacy q> 0.5:P ðdj = correct state Þ = q. We can think ofD as a weather forecast, and individuals are able

to use data fromD for their decisions.We assume that the cost of obtainingm samples isC ðm Þ = 1 + hm,

where hR0 determines themagnitude of the cost. The cost is used as amultiplicative factor in reproductive

success. (Method details (Equation 30) provides further details about how the cost of obtaining samples is

incorporated into calculating the growth rate. The cost is multiplicative to the number of offspring of an

individual. For example, when h = 0, there is no cost; when h = 1, C(1) = 2, which means that one sample

cuts the reproductive success by half; when h = 0.1, C(10) = 2, which means that 10 samples also cut the

reproductive success by half.)

We can now calculate the optimal number of data points individuals should use to determine their

behavior f ð , Þ. Given m samples, if an individual follows a simple majority rule, the probability that

the majority indicates the correct state is: b = 1 � CDF ðm =2 ;m ; q Þ, where CDF ðm =2 ;m ;p Þ is

the cumulative binomial distribution function. (When the data indicate a tie between the two states,

we assume individuals choose randomly.) Figure 2A shows b as a function of m and q. When the infor-

mation in each sample, q, is high, the confidence of the aggregate prediction of multiple samples quickly

approaches 1 as the sample size increases, indicating that the marginal benefit of an extra sample quickly

diminishes.

We now demonstrate that the optimal sample size depends on the amount of information contained in

one sample. (Method details (Equation 32) provides the analytical solution of the optimal behavior given

m samples, and (Equation 33) provides the corresponding population growth rate. The optimal number

of samples, m�, can be obtained by maximizing the growth rate over m.) Figure 2B shows the optimal

sample size as a function of the information contained in each sample (q) and the magnitude of the

cost (h in log scale). Given a fixed cost, finite memory appears when information contained in each sam-

ple is either too low or too high. When the amount of information in each sample is low (i.e., the q is

close to 0.5), there is little to gain from each sample. As a result, it is not worth paying the cost for

any sample. On the other hand, when the amount of information in each sample is very high (i.e., the

q is close to 1), one sample is sufficient to infer the state reliably. As a result, it is not worth paying

the cost beyond just one sample.

This provides an additional reason for the emergence of finite memory beyond nonstationary environ-

ments. It is only desirable to obtain a large number of samples when there is partial information. Otherwise,

we adapt to generalize from a small number of samples. (Vul et al. (2014) considered a similar model, which

also showed that individuals should make guesses based on very few samples).
8 iScience 24, 102853, August 20, 2021
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DISCUSSION

In summary, we have provided a framework to explore the evolutionary origins of decision-making

that is simple enough to uncover the most primitive forms of behavior, yet general enough to derive

consequences that likely apply across evolutionary lineages. The same principles and insights apply

equally to the evolution of mammalian foraging behavior and human economic decisions in financial

markets.

Given its similarity to biological evolution, the implications of our framework can be tested through

controlled laboratory experiments, such as those described for experimental evolution (Burnham et al.,

2015). Central to this idea is the creation of test and control environments that vary in payoffs—or in a bio-

logical context, fitness. Various species, ranging from bacteria to Drosophila (fruit flies), have been used to

design experiments to better understand decision-making under uncertainty (Mery and Kawecki, 2002;

Yang et al., 2008; Beaumont et al., 2009; Dunlap and Stephens, 2014). Method details provides further de-

tails on specific designs of these experiments.

Finite memory emerges as an evolutionary adaptation to Markov environments, nonstationary environ-

ments, and environments in which samples contain either too little or too much information. We therefore

conclude that we are hardwired to make quick decisions based on limited information precisely because

evolution taught us to do so. From a policy perspective, our conclusion also highlights the importance

of maintaining stability in public policy and financial markets. Otherwise, critical information about the

past is doomed to be quickly forgotten.

Bayes’ rule is now widely used in the field of machine learning, from the classical Bayes optimal classifier

and multi-arm bandit problems to the more recent applications in deep learning (Kendall and Gal, 2017;

Wang and Yeung, 2020; Wilson and Izmailov, 2020) and reinforcement learning (Strens, 2000; Ghavamza-

deh et al., 2015). Therefore, understanding the evolutionary and cognitive origins of Bayesian heuristics

can shed light on what machine learning algorithms derive more naturally from human intelligence and

what kinds of inference (or algorithms) are more suitable for different environmental conditions in terms

of their stochastic nature. Just like the ‘‘learningmachine’’ Alan Turing proposed seven decades ago to par-

allel the principles of evolution (Turing, 1950), the fact that machine learning can benefit from nature’s

bounty for both inspiration and mechanism is more relevant today than ever in our quest for artificial gen-

eral intelligence (Goertzel and Pennachin, 2007).

Limitations of the study

We have developed a formal theory of the evolution of Bayesian heuristics in stochastic environments in the

context of the simplest possible nontrivial choice problem, a binary choice. The model developed here is

by no means a complete description of reality. We have deliberately made minimal assumptions, allowing

us to determine themost fundamental links between stochastic environments and adaptive behavior. How-

ever, more insights about, for example, strategic behavior, can be derived from a generalization of our

framework to incorporate the interplay between sophisticated human behavior and highly complex envi-

ronments with multiple unknown factors.

Our model also provides a theoretical framework to balance memorization versus generalization in nonsta-

tionary stochastic environments. Empirical validations of these insights require future work, and potential

approaches include experimental evolution (see ‘‘Testable Implications’’ of method details). Another

promising direction is to develop machine learning algorithms that are adaptive with respect to the three

environmental characteristics we identified for finite memory (Markov environments, nonstationary envi-

ronments, and environments where sampling contains too little or too much information about local con-

ditions), which may lead to smarter utilization of past data and yield better trade-offs between memoriza-

tion and generalization.
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METHOD DETAILS

Related literature

The Bayesian paradigm has been widely used across a broad spectrum of disciplines, including cognitive

science, evolutionary biology, computer science, and computational finance. Griffiths et al. (2008) provide a

review of the application of Bayesian models in computational models of cognition. Examples include an-

imal learning (Courville et al., 2006), visual scene perception and concepts (Yuille and Kersten, 2006; Lake

et al., 2015), motor control (Körding and Wolpert, 2006), semantic memory (Steyvers et al., 2006), symbolic

reasoning (Oaksford and Chater, 2001), and social cognition (Baker et al., 2007).

Evolutionary biologists and behavioral ecologists have studied the role of the Bayes’ rule in the context of

biological evolution (Greaves and Wallace, 2006; Leitgeb and Pettigrew, 2010a, b; Okasha, 2013; Castel-

lano, 2014; Campbell, 2016). Building on the knownmathematical equivalence between Bayesian inference

and replicator dynamics in evolutionary biology (Harper, 2009; Shalizi, 2009), Czégel et al. (2018) argue that,

‘‘in order to devise seemingly-engineered complex organisms, evolution, on Earth or anywhere, utilized

comparable hierarchical learning mechanisms as we humans do to make sense of the world around us.’’

Financial economists have also adopted the Bayes’ rule for portfolio analysis (see Avramov and Zhou (2010)

for a review and further references). Frydman and Jin (2018) argue that the perception of risky payoffs is

imperfect, and is estimated through Bayesian inference, a concept known as the efficient coding hypoth-

esis in neuroscience. In a simple market where only one asset generates positive returns in each period,

Blume and Easley (1992) show that investors following Bayesian learning will dominate the market. Zhang
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(2013) argues that perfect Bayesian updating is evolutionarily optimal only for a risk-neutral agent, and is

not optimal for any other type of agent.

Resource-rational analysis, the approach to human cognition as the optimal use of limited computational

resources, has been used to explain seemingly suboptimal behavior (Lieder and Griffiths, 2020). Finite

memory arises from the trade-off between the cost of memory storage and the benefits of a long memory

(Anderson andMilson, 1989; Anderson and Schooler, 1991; Sims et al., 2012; Howes et al., 2016; Sims, 2016;

Suchow and Griffiths, 2016). Others argue that computational limits do not fully explain human cognitive

limitations (Davis and Marcus, 2020), and that memory is a very clear case of a suboptimal system (Marcus,

2009). In fact, the evolutionary perspective benefits the resource-rational analysis by providing insights into

the origins of the trade-off between accuracy and effort (Schulz, 2020).

Our study of evolutionary dynamics in nonstationary environments provides a new rationale for finite mem-

ory beyond constraints on computational resources. A balance between continuous learning and forget-

ting is necessary to cope with nonstationary environments (Lughofer and Sayed-Mouchaweh, 2015).

Learning in nonstationary environments has been studied both in evolutionary biology (Kameda and Na-

kanishi, 2002) and computer science (Obuchowicz and Wawrzyniak, 2005; Sayed-Mouchaweh and

Lughofer, 2012; Ditzler et al., 2015). Our results also provide an explanation for the recency effect docu-

mented in many widely different fields, including psychology (Glenberg and Swanson, 1986; Greene,

1986), accounting (Hartono, 2004; Guiral-Contreras et al., 2007), behavioral economics and finance (Shefrin,

2007; Kahneman, 2011), and even legal analysis (Furnham, 1986).

Recently, Suchow et al. (2017) point out a deep connection between evolutionary dynamics and Bayesian

inference that can be used to join these two perspectives. They also call for new work on ‘‘finding equiv-

alencies between particular evolutionary processes and algorithms for inference drawn from statistics

and machine learning; creating process models of other cognitive capacities using the framework of

evolutionary dynamics; and exploring the rich array of phenomena studied in modern evolutionary

biology and what connection, if any, they may have to the similarly rich array of processes studied in

the cognitive sciences.’’ For example, sequential Monte Carlo methods such as particle filters (Del Moral,

1997; Liu and Chen, 1998; Smith, 2013), partially inspired by evolutionary biology and originally proposed

for state estimation, have also been used to model cognitive processes in other settings (Sanborn et al.,

2010; Abbott and Griffiths, 2011).(We thank an anonymous reviewer for pointing out this connection

to us.)

Our work contributes to this literature, but is different from Suchow et al. (2017) in that we make this

connection with a particular focus on the stochastic nature of environmental risks that is applicable to

economic behavior. In addition to establishing the equivalence between the population dynamics in evo-

lution and the Bayes’ rule, we also derive a growth-optimal behavior that resembles Bayesian inference

under a particular utility function determined by the stochastic nature of the reproductive success risks. By

doing so, we provide a natural definition of intelligent behaviors from the evolutionary perspective. This is

natural from the angle of evolutionary reproduction, but may provide new insights into why certain be-

haviors are more persistent than others. Moreover, our framework highlights the role of the environment

in determining the specific form of behavior. Specifically, we identify three specific environments that

favor the adaptation of finite memory, beyond cognitive resource constraints.

Finally, our article contributes to a growing literature that uses evolutionary principles to understand hu-

man economic behavior. See Lo and Zhang (2018) for a review of the literature on the interface between

economics and biology. These ideas have proven themselves to be useful in understanding altruism (Alex-

ander, 1974; Becker, 1976; Hirshleifer, 1977; Almenberg and Dreber, 2013), rationality (Houston et al., 2007;

McDermott et al., 2008; Kenrick et al., 2009; Waksberg et al., 2009; Ross and Wilke, 2011; Brennan and Lo,

2012; Okasha and Binmore, 2012), the biological origin of utility functions and time preferences (Rogers,

1994; Waldman, 1994; Robson, 1996; Samuelson, 2001; Zhang et al., 2014), and the dynamics of financial

markets (Blume and Easley, 1992; Kogan et al., 2006; Hirshleifer and Teoh, 2009; Lo, 2017).
Binary choice model

We make the following assumptions throughout this article.
14 iScience 24, 102853, August 20, 2021
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Assumption 1. st has finite moments up to order 2 for all t. ðxa ; xb Þ and log ðfxa + ð1 �f Þxb Þ have finite

moments up to order 2 for all f ˛ ½0; 1 �, both marginally and conditioned on any state st .

Assumption 2. Conditioned on state st , ðxa ; xb Þ are IID over time and identical for all individuals in a

given generation.

Individual behavior. Individuals in a given generation t are indexed by i, and generations are indexed by

t=1,/,T. In all cases, we assume independently and identically distributed randomness over time, or equiv-

alently, over generations. On occasion, we will omit the t subscript, unless we wish to emphasize the tem-

poral ordering of the variables, such as in a recursive relation between two successive generations.

After observing all available information, S, each individual i chooses action awith some probability f ðS Þ˛
½0; 1 � and b with probability 1 � f ðS Þ, denoted by the Bernoulli variable I

f ðSÞ
i . As a result, i’s offspring,

x
f ðSÞ
i , is given by:

xf ðSÞi = If ðSÞi xa +
�
1� If ðSÞi

�
xb; If ðSÞi =

	
1 with probability f ðSÞ
0 with probability 1� f ðSÞ $ (Equation 6)

We assume that:

Assumption 3. f ð , Þ is a function bounded between 0 and 1 (inclusive). (Strictly speaking, we require

f ð , Þ to be a F -measurable function where ðU ;F ;P Þ is the same probability measure space on which

S is defined. For simplicity we omit the measure-theoretic definitions in the main body of this article.)

In contrast to the binary choice model of Brennan and Lo (2011), an individual’s behavior here is a function

f ð , Þ of the observed information, S, instead of a constant.

Population growth. We use the superscript f ð , Þ to denote the particular type of individual as defined

by the decision rule in (Equation 6). With this convention in mind, we denote by n
f ð,Þ
t the total number of

offspring of type f ð , Þ in generation t, which is simply the sum of all the offspring from the type-f ð , Þ in-
dividuals of the previous generation:

nf ð,Þ
t =

Xnf ð,Þt�1

i = 1

xf ðSt Þ
i;t =

0
@Xnf ð,Þt�1

i = 1

If ðSt Þ
i

1
Axa;t +

0
@Xnf ð,Þt�1

i = 1

�
1� If ðSt Þ

i

�1Axb;t

  f ð,Þ !  Pnf ð,Þ
� �! !
= nf ð,Þ
t�1

Pn
t�1

i = 1 I
f ðSt Þ
i

nf ð,Þ
t�1

xa;t +

t�1
i = 1 1� If ðSt Þ

i

nf ð,Þ
t�1

xb;t $

Applying the Law of Large Numbers, we determine the population dynamics between two generations:

nf ð,Þ
t =

a$s$
nf ð,Þ
t�1ðf ðStÞxa;t + ð1� f ðStÞÞxb;tÞ (Equation 7)

where the notation =
a$s$

in (Equation 7) denotes ‘‘almost sure’’ convergence as n
f ð,Þ
t� 1 increases without

bound.

We can rewrite (Equation 7) in terms of the relative frequency of each behavior in the population. Let l
f ð,Þ
t be

the relative frequency of behavior f ð , Þ in the population in generation t. We have:

lf ð,Þt =
nf ð,Þ
tP

gð,Þn
gð,Þ
t

=
a$s$ nf ð,Þ

t�1ðf ðStÞxa;t + ð1� f ðStÞÞxb;tÞP
gð,Þn

gð,Þ
t�1 ðgðStÞxa;t + ð1� gðStÞÞxb;tÞ

=
lf ð,Þt�1,Fitness

f ð,Þ
tP

gð,Þl
gð,Þ
t�1 ,Fitness

gð,Þ
t

(Equation 8)

where Fitness
f ð,Þ
t = ðf ðSt Þxa;t + ð1 �f ðSt Þ Þxb;t Þ is the fitness (random reproductive success) of behavior

f ð , Þ in generation t.

Note that (Equation 8) has the same mathematical form as the Bayes formula:

PðAijdataÞ = PðdatajAiÞPðAiÞP
jP


data

��Aj

�
P


Aj

� (Equation 9)
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if we treat l
f ð,Þ
t (the frequency in the current generation) as the posterior P ðAi jdata Þ, lf ð,Þt� 1 (the frequency in

the previous generation) as the prior P ðAi Þ, and Fitness
f ð,Þ
t (the fitness in the current generation) as the

likelihood P ðdata jAi Þ.

(Equation 7) and (Equation 8) give the basic relationship between populations in two consecutive genera-

tions. We wish to characterize the growth of n
f ð,Þ
t with respect to the environment, xa, xb, and St , and indi-

vidual behavior, f ð , Þ. Different assumptions about the environment lead to different growth dynamics.

We consider stationary and nonstationary environments in the next two sections, respectively.
Stationary environments

We consider stationary environments in this section, assuming that:

Assumption 4. The set of environmental states fst g is stationary and ergodic. In particular, st is ergodic if

fst g is stationary with a finite second moment, and its covariance cov ðs0 ; st Þ /0 as t /N.

Through backward recursion based on (Equation7), the population size of type-f ð , Þ individuals in gener-

ation T is given by

nf ð,Þ
T =

a$s$
YT
t = 1

ðf ðStÞxa;t + ð1� f ðStÞÞxb;tÞ (Equation 10)

T
1

T
lognf ð,Þ

T =
a$s$1

T

X
t = 1

logðf ðStÞxa;t + ð1� f ðStÞÞxb;tÞ (Equation 11)

a$s$

/ Eðxa ;xb ;SÞ½logðf ðSÞxa + ð1� f ðSÞÞxbÞ� (Equation 12)

where ‘‘ 



!a$s$
’’ in (Equation 12) denotes almost sure convergence as T increases without bound. (This follows

from the ergodic theorem (e.g. (White, 2001, Theorem 3.34)). Specifically, Assumptions 1 and 3 together

imply that log ðf ðSt Þxa;t + ð1 �f ðSt Þ Þxb;t Þhas finite moments up to order 2. Assumptions 2, 3, and 4

together imply that log ðf ðSt Þxa;t + ð1 �f ðSt Þ Þxb;t Þis stationary and ergodic (e.g. (White, 2001, Theorem

3.35)).) The expected value is taken over the joint distribution of ðxa ;xb ;S Þ, and we have assumed that n0 =

1 without loss of generality.

Since the behavior, f ð , Þ, that maximizes the population size, n
f ð,Þ
T , is also the f ð , Þ that maximizes

T � 1logn
f ð,Þ
T , (Equation 12) implies that this value converges almost surely to the maximum of the following

expected value:

aðf ð , ÞÞ =defEðxa ;xb ;SÞ½logðf ðSÞxa + ð1� f ðSÞÞxbÞ�$ (Equation 13)

Expression (Equation 13) is simply the expected value of the log-geometric-average growth rate of the

population, given a particular behavior f ð , Þ. Note that behavior f ð , Þ is a function of the observed

data S.

Next, we consider the case that f ð , Þ is a constant, i.e., the individuals in our model are totally mindless. We

then consider the general case that f ð , Þ uses past information St .

Constant behavior. If the individuals in our model do not have intelligence, and only have constant

behavior f, the following result (Brennan and Lo, 2011) gives the growth-optimal behavior f �.

Proposition 1 (Stationary environments and constant behavior). Under Assumptions 1–4, the growth-

optimal constant behavior f � that maximizes (Equation 13) is:

f � = argmax
f

E½logðfxa + ð1� f ÞxbÞ�$ (Equation 14)

In particular, f � is explicitly given by:

f � =

8<
:

1 if E½xb=xa�<1
solution to ðS$11Þ if E½xa=xb�R1 and E½xb=xa�R1
0 if E½xa=xb�<1;

(Equation 15)

where f � is defined implicitly in the second case of (Equation 15) by:
16 iScience 24, 102853, August 20, 2021
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E

�
xa � xb

f �xa + ð1� f �Þxb

�
= 0 (Equation 16)

and the expected values in (Equation 14)–(Equation 16) are with respect to the joint distribution. F ðxa ;xb Þ.

In terms of the sunny/rainy example, when st is stationary, the expected value of pt is a constant. The growth

rate of individuals with behavior f is:

aðf Þ = Eðxa ;xbÞ½logðfxa + ð1� f ÞxbÞ�� � �� ��

= Ept Eðxa ;xbjptÞ logðfxa + ð1� f ÞxbÞ pt� 
 � �

= Ept pt logðfcÞ + 1�pt logðð1� f ÞcÞ� � 
 � ��

= E pt logðf Þ+ 1� E pt logð1� f Þ+ logðcÞ$

Note that we used the law of total expectation to break down the expected value over ðxa ; xb Þ into the

conditional distribution of ðxa ; xb jpt Þ and the expected value over the state pt . We will use this method

again when we consider general intelligent behavior. Maximizing a ðf Þ, we get f � = E ½pt �.(The last term

log(m) is a constant, and does not play a role in determining the optimal f.) The optimal behavior in our

sunny/rainy example is to build shelter by the river with the same probability as the expectation of a sunny

day. This is called ‘‘probability matching’’ or ‘‘bet hedging’’ in the evolutionary biology literature (Cooper

and Kaplan, 1982; Frank and Slatkin, 1990; Frank, 2011; Brennan and Lo, 2011).

Intelligent behavior. In the general case, individual behavior is allowed to be a function of all available

information at time t. In other words, f ð , Þ is a function that maps all observed states, St , to a value in [0,1].

The pertinent evolutionary question is what forms of f ð , Þ maximize growth.

We first provide more intuition to understand the population growth rate (Equation 13). By conditioning on

the observed states S (or mathematically, by the law of total expectation), (Equation 13) can be rewritten as

aðf ð , ÞÞ = ES
�
Eðxa ;xb jSÞ

�
logðf ðSÞxa + ð1� f ðSÞÞxbÞ

��S��$ (Equation 17)

Given observed states, S, the behavior f ðS Þ is fixed, and the growth rate (Equation 17) is simply an inte-

gration over the distribution of S. It therefore suffices to find the function f ð , Þ that maximizes the condi-

tional expected value Eðxa ;xb jSÞ ½log ðf ðS Þxa + ð1 �f ðS Þ Þxb Þ ��S � for every possible value of S. The next

result (included in the main article) summarizes this function.

Proposition 2 (Stationary environments; intelligent behavior). Under Assumptions 1-4, the growth-

optimal behavior f � ð , Þ that maximizes (Equation 13) is:

f �ðSÞ = argmax
f ðSÞ

Eðxa ;xb jSÞ

�
logðf ðSÞxa + ð1� f ðSÞÞxbÞ

����S
�
$ (Equation 18)

In particular, given observed states S, f � ð , Þ is explicitly given by:

f �ðSÞ =
8<
:

1 if Eðxa ;xb jSÞ
�
xb
�
xa
�
<1

solution to ðS$15Þ if Eðxa ;xb jSÞ
�
xa
�
xb
�
R1 and Eðxa ;xb jSÞ

�
xb
�
xa
�
R1

0 if Eðxa ;xb jSÞ
�
xa
�
xb
�
<1;

(Equation 19)

where f � ðS Þ is defined implicitly in the second case of (Equation 19) by:

Eðxa ;xb jSÞ

�
xa � xb

f �ðSÞxa + ð1� f �ðSÞÞxb

�
= 0 (Equation 20)

and the expected values in (Equation 18)-(Equation 20) are with respect to the joint distribution,F ðxa ;xb jS
Þ.

Proposition 2 shows that in the case of systematic environmental risks, the growth-optimal behavior max-

imizes the expected log utility, where the expected value is taken over the posterior distribution of the envi-

ronment conditioned on all available information S.

What is intelligence?. Proposition 2 characterizes the optimal behavior f � ð , Þ. Here we provide more

intuition behind the relationship between the optimal behavior, f � ð , Þ, and the environment, highlighting

the type of behavior that is considered intelligent.
iScience 24, 102853, August 20, 2021 17
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Let r =
def

xa =xb �1 be the relative reproductive success. We can rewrite the population growth rate a ðf ð , Þ Þ
in (Equation 13) as

aðf ð , ÞÞ = E½logðf ðSÞr + 1Þ�+ E½logðxbÞ�; (Equation 21)

provided that the expected value for both terms in (Equation 21) exists. (This is a more restrictive condition

than Assumption 1. We do not make this distributional assumption in our article except here.) The last term,

E ½log ðxb Þ �, does not depend on f ð , Þ. Therefore, maximizing a ðf ð , Þ Þ over f ð , Þ is equivalent to maxi-

mizing the first term in (Equation 21). We further approximate (Equation 21) by a Taylor expansion around

r=0: (When the fitnesses of the two actions xa and xb are similar, r varies around 0. This is another assump-

tion that is specific to this result, and not used in the remainder of this article).

aðf ð , ÞÞzE½f ðSÞr � � 1

2
E
h
ðf ðSÞrÞ2

i
+ constant

= E½f ðSÞ�E½r � + Covðf ðSÞ; rÞ� 1

2
E
h
ðf ðSÞrÞ2

i
+ constant

(Equation 22)

up to the second-order Taylor approximation. This expansion is the basis for the three factors pertaining to

intelligence in the main article.

Markov environments. Intelligent behavior only emerges in a time-dependent environment. Here we

consider an example of a Markov environment to explicitly illustrate the relationship between optimal

behavior and the amount of memory in the environment.

Suppose the environmental states fst g are k-th order Markov variables. In other words, in period t, given

the observed states in the past k periods: fst� 1 ; / ;st� k g, st is independent of states further away in the

past: fst� k� 1 ;st� k� 2 ; / g. In such environments, the optimal behavior should only use information from

the past k periods: f � ðst� 1 ; / ;st� k Þ. In fact, using information older than k periods may hurt growth.

For example, suppose st follows an AR process of order k (AR ðk Þ):

st = w0 +w1st�1 +/+wkst�k + εt

where w0 ;/ ;wk are weights for different lags, and εt is white noise. In this case, the optimal behavior will

be a function of the weighted observed states in the past k periods:

f �
 
w0 +

1

k

Xk
i = 1

wist�i

!
$

In general, if there are no constraints to the functional forms of f ð , Þ, behaviors will emerge that learn the

underlying process of the environment. However, if there are limitations to intelligence,(See, for example,

the notion of ‘‘satisficing’’ and bounded rationality (Simon, 1955), and the notion of ecological rationality

(Gigerenzer and Selten, 2002).) f � ð , Þmay not be able to learn the precise dynamics of the underlying envi-

ronmental process. For example, if st is a complicated nonlinear stochastic process, and intelligence is con-

strained to linear functions of past information, f � ð , Þ can never perfectly learn the nonlinear relationship

between st and past states.
Nonstationary environments

In nonstationarity environments, the Law of Large Numbers does not hold, and additional regularity con-

ditions are needed to describe the evolutionary dynamics in such environments. We make the following

assumption:

Assumption 5. The environmental states fst g is a-mixing.

In general, fst g can be nonstationary. (White, 2001, Definition 3.42) provides the formal measure-theoretic

definition for mixing stochastic processes. In this section, we use a simple necessary condition for a-mixing

to illustrate the intuition behind the concept. a-mixing stochastic processes are always asymptotically un-

correlated: there exist constants frt g such that 0%rt %1,
PN

t = 0 rt <N, and corr ðst ; st + t Þ% rt for all t > 0.

In other words, Assumption 5 asserts that the environment forgets about the past asymptotically. We will

see that the average log population size will still converge to some constant in these environments.
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We return to the fundamental relationship between two generations, (Equation 7), to derive the population

dynamics of nonstationary environments. Through backward recursion based on (Equation 7), the popula-

tion size of type-f ð , Þ individuals in generation T is given by

nf ð,Þ
T =

a$s$
YT
t = 1

ðf ðStÞxa;t + ð1� f ðStÞÞxb;tÞ (Equation 23)

XT
1

T
lognf ð,Þ

T =
a$s$1

T
t = 1

logðf ðStÞxa;t + ð1� f ðStÞÞxb;tÞ (Equation 24)

T

/
a$s$

lim
T/N

1

T

X
t = 1

Eðxa;t ;xb;t ;StÞ½logðf ðStÞxa;t + ð1� f ðStÞÞxb;tÞ� (Equation 25)

where ‘‘ 



!a$s$
’’ in (Equation 25) denotes almost sure convergence as T increases without bound. (This

follows from (White, 2001, Theorem 3.47). Specifically, Assumptions 1 and 3 together imply that log ðf
ðSt Þxa;t + ð1 �f ðSt Þ Þxb;tÞ has finite moments up to order 2. Assumptions 2, 3, and 5 together imply

that log ðf ðSt Þxa;t + ð1 �f ðSt Þ Þxb;tÞ is a-mixing (e.g., see (White, 2001, Theorem 3.49)).) The expected

value is taken over the joint distribution of ðxa ;xb ;St Þ, and we have assumed that n0 = 1 without loss of

generality.

Constant behavior. When the optimal behavior is ‘‘mindless,’’ we can explicitly characterize it

mathematically.

Proposition 3 (Nonstationary environments; constant behavior). Under Assumptions 1-3 and 5, the

growth-optimal constant behavior f � that maximizes (Equation 25) is:

f � = argmax
f

E½logðfxa;t + ð1� f Þxb;tÞ�Nt = 1$ (Equation 26)

In particular, f � is explicitly given by:

f � =

8>>>>>>><
>>>>>>>:

1 if E½xb;t
�
xa;t �

N

t = 1
<1

solution to ðS$23Þ if E½xa;t
�
xb;t �

N

t = 1
R1 and E½xb;t

�
xa;t �

N

t = 1
R1

0 if E½xa;t
�
xb;t �

N

t = 1
<1;

(Equation 27)

where f � is defined implicitly in the second case of (Equation 27) by:

E

�
xa;t � xb;t

f �xa;t + ð1� f �Þxb;t

�N
t = 1

= 0 (Equation 28)

and the expected values in (Equation 26)-(Equation 28) are with respect to the joint distributionF ðxa;t ; xb;t Þ.

Compared to Proposition 1 for stationary environments, the average expected values over time are

needed here because the environment is nonstationary. In the sunny/rainy example, the probability of

a sunny day, pt , no longer has a constant expected value. The growth rate of individuals with behavior

f is therefore:

mðf Þ = Eðxa;t ;xb;t ;ptÞ½logðfxa + ð1� f ÞxbÞ�N
t =1� � � ��N
= Ept Eðxa ;xbjptÞ logðfxa + ð1� f ÞxbÞ�pt
t = 1� 
 � �N
= Ept pt logðfcÞ+ 1� pt logðð1� f ÞcÞ
t = 1 !
= E
�
pt

�N
t = 1

logðf Þ + 1� E
�
pt

�N
t = 1

logð1� f Þ+ logðcÞ$

We get f � =E½pt �Nt = 1 by maximizing m ðf Þ. Compared to the optimal behavior in stationary environments, f �

is the average expected value of a sunny day over time, which nevertheless still corresponds to probability

matching in the average sense.
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Intelligent behavior. For behaviors that use past information, there is no explicit solution for the optimal

behavior f � ð , Þ for the general nonstationary environment. Although each term in the growth rate for the

nonstationary environment, (Equation 25), is mathematically equivalent to the growth rate for the stationary

environment, (Equation 13), the optimal behavior f � ð , Þ that maximizes (Equation 25) is fundamentally

different from f � ð , Þ in stationary environments (Proposition 2). This is because the state in period t is

conditioned on information in period t (st jSt , or equivalently, st jst� 1 ;st� 2 ; /). As a result, the conditional

distribution ðxa;t ; xb;t
��St Þ depends on t, but individual behavior f � ð , Þ is not time-aware (i.e., f � ð , Þ is not a

function of time t). Therefore, it is impossible for f � ð , Þ to be optimal with respect to the distribution of

ðxa;t ; xb;t
��St Þ for any period t.

Proposition 4 (Nonstationary environments; intelligent behavior). Under Assumptions 1-3 and 5, the

growth-optimal behavior f � ð , Þ that maximizes (Equation 25) is:

f �ðSÞ = argmax
f ðSÞ

mðf ð , ÞÞ
N

= argmax
f ðSÞ

Eðxa;t ;xb;t ;StÞ½logðf ðStÞxa;t + ð1� f ðStÞÞxb;tÞ�
t = 1

$

A simple example of a nonstationary environment. One simple example of a nonstationary environ-

ment is a time-varying deterministic state series. Following our sunny/rainy example, suppose fst g is a bi-

nary series that encodes the season at time t, and the season changes every 10 periods. The probability of a

sunny day, pt , is 0.8 in one season, and 0.2 in another season. In other words, fpt g is a deterministic sea-

sonal time series that changes its value every 10 periods:�
p1 = 0:8;/;p10 = 0:8; p11 = 0:2;/;p20 = 0:2; p21 = 0:8;/

�
$

This environment is nonstationary because the distribution of ðxa ; xb Þ is not the same for all time periods t.

The optimal constant behavior, that is, for ‘‘mindless’’ individuals, according to Proposition 3, is f � = 0:5,

and the optimal growth rate m ðf � Þ = log ð0:5 Þ + log ðc Þ.

On the other hand, individuals with memory can use the last 10 observations of st to determine the current

probability of ‘‘sunny’’. The optimal behavior is then to match this probability in each period: f � ð , Þ = pt .

This leads to the optimal growth rate m ðf � ð , Þ Þ = log ð0:8 Þ + log ðc Þ, which is higher than the optimal

growth rate for constant behavior.

This simple example shows that intelligent behavior can emerge in nonstationary environments. A more

general example with stochastic states is given in the main article.
Environments with cost

We assume that all available information in period t, St , contains a large number of data points. There is a

cost for each individual to obtain and use this data, C ðm Þ, where m is the number of data points used for

inferential purposes. Instead of making decisions based on all available information, individuals make de-

cisions based on this limited number of data points, and their behavior is denoted by f ðS ðm Þ Þ. When the

reproductive risk is systematic, the number of individual i’s offspring x
f ðSðmÞÞ
i is given by:

xf ðSðmÞÞ
i =

If ðSðmÞÞ
i xa +

�
1� If ðSðmÞÞ

i

�
xb

CðmÞ ; If ðSðmÞÞ
i =

	
1 with prob$ f ðSðmÞÞ
0 with prob$ 1� f ðSðmÞÞ (Equation 29)

where C ðm Þ >0 is an increasing function ofm. (Equation 29) adjusts the individual reproductive success by

a factor of C ðm Þ�1 relative to (Equation 6) to reflect this cost.

Through a similar transformation of the population dynamics described in (Equation 6)-(Equation 13), it is

not hard to see that the population growth rate for individuals using limited samples of data points in sta-

tionary environments is:

aðf ðSðmÞÞÞ =defEðxa ;xb ;SÞ½logðf ðSðmÞÞxa + ð1� f ðSðmÞÞÞxbÞ� � logCðmÞ$ (Equation 30)

Note that in (Equation 30), the expected value is over the distribution of ðxa ;xb ;S Þ, that is, all available
information S, but individual behavior is restricted to only limited samples, S ðm Þ.
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In this setting, an evolutionarily optimal behavior is achieved by maximizing the growth rate a ðf ðS ðm Þ Þ Þ
over both the number of samples,m, and the specific functional form, f ð , Þ. Asm increases, the first term in

(Equation 30) increases, while the second term in (Equation 30) decreases due to the increase in the cogni-

tive cost. The optimal number of samples, m�, depends on the relative magnitude of the marginal change

of an additional sample.

Without sampling. The sunny/rainy example in the main article takes place in a stationary environment

whose states are independent over time. Therefore, the optimal behavior with no additional information is

a constant f � = 0:5, given by Proposition 1. The optimal growth rate is then a ðf � Þ = log ð0:5 ,c Þ. The
optimal behavior is to build a shelter by the river or on the plateau with equal probability.

No-cost and infinite sampling. We briefly consider the case of no-cost sampling. An infinite number of

samples will give an individual the correct state of the environment with probability 1, by the Law of Large

Numbers. An individual’s behavior will now be dependent on all the data it receives, and is therefore a

function f ðD Þ. Because individuals will have perfect information about the two states, the optimal behavior

f � ðD Þ is to match the probability of a sunny day in the current state:

f �ðDÞ =
	
p; if the probability of a sunny day is p;
1� p; if the probability of a sunny day is 1� p$

Therefore, the growth rate of individuals with behavior f � ðD Þ is:

aðf �ðDÞÞ = ED

�
Eðxa ;xb jDÞ½logðf ðDÞxa + ð1� f ðDÞÞxbÞ�

�� 
 � 
 � 

 � ��

= 0:5, plog pc + 1�p log 1�p c�
 � 

 � � 
 ��

+ 0:5, 1�p log 1�p c + plog pc
 � 
 � 

 � �
=plog pc + 1�p log 1�p c $

Compared with the optimal solution in the case of no information, perfect information allows individuals to

follow a probability matching strategy at a granular level, in each state of the environment. This greatly im-

proves the growth rate of the population.

Limited sampling with cost. Using the cost given in the main article, we solve for the optimal behavior

and growth rate in two steps. First, we fix the number of samples m, and solve for the optimal behavior

f � ðD ðm Þ Þ. We then maximize the growth rate by optimizing over m.

Given m samples, the probability that the majority indicates the correct state is:

b = 1� CDF


m
�
2;m;q

�
where CDF ðm =2 ;m ;p Þ is the binomial cumulative distribution function. The growth rate for a behavior

using m samples can therefore be written as:

aðf ðDðmÞÞÞ= ED

�
Eðxa ;xb jDÞ½logðf ðDðmÞÞxa + ð1� f ðDðmÞÞÞxbÞ�

�� logðCðmÞÞ$
=pðblogðfcÞ+ ð1� bÞlogðð1� f ÞcÞÞ
+


1� p

�ðblogðð1� f ÞcÞ+ ð1� bÞlogðfcÞÞ � logðCðmÞÞ
=


1� p � b+ 2pb

�
logðfcÞ+ 
p + b� 2pb

�
logðð1� f ÞcÞ � logðCðmÞÞ$

(Equation 31)

Given m samples, we can derive the optimal f � ðD ðm Þ Þ by maximizing a ðf ðD ðm Þ Þ Þ:

f �ðDðmÞÞ =
	
bp + ð1� bÞ
1� p

�
; if DðmÞ implies summer;

b


1� p

�
+ ð1� bÞp; if DðmÞ implies winter$

(Equation 32)

This is the weighted average of the state probabilities p and 1�p, where the probability that the majority

indicates the correct state, b, is used as the weight. (Equation 32) can be treated as an approximation to

probability matching, where the approximation is determined by the confidence of the data.

Substituting (Equation 32) into (Equation 31), we can determine the optimal growth rate givenm samples, a

ðf � ðD ðm Þ Þ Þ:

aðf �ðDðmÞÞÞ= 
1� p � b+ 2pb
�
log



bp + ð1� bÞ
1� p

��
c
�

+


p + b� 2pb

�
log





1� p
�
+ ð1� bÞp�c�� logðCðmÞÞ$ (Equation 33)
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The optimal number of samples,m�, is obtained bymaximizing (Equation 33) overm. Here bwill depend on

the cumulative distribution function of the binomial distribution, and thereforem� does not have an explicit

solution.

The optimal number of samples versus cost. We demonstrate the trade-off between the growth rate of

the population and the cost of additional samples. Figure S1A in Supplemental Information shows the

growth rate for different numbers of samples when q=0.8 and h=0.02. The cost of sampling in this example

is relatively small (h=0.02 implies that collecting 50 samples only cuts the fitness by half). As the number of

samples increases, the growth rate increases initially, and achieves a maximum at 3.

Figure S1B in Supplemental Information shows the optimal number of samples as we change the magni-

tude of the cost. As the cost increases, the optimal number of samples decreases, and eventually goes

to zero, indicating that it is not desirable to collect any sample.

Figure S1C in Supplemental Information shows that the optimal sample size is low when the amount of in-

formation in each sample is either low or high, given a specific cost, h=0.02. When the information in each

sample is low (that is, when q is close to 0.5), there is little information to gain from each sample. As a result,

it is not worth paying the cost for any sample. On the other hand, when the information in each sample is

very high (that is, when q is close to 1), one sample is sufficient to infer the state reliably. As a result, it is not

worth paying the cost beyond just one sample. More generally, Figure 2B in the main article illustrates the

relationship between the optimal sample size and the information carried in each sample.
Idiosyncratic reproductive risks

Throughout this article, we have assumed that the number of offspring from actions a and b are given by the

same two realizations of the random variables xa and xb, respectively, for all individuals. In other words, the

risk in reproductive success is systematic across the population. In this section, we show that if the uncer-

tainty in reproduction is instead idiosyncratic to each individual, the growth-optimal behavior always coin-

cides with the individually optimal behavior with a linear utility. This distinction points to the central role

that aggregate uncertainty plays in shaping the evolution of behavior and preferences (Brennan and Lo,

2011).

As before, we denote by x
f ðSÞ
i the random number of offspring produced by individual i:

xf ðSÞi = If ðSÞi xa;i +
�
1� If ðSÞi

�
xb;i; If ðSÞi =

	
1 with probability f ðSÞ
0 with probability 1� f ðSÞ $

We replace Assumption 2 with the following:

Assumption 6. Conditioned on state st , ðxa;i;t ; xb;i;t Þ are independently and identically distributed over

time t and across individuals i in a given generation.

In contrast to the case with systematic risk as described in (Equation 6), ðxa;i;t ; xb;i;t Þ are now assumed to be

independently and identically distributed across individuals as well as across time. This is a seemingly small

change, but it has dramatic consequences for the evolutionary dynamics of the population and its growth-

optimal behavior. In this case, the randomness in the number of offspring is strictly idiosyncratic in the

sense that the correlation between the number of offspring for two individuals i and j is 0, even if both in-

dividuals choose the same course of action. Recall from (Equation 6) that in the systematic case, if two in-

dividuals choose the same action a, both will generate the same number of random offspring xa, i.e., their

reproductive success is perfectly correlated. The idiosyncratic risk implies that even if all individuals in a

given population choose the same action, there will still be considerable cross-sectional variability in the

number of offspring produced. This more diversified outcome has a very different set of implications for

the growth-optimal behavior.

In particular, the total number of offspring n
f ð,Þ
t across all type-f ð , Þ individuals in generation t is:

nf ð,Þ
t =

Xnf ð,Þt�1

i = 1

xf ðSt Þ
i;t =

Xnf ð,Þt�1

i = 1

If ðSt Þ
i xa;i;t +

Xnf ð,Þt�1

i =1

�
1� If ðSt Þ

i

�
xb;i;t
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= nf ð,Þ
t�1

 Pnf ð,Þ
t�1

i =1 I
f ðSt Þ
i xa;i;t

nf ð,Þ
t�1

+

Pnf ð,Þ
t�1

i =1

�
1� If ðSt Þ

i

�
xb;i;t

nf ð,Þ
t�1

!
$

Applying the Law of Large Numbers, we determine the population dynamics between two generations:

nf ð,Þ
t =

a$s$
nf ð,Þ
t�1ðf ðStÞE½xajSt � + ð1� f ðStÞÞE½xbjSt �Þ (Equation 34)

where ‘‘ =
a$s$

’’ in (Equation 34) denotes almost sure convergence as n
f ð,Þ
t� 1 increases without bound. The key

difference between (Equation 7) and (Equation 34) is that here both the individual’s choice and the number

of offspring are idiosyncratic, and therefore both are subject to the Law of Large Numbers.

Through backwards recursion, the population size of type-f ð , Þ individuals in generation T is calculated to

be

nf ð,Þ
T =

a$s$
YT
t = 1

ðf ðStÞE½xajSt � + ð1� f ðStÞÞE½xbjSt �Þ (Equation 35)

T
1

T
lognf ð,Þ

T =
a$s$1

T

X
t = 1

logðf ðStÞE½xajSt � + ð1� f ðStÞÞE½xbjSt �Þ (Equation 36)

a$s$

/ ES½logðf ðSÞE½xajS� + ð1� f ðSÞÞE½xbjS�Þ� (Equation 37)

where (Equation 37) differs from (Equation 12) in that xa and xb only matter through their mean condi-

tional on S, because the idiosyncratic nature of the cross-section of individuals has eliminated random-

ness in the population. This simple expression attains its optimum at the extremes of f ð , Þ. Conse-
quently, we have:

Proposition 5 (Idiosyncratic risks). Under idiosyncratic environmental risks (Assumptions 1, 3, 4, and 6),

the growth-optimal behavior f � ð , Þ is given by:

f �ðSÞ = argmax
f ð,Þ

f ðSÞE½xajS� + ð1� f ðSÞÞE½xbjS�$

In particular, f � ð , Þ is explicitly given by:

f �ðSÞ =
	
1 if E½xajS�>E½xbjS�
0 if E½xajS�%E½xbjS�;

where the expected values is take over the joint distribution F ðXa ;Xb jS Þ.

Proposition 5 shows that under idiosyncratic environmental risks, the growth-optimal behavior maximizes

the expected linear utility, when the expected value is taken over the posterior distribution of the environ-

mental states conditional on all available information S.
Testable implications

To test our model in an experimental setting, one could create an artificial environment in whichDrosophila

(fruit fly) individuals would face a choice between two places to lay their eggs (media A and B) as a biolog-

ical binary choice model. Different media would be associated with fruits with different odors, like orange

and pineapple, as an olfactory signal to Drosophila individuals. Competing fitness functions would then be

implemented as different rules for harvesting Drosophila eggs from the two media.(We thank Terence C.

Burnham for suggesting this design). In principle, one could create any possible environmental distribution

through different harvesting rules.

For instance, to test our sunny/rainy example, let one of the media represent the river, and the other the

plateau. One could harvest 300 eggs from the river when the environment is ‘‘sunny,’’ and 300 eggs

from the plateau otherwise. One could measure the percentage of eggs laid by Drosophila on each me-

dium over many generations. By changing the degree of nonstationarity in the environment, this method

could be used to infer the degree of memory that Drosophila individuals use to decide where to lay eggs

(behavior f ð , Þ in our model).
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This setting provides a controlled experimental framework to study the evolution of memory in environ-

ments with different levels of nonstationarity. More generally, one could design similar experiments to

empirically study the emergence of Bayesian inference and any form of intelligence.
QUANTIFICATION AND STATISTICAL ANALYSIS

This study does not include statistical analysis of empirical data.
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