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a b s t r a c t

Convolutional neural networks (CNNs) have recently achieved impressive performances in image
processing tasks such as image classification and object recognition. However, CNNs typically have
a large number of parameters, leading to their requirement of a large number of training samples
to extract spatial features. To address these limitations, we propose a lightweight ScatterNet with
the learnable weight matrix and sparse transformation such as scale transformation and translation
to learn sparse filters. This filter based on ScatterNet uses He initialization algorithm and learns from
input images which are viewed as two-directional sequential data in the initial stage of model training.
A Strip-Recurrent module sweeps both horizontally and vertically across the image to compress feature
matrices. Then, ScatterNet decomposes the above feature matrices as a learned mixture of different
harmonic functions to integrate the spectral analysis into CNNs. Finally, we combine the sequential and
spectral features to build our hybrid architectures to complete image classification and segmentation.
These architectures can obtain good classification accuracy on both small and large training datasets.
Our proposed method is evaluated at both layer and network levels on five widely-used benchmark
datasets: MNIST, CIFAR-10, CIFAR-100, Small NORB and Tiny ImageNet. We also study other small
sample problems such as medical image segmentation and image classification based on few-shot
learning. Experiments show that our proposed layer and hybrid model achieves better accuracy for
small sample training.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Convolutional neural networks (CNNs), as a multilayer learn-
ng architecture, are widely used in image classification tasks
nd particularly effective in extracting spatial features. They have
ecome the preferred model and shown state-of-the-art per-
ormance in several applications, and have won the ImageNet
arge Scale Visual Recognition Competition (ILSVRC) [1] with
lexNet [2], VGGNet [3] and ResNet [4]. Therefore, CNNs have re-
eived immense success in multiple computer vision tasks. Most
f recent developments focus on modifying network structures
nd data augmentation such as now DenseNet [5]. In addition,
hey relay on the minimization of loss functions such as Cross
ntropy, OHEM [6] and Focal loss [7] to improve the accuracy of
eature extraction.

With the rapid development of CNNs in the field of image
rocessing, Recurrent Neural Networks (RNNs) have been ap-
lied to the analysis of sequential data such as sound and text.
ore specifically, it can be extended to applications including

∗ Corresponding author.
E-mail address: dongzihao@mail.nankai.edu.cn (Z. Dong).
ttps://doi.org/10.1016/j.knosys.2020.106315
950-7051/© 2020 Elsevier B.V. All rights reserved.
Natural Language Processing(NLP) [8] and machine translation [9,
10]. However, RNN related modules are rarely used in feature
extraction of image analysis.

Despite their successful applications, these deep learning mod-
els still face several challenges. For example, many architec-
tures based on CNNs always require a large number of training
samples, making them prone to overfitting, especially on small
datasets. To address the small sample problem, ScatterNet [11]
with pre-defined filter bank is proposed to extract invariant
features, which is extended to incorporate rotation and scale in-
variance [12–14] to improve the accuracy of image classification.
These enhancements overcome the shortcoming that CNNs only
achieve the rotation invariance by data augmentation. However,
handcrafted or pre-defined filter banks limit the learning process
of models and may not generate the real distribution of the input
data. Therefore, the learning filter banks methods [15,16] are
proposed to predict meaningful features from small samples by
unsupervised approaches. One advantage of these methods is that
they do not need to tune the filters on different datasets. Hybrid
networks [17,18] combine the advantages of two methods above,
and they can learn useful hierarchical features using sizeable

labeled training samples.

https://doi.org/10.1016/j.knosys.2020.106315
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The main problem of CNN models based on pre-trained filters
s the requirement of a large number of parameters for training
nd feature learning, leading to an increase of the computational
omplexity of deep learning frameworks. Therefore, lightweight
odels are needed to reduce these parameters for small sample

raining. In addition, insufficient training data may also lead to
verfitting given a large number of parameters. Motivated by the
forementioned methods, we propose three novel techniques to
evelop ScatterNet-based feature extraction algorithms for small
ataset problem: (i) utilizing the strip recurrent module with two
ifferent strip LSTM layers instead of the convolution operation to
btain compressed sequence features, and sweeping horizontally
nd vertically in two directions across image; (ii) replacing the
raditional convolution filters with a learnable scattering trans-
orm filter bank which can be trained to learn locally invariant
cattering features from the ScatterNet, and adding a learnable
eighted matrix in the proposed architecture; (iii) adopting two
parse operations to make the model more lightweight on the
imited small sample datasets. As a result, the proposed archi-
ecture is inspired from ScatterNet but combining the wavelet
ases with the learned filters. Furthermore, we first use He ini-
ialization algorithm [19] to obtain the initial value of weight
atrices, and then adopt scaling and translation operations to

urn the parameters of weights and offsets. These techniques can
ffectively avoid the overfitting problem with limited training.
e also use this layer as a skip layer to build a simple CNN-
NN hybrid architecture, which improves the accuracy of image
lassification tasks. Experiments are performed on the typical
mall sample databases, including image classification (CIFAR10,
IFAR100, TinyImageNet, NORB and MNIST), medical image seg-
entation (ssTEM and DRIVE) and classification based on few
hot learning (miniImageNet). Our method of learning sparse
eatures with lightweight ScatterNet achieves the competitive
esults compared with convolutional frameworks in small size
mage classification and segmentation, it is better suited to train-
ng model on both small and large datasets to reduce the number
f parameters.
We summarize the contribution of this paper as follows:

1. We develop a novel lightweight ScatterNet to learn sparse
sequence and spectral features. Experiments show that
this method is suitable for classification tasks with small
sample.

2. The proposed lightweight model only has a small number
of parameters, and converges rapidly in training, leading to
its robustness and effectiveness.

3. The classification accuracy of the hybrid model based on
our proposed lightweight ScatterNet is higher than that
of the state-of-the-art convolutional frameworks in several
datasets. These architectures provide a new solution for
computer vision tasks.

The rest of the paper is organized as follows. Section 2 intro-
uces the related works on small sample training and lightweight
odels. Section 3 presents the proposed lightweight ScatterNet
ased on learning sparse features in detail. In Section 4, we
onduct extensive experiments to confirm the effectiveness of
he proposed method. Section 5 concludes and describes several
uture research directions.

. Related works

In this section, we briefly review the literature on image
nderstanding, including image classification and semantic seg-
entation, especially small sample training based on lightweight
odels. The related techniques are divided into two primary
ategories: (1) filter learned methods that update the weights and
learn the feature parameters; (2) hybrid networks that combine
the features from different stages of learning.
Filter learned methods. Hand-encoded filters have been pro-
posed to address the small sample problem. For example, S.
Mallat et al. [20] proposed the Scattering network which is a
handcrafted CNN where pre-defined wavelets are utilized to pro-
vide sparse image representations. For multiple feature learn-
ing, Chan et al. [15] utilized Principal Component Analysis (PCA)
to learn the filter banks and build PCANet architecture; Cotter
et al. [21] proposed a learned ScatterNet to add the learning
operation between scattering orders, which is taken as a locally
invariant convolutional layer. Keshari et al. [22] proposed a CNN-
based framework to learn structure and strength of filters with
pre-trained weights, which is a novel method to deal with small
sample size problem. In order to learn key features for few shot
learning tasks, Sun et al. [23] achieved meta-transfer learning
(MTL) method by learning scaling and shifting function of CNN
weights for each dataset. Recently, circular harmonics is used
for rotational transformation augmentation onto CNN’s weights,
yielding significant improvements in performance metrics such
as classification accuracy. For example, Worrall et al. [24] pre-
sented a new Harmonic Network which is a CNN-like architecture
with equivariance to patch-level translation and rotation; Rohan
et al. [25] replaced the kernel in the locally scale invariant CNN
with scale-steerable kernels, which can be denoted as a log-radial
harmonic; Maurice et al. [26] developed Steerable Filter CNNs
(SFCNNs) to generate the orientation dependent responses by
employing filters that are steerable and learned. In addition, light
weighted models with a small number of parameters are quite
necessary for image processing tasks such as image classification
and object recognition. For instance, the spectral approaches [27–
30] utilize a set of spatial filters to transform feature learning into
the frequency domain. Fujieda et al. [31] and Huang et al. [29]
proposed wavelet CNNs to combine the multiresolution analy-
sis via wavelet transform and convolutional networks into one
model; Khan et al. [30] operated on the spectral decomposition
using wavelets deconvolution to learn filter widths. Some ap-
plications such as texture classification [31] and medical image
segmentation [28] based on wavelet CNNs are also proposed and
achieved better performance.
Hybrid Networks. This approach is used to modify the multi-
layer network structures that combine the low-level features
using hand-crafted filters with more complex features learned
from subsequent layers. The hybrid ScatterNet [32,18,17] is an
upgraded version that uses ScatterNet as a front end and CNN as a
learned back end. In more complex hybrid ScatterNet structures,
D-SHDL [33] composes of a hand-crafted front-end, an unsuper-
vised learning module and a supervised learning based back-end
to evaluate the object classification accuracy; G-SHDL [34] with
structural priors uses Restricted Boltzmann Machine instead of
PCA layers of D-SHDL to learn an invariant features for semantic
segmentation. In other research directions, Katzmann et al. [35]
proposed hybrid rotation invariant networks to develop invariant
features from limited training data. To analyze medical images,
Bekkers et al. [36] built a novel framework with lifting layers,
SE(2) group convolution layer and final projection layer for rota-
tion and translation covariant deep learning. Unberath et al. [37]
proposed DeepDRR which is a hybrid easy-to-use framework for
fast simulation of fluoroscopy from CT scans.

3. The proposed method

In this section, we introduce the lightweight ScatterNet with
sparse-feature learning, which is divided into three parts: (1)
learn sequential and sparse features of filters for small sample
training, (2) build hybrid architectures to perform image classi-
fication and segmentation, and (3) analyze the implementation
details and computational complexity of our algorithm.
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3.1. Preliminary

We first introduce the problem definition and notations for fil-
ter learning such as convolutional layers, wavelets and scattering
transforms, following related work [20,21,30].
Conventional Convolutional Layers. We use I (i)(c,u(x, y)) to de-
note the input image or the feature map from the ith convolu-
tional layer, where the number of channels is c ∈ {0, . . . , Ci− 1},
and u(x, y) is a vector of pixel coordinates in the plane dimen-
sions. The convolution operation can be regarded as a filtering
process. If h(i)

f (c,u(x, y)) is defined as f th filter of ith layer, the
output feature map of a standard convolutional layer in the
conventional CNN is:

Y (i+1)(c,u(x, y)) =
Ci−1∑
c=0

I (i)(c,u(x, y)) ∗ h(i)
f (c,u(x, y)). (1)

The activation function σ (.) and batch normalization b(.) are
generally added behind a convolutional layer, so the final output
of the typical convolutional layer is:

O(i+1)(c,u(x, y)) = b, σ (Y (i+1)(c,u(x, y))). (2)

Wavelets Transforms. The wavelet transform is completed by
replacing the filter h(i)

f (c,u(x, y)) of Eq. (1) with the fixed wavelet
basis function, which consists of a mother wavelet filter
ψj,θ (u(x, y)) and a low pass filter φj(u(x, y)). Therefore, the filter
based on wavelet transformation h(i)

f (c,u(x, y)) can be converted
to:

h(i)
f (c,u(x, y)) −→ {ψj,θ (u(x, y)), φj(u(x, y))} (3)

where {j, θ} is the dilatation and rotation of features, j is the scale
and θ is the rotation angle between 0 and π . A mother wavelet
filter ψ(j,θ ) with 2j dilatation and θ rotation can be decomposed
to:

ψj,θ (u(x, y)) = 2−jψ(2−jR−θu(x, y)) (4)

where R is the transformation matrix, the range of the dilatation
j is 1 ≤ j ≤ J .

A scaled low pass is used to give the invariant scattering
coefficient, which is defined with only the scale term:

φj,θ (u(x, y)) = 2−jφ(2−Ju(x, y)). (5)

We integrate the results from Eqs. (4) and (5), and convolve
them with the input image or feature map I(c,u(x, y)). Therefore,
the 2D wavelet transform operation WT (.) is defined as:

WT (I(c,u(x, y))) = {I(c,u(x, y)) ∗ ψj,θ (u(x, y)),
|I(c,u(x, y)) ∗ φj(u(x, y))|}.

(6)

Original Scattering Transforms. In Eq. (6), the modulus terms
U = |I(c,u(x, y)) ∗ ψj,θ (u(x, y))| represent locally invariant fea-
tures. Suppose a transformation path is p = (λ1, λ2, . . . , λm), the
modulus propagator on a path p is defined as the form of nested
convolution:

UpI = || . . . |I ∗ ψλ1 | ∗ ψλ1 |. . . ∗ ψλm |. (7)

The invariant Scattering coefficient can be computed by a
scaled lowpass filter φ(j,θ ):

SpI = UpI(c,u(x, y)) ∗ φJ (u(x, y)). (8)

If the value of path p is incremented iteratively, the scattering
coefficient on the next path p + λ is {SpI,Up+λI}λ, where (p +
λ) ∈ (λ1, λ2, . . . , λm, λ). Therefore, the final scattering transform
process is defined as:

WT (I(c,u(x, y))) ∗ Up = {SpI,Up+λI}λ. (9)
3.2. The lightweight scattering network

In this paper, we propose to use the lightweight network
based on Scattering Transform for filter learning. Fig. 1 shows
that the method can be divided into three steps: (1) a novel
Strip-Recurrent module is adopted to compress the input images
or feature maps and extract the sequence features, (2) input
I (i)(c,u(x, y)) is filtered by ScatterNet with fixed parameters, and
(3) a learned weight matrix A is defined as a learning term
of the filter based on scattering transform which uses sparse
transformation to reduce its dimensionality.
Strip-Recurrent module. Inspired by Visin et al. [38], we propose
the Strip-Recurrent module with two LSTM layers to get sequence
features of the input image by strip sweeping the feature map,
which is different from the feature learning method of single bi-
direction RNN layer. Suppose I(c,u(x, y)) is the input image or
feature map with the width x, height y and number of channels
c , we split the input into a set of patches P = {pl,m}, where l and
m are the horizontal index and the vertical index, and their total
number is L∗M . Suppose a patch size is xp×yp, (l,m)-th patch will
be defined as pl,m ∈ Rxp×yp×cp . We first sweep every image patch
pl,m(xp× yp× cp) horizontally with a LSTM layer, where xp× yp is
set to 1 × 1, followed by the same operation for the above results
vertically. The whole process can be defined as:

Input : I (i)(c,u(x, y))
split
−−→ {pl,m},

for l = 1, 2, . . . , L and m = 1, 2, . . . ,M

Horizontal sweep : H = LSTM(I (i)(c,u(x, y)), pl,m),
for l = 1, 2, . . . , L

Vertical sweep : V = LSTM(H, pl,m), for l = 1, 2, . . . ,M

(10)

where H is the result by a LSTM layer after horizontal sweep,
and V is the result by a LSTM layer after vertical sweep. After
these two sweeps of Strip-Recurrent module and permuting, the
size of the input feature map is changed from H × W × Cin to
H ×W × Cout/2. Fig. 2 provides a visual illustration.
Learnable Scattering Transforms. Fig. 1 shows that the scat-
tering transform is formulated as the fixed filter. The proposed
scattering-based method mainly completes the 2D-wavelet trans-
form, combines the invariant terms with low pass terms, and
learns the weights of different terms in the mixing process. In the
ScatterNet, the grayish modules represent transformation matri-
ces with fixed parameters, the dark gray modules are denoted as
the weighted matrices with learned parameters. Firstly a novel
Strip-Recurrent module is adopted to extract the sequence fea-
tures and compress the input image or feature map I (i) ∈ RH×W×Ci

to I
′(i)
∈ RH×W×Ci/2; then I

′(i) is filtered by the real and imaginary
orient scattering transforms (the top branch) and the scaled low
pass terms (the bottom branch), which increase the channel
dimension from Ci/2 to (2K + 1)Ci/2, where K is the number
of orientations. The down sampled results I

′(i)
1 ∈ RH/2×W/2×6Ci

of orient scattering are combined with the component I
′(i)
2 ∈

RH/2×W/2×Ci/2 of low pass part to give the result Y (i) according
to Eq. (9). Finally, we convolve Y (i) with learned weight matrix A
to give the proposed output O(i):

O(i)
= {SpI,Up+λI}λ =

C−1∑
C=0

(I
′(i)
∗ φj + |I

′(i)
∗ (ψj,θ )λ|) ∗ A (11)

where DTCWT [39] is chosen as our wavelet filter ψj,θ due to its
fast implementation. However a disadvantage of this method is
that K , the number of orientations of wavelets, is restricted to 6;
the path sequence λ is treated as a diagonal matrix; the learned
weight matrix A consists of two weight parameters {a(c), k(c)}
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Fig. 1. The block diagram of Lightweight Scattering transform layer with learned weight matrix.
Fig. 2. The structure of Strip-Recurrent module.
1

1

1

1

orresponding to φj and ψj,θ , respectively, and its initial value is
et to a random matrix. Therefore, suppose the path γ is an index
ariable, the concrete form of weight matrix A can be defined as:

= {a(c), k(c)}γ =
{

a(c)[γ ], γ = 1
k(c)[γ ], 1 < γ ≤

JK+1
2

(12)

As a result, the filter learning process of lightweight ScatterNet
is summarized in Algorithm 1. The input image or feature map
IN needs to be extracted into several patches, which is used for
horizontal and vertical sweeping of feature matrices.
Learning Sparse Features of Filters. Eq. (11) shows that learn-
able scattering transform is equivalent to the standard convo-
lutional operation like Eq. (1). The differences include: (1) we
have replaced the input I with the result after sequence feature
extraction and scattering transformation; (2) the weight W of
convolutional layer is replaced by a learning matrix multiplicator
A, and this computational process can be viewed as a 1 × 1 con-
volution. In order to make this learning approach more suitable
for small sample training problems, the sparse transformations
such as the scale transformation s and translation t are proposed
o reduce the number of learning parameters.

The proposed concept of sparse transformation of learned
eighted matrix A and offset b is illustrated in Fig. 3. Fig. 3(a)
hows the parameter-tuning of traditional convolutional layer.
he base-model (classifier) f based on CNNs updates all param-
ters [W , b] by iterative training on the dataset D, which is

optimized by gradient decent as follows:

{[W ′, b′]; f ′} ←− {[W , b]; f } − α∇L ([W , b]; f ) (13)
cnn
Algorithm 1 The Filter Learning of Lightweight ScatterNet

1: Notation: N is the size of training set, n is the number of
extract patches

2: Input: Image or feature map IN

3: Output: Weight matrix A
4: for each layer l := 1 to numLayer do
5: [p]N ← extractPatch(IN , Patchsize)
6: H&V Sweep: Y

H
←− LSTM(IN , [p]N ), Y

V
←− LSTM(Y , [p]N )

7: ScatterNet: O(i)
=

∑C−1
C=0(Y

(i)
∗ φj + |Y (i)

∗ ψj,θ |)
8: A← reshape(random(A))
9: for j := 1 to N do
0: fmapj = O(i)

∗ A
1: end for
2: IN ← ReLu(fmap)
3: end for

where α is the learning rate, and Lcnn(.) is the loss function

of model training based on convolutional layers. Suppose cross-

entropy function is used to compute the loss value between the

input x and the ground truth y, it can be denoted as:

Lcnn([W , b]; f ) =
1
|D|

∑
l(f (x; [W , b]), y). (14)
(x,y)∈D
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Fig. 3. Illustration of sparse transformation of the learnable the ScatterNet-based filter which significantly reduce the number of parameters in the model.
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In the example of Fig. 3(a), given a computer vision task T ,
he kernel size k = 3 and channels C , after parameters [W , b]
learning and update, the number of parameters [W ′, b′] obtained
by CNNs is calculated as: C ∗ 4 ∗ 3 ∗ 3+ 1 ∗ 4 ∗ 1 ∗ 1 = 36C + 4.

Fig. 3(b) shows the parameter tuning of proposed learnable
scattering layer. Here, the values of A and b are fixed in a learning
process, and only the parameters of scale transformation operator
s and translation operator t are learned using stochastic gradient
descent method. Suppose the base classifier is f , the whole op-
timization process with the training loss Ltr (.) can be expressed
as:

{[s′, t ′]; f ′} ←− {[s, t]; f } − γ∇Ltr ([s, t]; f ). (15)

Therefore, we further calculate Eq. (11) through the proposed
sparse transformation, which can be defined as:

O(i)(X, A, s′, t ′) = X ∗ (s′ · A)+ (b+ t ′) (16)

where s′ ⊙ A represents element-wise multiplication, and X is
the output of the scattering transform with a Strip-Recurrent
module as shown Fig. 1. Taking Fig. 3(b) as an typical example
of filter with 3 × 3 kernel, the weighted matrix A is scaled by
s(1× 1) then shifted by t(1× 1), so the number of parameters is:
C ∗ 4 ∗ 1 ∗ 1+ 1 ∗ 4 ∗ 1 ∗ 1 = 4C + 4. Therefore, it is obvious that
sparse transformation {s, t} can reduce the training parameters
effectively due to a column matrix is learned rather than learning
a complete weight matrix A.

Given the above derivation, the sparse feature learning steps
within a computer vision task T are summarized in Algorithm 2,
which is used for light-weight model training to obtain the opti-
mal sparse weight matrix A.
Learning initial value of weight matrix A. Like the traditional
convolutional layer, learning initial value of A is equivalent to
the weight initialization, which will affect the convergence rate
of gradient descent and model learning efficiency. In the pro-
posed learnable scattering layer, batch normalization (in Eq. (2))
is added to weaken the adverse effect of bad initialization, but
we find that it sometimes reduces the classification accuracy on
some datasets of image classification such as CIFAR-10. He et al.
initialization [19] is used to be an optimal method for weight
 a
Algorithm 2 Sparse feature Learning steps within a task T

1: Input: vision task T , learning rate γ , base classifier f , sparse
learning parameters [s, t], feature X is O(i) of Algorithm 1

2: Output: Updated f
′

and [s, t], Updated feature map O(i)

3: for samples in T do
4: Evaluate (loss function) Ltr (.)
5: Optimize [s, t] by Eq. (14)
6: end for
7: while not done do
8: Update O(i) by Eq. (15)
9: Compute ClassAcc for T

10: end while

initialization due to its robustness and considering the rectifier
nonlinearities, so the initial value of A is calculated from the
following equation:

Ainit = Random(nin, nout ) ∗

√
2

nin ∗ α
,

nin = nout = (7 ∗ (
C
2
)× F × h× h)

(17)

where α is the negative half-axis slope of ReLU, nin is the length
of the weight matrix A, h is the kernel size, and C and F are the
input and output channels, respectively.

3.3. Implementation

In our lightweight scattering transform layer, we use DTCWT
s the base filter to extract the feature representations that are
ense over the scale. This layer extracts scattering coefficients by
he dual-tree wavelets at 1 scales (J) and 6 orientations (θ ), which
eans that the lowpass and bandpass coefficients can be mixed
t the same resolution. Therefore the implementation process can
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be expressed as:

((I ∗ ψJ,θ ) ↓ 2 ∗ φj) ↑ 2⇒ ((I ∗ ψ1,6) ↓ 2 ∗ φ1) ↑ 2 (18)

including downsampling (↓) and upsampling (↑).
Eq. (18) shows one order of scattering transform at a single

scale. It can be expanded into a second order ScatterNet by
stacking two of these layers, which is equivalent to one order of
scattering transform at four scales. Therefore, it can be flexibly
converted as:

(((I ∗ψJ,θ ) ↓ 2)∗ψJ,θ ) ↓ 2∗φj ↑ 4⇔ ((I ∗ψ2,θ ) ↓ 4∗φ1) ↑ 4. (19)

The memory consumption and computational complexity of
roposed algorithm will be analyzed in the following sections.

.3.1. Memory cost
A standard convolutional layer has Ci input channels, Ci+1

output channels and kernel size S. By the convolution calculation,
it will generate S2CiCi+1 training parameters.

The input feature map is firstly compressed and converted
o the corresponding sequence features by the proposed Strip-
ecurrent module, and its channels change from Ci to Ci/2. How-
ver, two LSTMs in Fig. 2 have increased the number of extra
arameters which is 4 ∗ ((Xd + Yd) ∗ Yd + Yd), where Xd is the
nput dimensions, Yd is the output dimensions, they are used to
enote the size of the input and output feature map.
As a result, the total number of learnable parameters in each

f proposed layers with scale J = 1 and orientation K = 6 is:

#params =
(JK + 1)CiCi+1

2
+ LSTMs

=
7
2
CiCi+1 + 4 ∗ ((Xd + Yd) ∗ Yd + Yd).

(20)

3.3.2. Computational cost
A standard convolutional layer with kernel size S has S2Ci+1

multiplies per input pixels.
Our proposed layers exploit the DTCWT as the base filter for

each input channel. A regular discrete wavelet transform has
2K (1−2−2J ) multiplies for J scale. Because a DTCWT has 4 DWTs
for an input, its computational cost will be 8K (1−2−2J ), which is
equivalent to FPS (Floating Point operations per Seconds). Sup-
pose orientation K is set to 6 and scale J = 1 for each filter,
the cost of DTCWT will be 36. In Fig. 1, we can see that the
computational cost of our learnable scattering layers is composed
of DTCWT and the feature combining process. Because using a
decimated wavelet decomposition will make a problem that the
combining process only works on one quarter the spatial size
after one first scale, the cost of the combination process becomes
4
4Ci+1. In a Strip-Recurrent module, its calculation is equivalent
o a standard convolutional operation with (1 × 1) kernel size.
herefore, the computational cost is computed as:

(
7
2
Ci+1 ∗

1
4
+ 36)+ 12Ci+1 ≈ 2Ci+1 + 36 < S2Ci+1. (21)

Suppose output channels Ci+1 of most convolutional layers is
higher than 6, so the final value of Eq. (21) is significantly lower
than S2Ci+1 with 3 kernel size. However, if the kernel size S is 1
or Ci+1 < 6, the computational cost of our proposed layers will
become higher than the standard convolutional layer.

3.4. The hybrid architectures

Based on our proposed learnable scattering layer, the hybrid
networks are developed which utilize VGG-like structure in image
classification and full convolutional networks such as U-net [40]
in image segmentation as the base architectures, respectively.
This hybrid frameworks are able to learn hierarchical features in
the small size sample learning.
3.4.1. Application in image classification
In the image classification application, we use a VGG-like

network as a base architecture. In Fig. 4, the proposed hybrid
architecture comprises of a single-stream deep network with
two learnable lightweight scattering layers. These inserted pro-
posed layers replace the last two convolutional layers (denoted by
dashed boxes), which generate feature responses from different
levels of the primary network stream. Finally, these responses are
combined in a shared output layer to predict classification prob-
abilities through two Fully-Connected (FC) layers. Fig. 4 shows an
example of the hybrid model based on VGG-6 base architecture,
where the pooling and batch-normalization layers are inserted
between each two convolutional layers.

In the original VGG-like networks, the final prediction may
lose certain feature details due to the down sampling of multi-
scale feature maps by the pooling layers. To address this problem,
we add a skip structure that combines the final prediction layer
with lower scale layers with finer strides. The architecture of
skips is illustrated in the dotted box at the bottom of Fig. 4.
The proposed layer with batch normalization acts as a skip layer
that connecting the output features of low-scale and high-scale
convolutional layers.

3.4.2. Application in image segmentation
Based on the standard U-net [40], we propose the hybrid U-

net which uses the proposed lightweight scattering transform
layer as a symmetric encoder–decoder network with the skip
connections between different layers with the same feature map
size. This skip structure extracts features from a large of receptive
field but containing accurate spatial features. Therefore, it can
be utilized to predict the probability map for small size image
segmentation. We mainly adopt two modifications on the original
U-net: (1) we use the proposed lightweight scattering transform
layer with Batch Normalization and ReLU instead of the origi-
nal convolutional layer; (2) OHEM algorithm [6] is applied for
training the hybrid U-net model instead of the cross-entropy loss
function. In the lightweight scattering network, scale J is set to 1,
orientation θ is set to 6, kernel size is equal to 3 × 3 pixels, and
a Strip-Recurrent module is removed from the proposed layer to
prevent model from training overfitting.

In order to make this network more suitable for addressing
the small sample size learning problem, a small modification is
made to simplify the structure of U-net. All input images are
padded to 320 × 320 × 1 pixel matrixes by reflecting a region of
32 pixels around the borders to alleviate the effect of boundary
artifacts; In the feature extraction stage, all convolutional layers
are replaced by the proposed learning scattering layers. Finally,
two 1 × 1 convolution layers transform these pixel-wise features
to the predicted probability matrixes.

This network is optimized by the OHEM algorithm [6], which
online selects the top k hard samples and computes the corre-
sponding binary cross-entropy loss between predictions and an-
notated segmentation masks. OHEM can be regarded as a sparse
method (only the top k) to calculate the loss value to address the
imbalance of positive and negative samples. Through repeated
experiments, we see that it achieves much better performance
than CE loss in the case of small size databases. Suppose Mi is the
ith prediction mask, M ′i is the ith ground truth and L(1,k)

CE is a set
of k cross-entropy loss values, the OHEM loss Lohem in the model
to address the problem of image segmentation can be defined as:

L(i)
CE = Mi log(M ′i )

L(1,k)
CE = top_k{L(1)

CE ,L
(2)
CE , . . . ,L

(n)
CE }

Lohem =
1
k

∑
k

L(1,k)
CE

(22)

where top_k(.) is used to compute the result sets including top k
values in an input set of n data.
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Fig. 4. A hybrid network with proposed learnable scattering layer applied to image classification, where the input image size is H ×W × 3.
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able 1
xperimental protocol for layer-level evaluation on CIFAR-10, CIFAR-100 and
iny ImageNet databases.
Datasets Layer combination Training data Testing data

CIFAR-10 A-F; {BC,CD,DE,BD} 50k 10k
CIFAR-100 A-F; {BC,CD,DE,BD} 40k 10k
Tiny ImageNet A-F; {BC,CD,DE,BD} 10k 1k

4. Experimental results

To evaluate the performance of the proposed algorithm, we
onduct experiments in two main scenarios including both layer-
evel and hybrid network comparisons. In the layer-level com-
arison, we perform an ablation study among different layers
nd verify the classification accuracy on small size training data
y varying the size of the training set. In the hybrid network
omparison, the proposed hybrid models are applied to the small
ample classification, medical image segmentation and image
lassification in the few-shot learning fields. Our proposed meth-
ds are evaluated on multiple datasets and we compare them
ith CNN-based architectures such as VGG [3], ResNet [4] and
-Net [40]. Experimental details of the different conditions are
escribed in the following sections.

.1. Databases and experimental protocol

To evaluate the classification efficiency of the novel proposed
ayer, the experiments are performed with varying combinations
f layers on three databases: CIFAR-10 [41], CIFAR-100 [41] and
iny ImageNet [42]. As shown in Table 1, we swap out convo-
utional layers for proposed lightweight scattering layers in 10
ays: A, B, . . . , F (single layer replacement) and BC, CD,DE, BD

(two layers replacement). Following Keshari et al. [22], the pro-
posed method is also evaluated with 14 training data sizes (Ta-
ble 2), 100, 200, . . . , 1k, 2k, . . . , 5k, on MNIST [43], CIFAR-10 [41]
nd NORB [44] databases. In addition, experiments are performed
n CIFAR-10 and CIFAR-100 to compare the hybrid networks
ncluding the architecture in Fig. 4 and ResNet-based model
ith the state-of-the-art CNN-like frameworks. A small sample
Table 2
Experimental protocol for layer-level performance on small training data from
MNIST, CIFAR-10, and NORB databases.
Datasets Small training data Standard training Standard testing

MNIST 100:100:1k; 1k:1k:5k 50k 10k
CIFAR-10 100:100:1k; 1k:1k:5k 40k 10k
NORB 100:100:1k; 1k:1k:5k 20k 24.3k

dataset miniImageNet [45] is used for few-shot learning evalua-
tion, which comprises of 100 classes with 800 samples of 84× 84
olor images per class. Finally, we perform experiments on the
sTEM ISBI [46] and DRIVE databases [47] for medical image
egmentation tasks, where ssTEM ISBI only contains 30 images
f pixel size 512 × 512 (27 for train, 3 for test); DRIVE has 40

fundus images with 20 training and 20 testing samples.

4.2. Implementation details

Lightweight scattering layer. We use a simple but powerful
VGG-like architecture with our lightweight scattering layer as
shown in Table 3. In this network, He et al. method [19] is used
to initialize weight matrix A of the proposed layer with the scale
= 1 and the angles K = 6. It is optimized with stochastic

radient descent with momentum 0.9, and initial learning rate
.1 which is scaled by a factor 0.2 after 60,80 and 100 epochs. In
ddition, the batch size and total epochs are set to 128 and 120,
espectively. Finally, all the parameters of the proposed layer are
egularized with batch normalization.
ybrid architectures. In the VGG-like hybrid network with skip
ayer for image classification, we use VGG-13 as the base archi-
ecture and add dropout after these convolutional layers with
rop probability p = 0.3. In the resnet-like hybrid network, the
earning rate is set to 0.001, batch size is set to 10 and the training
pochs are set to 20, we remove the Strip-Recurrent module
n the lightweight scattering layer to reduce the complexity of
eep models and avoid the training problem of overfitting. The
ybrid U-net model is trained for 200 epochs using the Adam
ptimizer, the initial learning rate is set to 2e−4 and decayed by
.1 per epoch starting from 20th epoch. To further improve the
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Table 3
VGG-like networks used for layer level comparison experiment as the base
architecture. C is set to 96 in our experiment.
Name of layers Output size

Conv-A C × H ×W
Conv-B C × H ×W
Conv-C 2C × H/2×W/2
Conv-D 2C × H/2×W/2
Conv-E 4C × H/4×W/4
Conv-F 4C × H/4×W/4
Conv-Ga 8C × H/8×W/8
Conv-Ha 8C × H/8×W/8
FC num classes ×1

aindicates this layer is only added in Tiny ImageNet experiments.

prediction accuracy of the proposed method on a small number
of samples, we perform data augmentation such as flip, crop and
brightness preprocessing on the original medical images.

4.3. Layer-level comparison

To evaluate the accuracy of the proposed lightweight Scatter-
et with sparsification on small samples of different databases, a
GG-like network with 6 convolutional layers is used for CIFAR-
0 and CIFAR-100, and 8 convolutional layers are only utilized
n Tiny ImageNet experiments. This common architecture per-
orms well in evaluating classification accuracy at the layer level
ompared with the same models based on Convolutional layers.
blation among different layers. The ablation study is per-

formed in a way that convolutional layers are replaced by other
novel filter-based layers responsibly. Due to the base architecture
in Table 3 with 6 or 8 layers, there will be a lot of differ-
ent permutations and combinations to form a new framework
for the ablation experiments. Therefore, we only study the per-
formance comparison of swapping 1 or 2 layers, where two
directly connected lightweight scattering layers are stacked by
the implementation of Eq. (19).

From Table 4, we can see that variant networks with pro-
posed lightweight ScatterNet always achieves best performance
than the other competitors on three datasets. These experimental
results validate that it can improve the accuracy when one or
two lightweight scattering layers are used in the VGG-like net-
work, especially replacing the convolutional layers at the back
end. Compared with invariant layers [21] and SSF [22], a Strip-
Recurrent operation in our proposed layer can extract more fine
sequence features instead of convolutional + pooling layer, for
example, Conv→ {B,D} based on proposed layers achieves the
significant highest accuracy of all combined architectures: 94.1%

in CIFAR-10, 75.0% in CIFAR-100 and 64.0% in Tiny ImageNet.
Table 5
Training duration (ms) comparison among different VGG-like methods (only
Conv→ {B,D}). The number of training iterations is 120.

Datasets CIFAR-10 CIFAR-100 Tiny ImageNet

Time Acc. Time Acc. Time Acc.

Cotter et al. [21] 6.91e4 92.7 7.24e4 71.3 5.30e5 59.3
Proposed (no sparse) 7.40e4 93.2 7.43e4 73.4 5.84e5 61.4
Proposed (sparse) 6.84e4 94.1 6.90e4 75.0 5.29e5 64.0

However, the Strip-Recurrent module leads to longer training
time. Table 5 shows that: (i) learning sparse features of filters
can greatly reduce the training time compared with the non-
sparse methods, this strategy makes model training faster and
improves classification accuracy by 1 to 2 percent under the
same experimental conditions; (ii) compared with the invari-
ant layers [21], our proposed non-sparse methods add a Strip-
Recurrent module in lightweight ScatterNet, but they achieve
93.2%, 73.4% and 61.4% accuracy on CIFAR-10, CIFAR-100 and
Tiny ImageNet datasets, which are higher than 92.7%, 71.3% and
59.3% of the corresponding structure based on invariant lay-
ers. These results demonstrate the efficiency of the proposed
Strip-Recurrent module.
Performance of the proposed method and Comparison with
Existing Algorithms. The performance of Conv→ {B,D} in Ta-
ble 4 based on the proposed layer is evaluated on three classifica-
tion datasets by varying the training data size. Fig. 5 shows that:
(i) the proposed algorithm generally yields higher performance
compared with the original ScatterNet [11], and the sparse weight
matrix A and Strip-Recurrent module play an important role in
the improvement of classification accuracy; (ii) on the smaller
size MNIST dataset, our method outperforms another existing
algorithm such as PCANet [15], Deep Hybrid Network [17] and
ScatterNet [11] in almost all sizes of training data, which illus-
trates that learned features can be adapted with smaller training
samples using lightweight learning ScatterNet; (iii) SSF based on
dictionary initialization [22] is more suitable for training the CNN
model with smaller training data (0.1k–0.5k), but its performance
become lower than other methods such as PCANet as the size of
datasets get larger. Our proposed method can address this prob-
lem, for example, it outperforms all the comparison algorithms
in the training data size of 2k-5k. Therefore, the performance of
proposed method is robust in both small and large data training
process; (iv) for improving the classification accuracy, the weight
matrix A with sparse transformation (s, t) is used to extract the
key features of small size samples and its effectiveness is verified
its valid by the experiments.
Weight Visualization. We analyze the weight matrix A learned
from the proposed method and W learned from the CNN model.
Table 4
Classification accuracy (%) for testing layer level performance on several databases including CIFAR-10, CIFAR-100
and Tiny ImageNet. The VGG-like network in Table 1 is used as the base model, ‘Conv→ {X}’ denotes ‘Conv-X’ is
replaced by new layers correspondingly.
Datasets CIFAR-10 (50k) CIFAR-100 (50k) Tiny ImageNet (100k)

Base model 91.9 70.3 59.1

Layers Inv [21] SSF [22] Ours Inv [21] SSF [22] Ours Inv [21] SSF [22] Ours

Conv→ {A} 91.3 91.5 92.2 69.5 70.1 70.4 57.7 58.2 60.3
Conv→ {B} 91.8 91.7 93.3 70.7 71.2 73.9 59.5 61.0 63.0
Conv→ {C} 92.3 92.9 93.5 71.2 72.7 74.6 59.8 61.6 62.9
Conv→ {D} 91.2 91.8 93.5 70.1 72.1 73.7 59.3 60.2 63.0
Conv→ {E} 91.6 92.2 93.7 70.0 71.3 73.8 59.4 60.4 63.9
Conv→ {F} 90.5 92.1 93.6 68.9 70.5 73.7 57.8 59.1 63.2

Conv→ {B, C} 91.2 91.8 93.0 69.1 70.8 72.6 57.7 59.2 62.0
Conv→ {C,D} 92.1 92.0 93.6 70.1 72.7 74.0 59.5 60.7 62.6
Conv→ {D, E} 89.1 91.1 93.2 67.3 70.4 71.8 59.8 60.2 61.8
Conv→ {B,D} 92.7 93.1 94.1 71.3 73.2 75.0 59.3 61.7 64.0
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Fig. 5. Classification accuracy (%) predicted by different models for vary training samples from CIFAR-10, CIFAR-100 and NORB datasets.
Fig. 6. Weight visualization of B layer and D layer of the (a) reference model based on convolutional layer and (b) novel model based on proposed layer.
Fig. 6 shows the B and D layer weights from the base model
in Table 3 trained on CIFAR-10 database: the weight of B layer
trained at 120 epoch, and the weight of D layer trained at 120
epoch. It is straightforward to see that lightweight ScatterNet
trained weights are sparser and have less noise compared to CNN
trained weights on CIFAR-10 dataset. The weight matrix A has
better structural and sparse features, which illustrates that our
proposed model utilizes good filters.
Discussion of Scale J . To analyze the effect of different parameter
settings of scale J , we have also performed the related experiment
of Conv→ {B,D} at three different scales (J = 1, 2, 3), which is
calculated by Eq. (19). Fig. 7 shows that the classification accuracy
of the proposed model decreases greatly with the increase of
scales. This result indicates setting J to 1 dramatically improve
the performance of lightweight ScatterNet.

4.4. Hybrid network comparison

In the previous section, based on the lightweight scattering
layer, we propose the hybrid model which uses it as a skip layer
for image classification and the hybrid U-net with this proposed
layer for image segmentation. To evaluate the performance of the
proposed hybrid architecture, we perform experiments in two
scenarios: image classification on the entire training samples of
CIFAR-10 and CIFAR-100, and segmentation with a small number
of medical images. At the same time, we also evaluate the per-
formance of this proposed layer with different number of small
samples in the deep hybrid frameworks such as ResNet.

For the classification performance comparison, in Table 6, we
report the optimal obtain results of our proposed hybrid network
on the CIFAR-10 and CIFAR-100. VGG-13 with two lightweight
scattering layers as skip layers achieves the competitive per-
formance with the All conv [48], VGG-16 [3], FitNet [49] and
ResNet-1001 [50]. The Wide ResNets [51] achieves the best ac-
curacy, but with a large number of layers (28), 5900M multiplies
and 36.5M parameters.

To evaluate the computation complexity of different models,
we compute the number of parameters and multiples in convo-
lutional neural networks, but not including batch normalization
and other types of layers. The number of multiples represents
FLOPs, which is a metric of the computational cost of models.
In Table 6, we can clearly see that Conv→ {B,D} based on the
proposed layer achieves competitive classification accuracy with
a minimal amount of multiples (213M) and 11.2M parameters.
The results of Hybrid model based on VGG-13 show that the skip
layers are suitable for enhancing the accuracy of large networks
with a relatively large number of parameters and multiples.
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Fig. 7. The classification accuracy of Conv→ {B,D} at three different scales J .
.

Table 6
Classification result (%), the number of parameters and calculate amount
comparison between proposed hybrid network in Fig. 4 and other state-of-
art methods. #param is the number of parameters, #multi is the number of
multiples per 32 × 32× 3 image.
Methods CIFAR-10 CIFAR-100 layer #param #multi

All conv [48] 92.8 66.3 8 1.4M 281M
VGG-16 [3] 91.6 – 16 138M 313M
FitNet [49] 91.6 65.0 19 2.5M 382M
ResNet-1001 [50] 95.1 77.3 1000 10.2M 4453M
WRN-28-10 [51] 96.1 91.2 28 36.5M 5900M

Conv→ {B,D} 94.1 75.0 6 11.2M 213M
Proposed (VGG-13+skips) 95.0 76.1 10 14.7M 428M

Table 7
The classification result (Mean Accuracy %) for CIFAR-100 database with different
small training samples, which is reported for fine-tuned ResNet-like model and
learning the scattering filters by our proposed method.

Base models Fine-tuning (sample size)

10k 20k 30k 40k

ResNet-34 22.59 ± 1.68 32.84 ± 2.12 41.25 ± 1.35 47.87 ± 1.23
ResNet-50 15.04 ± 3.96 24.09 ± 2.94 30.88 ± 1.22 39.24 ± 1.07
ResNet-101 15.08 ± 3.30 22.56 ± 2.87 32.07 ± 1.94 36.32 ± 1.52
ResNet-152 13.99 ± 2.01 21.52 ± 1.73 30.62 ± 1.48 37.37 ± 0.82

Base models Proposed learning (sample size)

10k 20k 30k 40k

ResNet-34 32.24 ± 2.23 44.62 ± 3.04 52.39 ± 2.75 55.69 ± 4.32
ResNet-50 27.29 ± 2.64 40.97 ± 1.27 49.29 ± 0.89 54.49 ± 0.68
ResNet-101 24.41 ± 4.31 38.03 ± 3.06 47.36 ± 2.63 50.01 ± 0.08
ResNet-152 21.62 ± 1.73 38.69 ± 1.42 42.04 ± 1.17 49.91 ± 0.10

To further demonstrate the effectiveness of the hybrid model
ith proposed layer on small sample datasets, we report two
ifferent studies on (i) deep ResNet-based architecture and (ii)
elation framework for few-shot learning. These overall results
re presented on CIFAR-100 and miniImageNet databases, respec-
ively.
lassification Results on Limited Training Data. To evaluate the
erformance of our method in the deeper networks, we use four
ariants of ResNet as the base training architectures. In our hybrid
esNet models evaluation experiment, the basic Resnet block
nd BottleNeck still consist of standard convolutional layers, but
he first layer and convolutional layers used for feature down-
ampling with stride 2 are replaced with proposed lightweight
cattering layers. Table 7 shows that our proposed learning meth-
ds effectively improve the performance of ResNet-like mod-
ls such as ResNet-34, ResNet-50, ResNet-101 and ResNet-152,
Table 8
Classification results (%) based on few-shot learning on the miniImageNet dataset
Algorithm 1-shot, 5-way 5-shot, 5-way

Proto Nets [52] 49.4 68.2
Proto Nets (+Proposed) 51.4 67.4

Matching Nets [45] 44.2 57.0
Matching Nets (+Proposed) 46.0 56.0

ML [53] 48.1 63.2
ML (+Proposed) 50.5 63.1

compared with conventional fine-tuning approaches. With the
ResNet-34 training at 40k data size, the best accuracy 55.69% is at
least 7% better than the conventional fine-tuning based method.
These prediction results show that learning sparse features with
lightweight learnable scattering layer can be used to achieve
improved performance in limited training samples.
Few-shot learning. On the miniImageNet database, we use three
well-known few-shot learning frameworks including prototypical
networks [52], matching network [45] and model-agnostic meta-
learning [53] as the baseline model. The convolutional layers
in each framework are replaced by the lightweight scattering
transform layers. Table 8 shows that our proposed methods yield
about 2% more classification accuracy than original models for 1-
shot, 5-way (5 different classes, 1 sample for each category), and
the accuracy of our methods are close to that of original models
when the sample size of each category is increase to 5.
Segmentation Results on Small Size datasets. In order to extend
this proposed layer to the segmentation task, we compare the
performance of the hybrid U-net with the original U-net on the
ssTEM ISBI and DRIVE databases. Fig. 8 shows the segmentation
accuracy and error of these two models training 100–150 epochs
on ssTEM ISBI and DRIVE datasets. Our proposed hybrid model
achieves higher accuracy and lower loss value with fewer training
epochs. For qualitative analysis of segmentation results, some
examples with pixel-level classification are shown in Fig. 9. The
first two rows are the segmentation results of DRIVE and the
last two rows are the segmentation results of ssTEM. With the
same iterative training, the hybrid U-net (Fig. 9(d)) can segment
more accurate blood vessels and cell shapes with less noise. These
above results indicate that our lightweight model can be applied
to segmentation tasks such as medical image segmentation with
a small amount of training data through fast iterative training and
better convergence.
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Fig. 8. The prediction accuracy and error curves of two models including U-net and Hybrid U-net trained 150 epochs on ssTEM ISBI and DRIVE datasets.
Fig. 9. Comparison of segmentation results between U-net and Hybrid U-net trained at 100 epochs.
5. Conclusion and future work

In this paper, we propose a new method to learn sparse fea-
tures with lightweight ScatterNet for small sample size training.
Although the fixed filters such as scattering transform can reduce
the number of parameters for DNNs, they may not generate
real distributions of features. Therefore, we add a Strip-Recurrent
module as the front end and a learnable weight matrix to learn
different types of features such as sequences and spectrums.
However, these improved modules may increase the number of
parameters and multipliers of the DNN model. Therefore, we
perform sparse transformation such as scale transformation and
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translation, which can reduce the dimension of the learnable
weight matrix. Utilizing different hybrid architectures and experi-
ments on multiple image tasks, we demonstrate the effectiveness
of our proposed approach in both large and small datasets. There-
fore, the proposed models have a certain degree of robustness in
terms of lightweight and accuracy.

In terms of future work, it is worth further exploring the
modification of our proposed filter, to completely replace the
traditional convolutional layer instead of alternative replaced or
inserted by some ablation experiments. It is also interesting to
use other trained filters such as unsupervised filters to initialize
the proposed network, which can adopt the filters to accomplish
different types of computer vision tasks. In addition, we need to
consider how to further reduce the time complexity caused by
the patch-based Strip-Recurrent modules.
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