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Risk aversion is one of the most basic assumptions of economic be-
havior, but few studies have addressed the question of where risk
preferences come from and why they differ from one individual to
the next. Here, we propose an evolutionary explanation for the
origin of risk aversion. In the context of a simple binary-choice model,
we show that risk aversion emerges by natural selection if reproduc-
tive risk is systematic (i.e., correlated across individuals in a given
generation). In contrast, risk neutrality emerges if reproductive
risk is idiosyncratic (i.e., uncorrelated across each given generation).
More generally, our framework implies that the degree of risk
aversion is determined by the stochastic nature of reproductive
rates, and we show that different statistical properties lead to
different utility functions. The simplicity and generality of our model
suggest that these implications are primitive and cut across species,
physiology, and genetic origins.
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Risk aversion is one of the most fundamental properties of
human behavior. Ever since pioneering work by Bernoulli (1)

on gambling and the St. Petersburg Paradox in the 17th century,
considerable research has been devoted to understanding human
decision-making under uncertainty. Two of the most well-known
theories are expected utility theory (2) (an axiomatic formulation
of rational behavior under uncertainty) and prospect theory (3)
(a behavioral theory of decision-making under uncertainty).
Several measures of risk aversion have been developed, including
curvature measures of utility functions (4, 5), human subject ex-
periments and surveys (6, 7), portfolio choice for financial investors
(8), labor–supply behavior (9), deductible choices in insurance
contracts (10, 11), contestant behavior on game shows (12), option
prices (13), and auction behavior (14).
Despite its importance and myriad applications in the past

several decades, few economists have addressed the question:
where does risk aversion come from? Biologists and ecologists
have documented risk aversion in nonhuman animal species—
often called risk-sensitive foraging behavior—ranging from bac-
teria to primates (15–19). Recently, the neural basis of risk aversion
has also received much attention, because researchers discovered
that the activity of a specific brain region correlates with risk-
taking and risk-averse behavior (20–22).
Evolutionary principles have been applied by economists to

a variety of economic behaviors and concepts, including altruism
(23, 24), the rate of time preference (25), and utility functions
(26–29)†. In particular, Robson (26) proposes an evolutionary
model of risk preferences, in which he assumes an increasing
concave relation between an individual’s number of offspring
and the amount of resources available to that individual, and
given this concave “biological production function,” Robson (26)
shows that expected utility arises from idiosyncratic environ-
mental risk and that nonexpected utility arises from systematic
risk. In the context of financial markets, evolutionary models
have also been proposed to capture market selection (30) and
the geometric mean principle or Kelly criterion (31). Additionally,
as an alternative to the traditional view that markets are always
and everywhere efficient and that “prices fully reflect all possible

information” (32, 33), the Adaptive Markets Hypothesis (34) pro-
vides an evolutionary perspective of financial markets.
More recently, Brennan and Lo (35) have proposed a binary-

choice model that provides an evolutionary framework for gen-
erating a variety of behaviors that are considered anomalous
from the perspective of traditional economic models (i.e., loss
aversion, probability matching, and bounded rationality). In this
framework, natural selection yields standard risk-neutral opti-
mizing economic behavior when reproductive risk is idiosyncratic
(i.e., uncorrelated across individuals within a given generation).
However, when reproductive risk is systematic (i.e., correlated
among individuals within a given generation), some seemingly ir-
rational behaviors, such as probability matching and loss aversion,
become evolutionarily dominant.
In this paper, we extend the binary-choice model (35) and

focus on the origin of utility and risk aversion. We show that risk
aversion emerges as a consequence of systematic risk and that
risk neutrality emerges as a consequence of idiosyncratic risk,
regardless of the species and without the need for any biological
production function—concave or otherwise. This result suggests
that the degree and type of risk aversion are determined by the
stochastic nature of reproductive risk, and we show how different
environments lead to different stable utility functions over time.
This approach provides an alternate and more fundamental ex-
planation of risk aversion, and the fact that our results do not
depend on any exogenously specified production function sug-
gests that risk aversion is a much more primitive feature of all
organisms. Moreover, the simplicity of our framework and the
direct relation between reproductive success and risk aversion
provide an equally simple explanation for the large amount of
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heterogeneity in risk aversion observed in empirical studies (7–11):
variation in the amount of systematic risk in reproductive success.
When applied to economic contexts, our results imply a link

between the expected returns of risky assets, such as equities, and
systematic reproductive risk, which in turn, is correlated with
aggregate financial risk. This relation is consistent with the well-
known equilibrium risk/reward tradeoff first proposed by Sharpe
(36). However, our theoretical derivation of this relation does
not depend on preferences or general equilibrium and is solely a
consequence of natural selection under systematic reproductive risk.
Our model consists of an initial population of individuals, each

assigned a purely arbitrary behavior with respect to a binary-
choice problem, and it is assumed that offspring behave in an
identical manner to their parents. Therefore, those behaviors
leading to greater reproductive success will lead to higher growth
rates and become more representative in the general population.
Environments with different types of reproductive risks will lead
to different optimal behaviors, and in the limit, only certain types
of behaviors—corresponding to specific types of preferences or
utility functions—will survive in such environments.
By studying the impact of selection on behavior rather than

genes, we are able to derive evolutionary implications that cut
across species, physiology, and genetic origins. In the same way
that different magnifications of a microscope reveal different
details of a specimen, applying evolutionary principles to behav-
ioral variations leads to different insights that may be more rele-
vant for economics, psychology, and behavioral ecology. Our focus
on behavior as the object of selection is a different lens through
which the effects of evolution may be studied.

The Binary-Choice Model
Consider individuals that live for one period, produce a random
number of offspring asexually, and then die. During its life (we
use the pronoun it, because the individual need not be human),
individual i makes only one decision: choose one of two possible
actions, a and b, which results in one of two corresponding random
numbers of offspring, xa;i and xb;i. These two random variables
summarize the impact of the environment on the reproductive
success of the individual, and they are assumed to be the weighted
sum of two components:

�
xa;i = λza + ð1− λÞya;i
xb;i = λzb + ð1− λÞyb;i: [1]

The first component of the weighted sum, ðza; zbÞ, is assumed to
be independently and identically distributed over time and iden-
tical for all individuals in a given generation; hence, we refer to it
as systematic risk, because one individual experiences the same
reproductive outcome as others that choose the same action. The
second component, ðya;i; yb;iÞ, is assumed to be independently and
identically distributed both over time and across individual i in
a given generation; hence, we refer to it as idiosyncratic. Both
components are described by some well-behaved probability distri-
butions (SI Appendix), and λ is a real number between zero and one.
Each individual chooses a with some probability f ∈ ½0; 1� and

b with probability 1− f . We shall henceforth refer to f as the
individual’s behavior, because it completely determines how the
individual chooses between a and b. Note that f can be zero or
one; hence, we are not requiring individuals to randomize, although
randomization will be derived as a consequence of natural selection
under certain conditions. Denoted by xfi is the random number of
offspring produced by individual i of type f; then, xfi = Ifi xa;i +
ð1− Ifi Þxb;i, where Ifi is the Bernoulli random variable that equals 1
with probability f and 0 otherwise.
Furthermore, offspring behave in a manner identical to their

parents (i.e., they choose between a and b according to the same
f); hence, the population may be viewed as being segmented into

groups of distinct type f. This assumption is tantamount to assuming
perfect genetic transmission of traits from one generation to the
next, which provides a clearer analysis of the interaction between
natural selection and the stochastic properties of reproduction
implicit in the environment. However, mutation can easily be
incorporated into this framework at the expense of analytical sim-
plicity (37). We also assume that the initial population contains an
equal number of all types, and we normalize this common initial
population to be one for each type without loss of generality.
We wish to emphasize the difference between reproductive suc-

cess with systematic ðza; zbÞ and idiosyncratic ðya;i; yb;iÞ risk, which
points to the central role that systematic risk plays in shaping the
evolution of behavior and preferences. In the case of systematic risk,
the number of offspring is given by the same two random variables,
ðza; zbÞ, for all individuals. If two individuals choose the same action
a, both will generate the same number of random offspring za (i.e.,
their reproductive success is perfectly correlated). In this sense,
fecundity is systematic. However, for ðya;i; yb;iÞ, the randomness in
the number of offspring is strictly idiosyncratic in the sense that
the correlation between the number of offspring for two indi-
viduals i and j is zero, even if both individuals choose the same
course of action. Idiosyncratic fecundity implies that, even if all
individuals in a given population choose the same action, there
will still be considerable cross-sectional variability in the
number of offspring produced in any generation.
Using Eq. 1, we can rewrite xfi as a combination of systematic

and idiosyncratic risks:

x fi = λz fi + ð1− λÞy fi ;

where
8<
:

zfi = Ifi za +
�
1− Ifi

�
zb

yfi = Ifi ya;i +
�
1− Ifi

�
yb;i:

The coefficient λ∈ ½0; 1� indicates the proportion of systematic
risk in the environment. When λ= 1, all reproductive risk is sys-
tematic; when λ= 0, all reproductive risk is idiosyncratic, and
when 0< λ< 1, both types of risk are present. In a particular
environment described by λ, the total number of offspring of
type f in generation T is denoted by nfT . It is easy to show that
the average of the log population T−1 log nfT converges in prob-
ability to the log geometric average growth rate:

αλðf Þ=Ez

h
log
�
λzf + ð1− λÞEy

�
y f
��i

; [2]

where Ez denotes the expectation taken with respect to zf , and Ey
denotes the expectation taken with respect to yf . Eq. 2 can also
be written as

αλðf Þ=Ez

h
log
�
fωλ

a + ð1− f Þωλ
b

�i
; [3]

where
�
ωλ
a = λza + ð1− λÞEy½ ya�;

ωλ
b = λzb + ð1− λÞEy½ yb�:

Maximizing Eq. 3 yields the evolutionarily dominant or growth-
optimal behavior in environment-λ (35):

f pλ =

8><
>:

1 if   Ez
�
ωλ
a

	
ωλ
b

�
> 1  and  Ez

�
ωλ
b

	
ωλ
a

�
< 1

solution  to  ð5Þ if   Ez
�
ωλ
a

	
ωλ
b

�
≥ 1  and  Ez

�
ωλ
b

	
ωλ
a

�
≥ 1

0 if   Ez
�
ωλ
a

	
ωλ
b

�
< 1  and  Ez

�
ωλ
b

	
ωλ
a

�
> 1;

[4]
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where f pλ is defined implicitly in the second case of Eq. 4 by

0=Ez



ωλ
a −ωλ

b

fωλ
a + ð1− f Þωλ

b

�
: [5]

The three possible behaviors described in Eq. 4 reflect the
relative reproductive success of the two choices. Choosing a de-
terministically will be optimal if choice a exhibits unambiguously
higher expected relative fecundity; choosing b deterministically
will be optimal if the opposite is true. Randomizing between a and
b will be optimal if neither choice has a clear-cut reproductive ad-
vantage. This last outcome is perhaps the most counterintuitive,
because it is suboptimal from an individual’s perspective (35).
When λ= 0 (pure idiosyncratic risk), the optimal behavior f p

can only be 0 or 1, corresponding to purely deterministic choice.
In this case, the individually optimal choice—to select the action
that yields the highest expected number of offspring—coincides
with the evolutionarily dominant strategy (SI Appendix has ad-
ditional discussion and examples). However, when λ> 0 (a portion
of reproductive risk is systematic), the evolutionarily dominant
behavior f p can be between 0 and 1, in which case individuals
exhibit randomizing behavior. Although mixed strategies are
well-known in the evolutionary game theory literature (38), those
strategies emerge from sophisticated strategic interactions be-
tween rational optimizing players—in our framework, randomi-
zation is mindless behavior produced solely through natural
selection. SI Appendix provides several examples for common
distributions of relative fecundity ωλ

a=ω
λ
b, and Fig. S1 illustrates

how f p depends on the parameters selected for the examples.
Now imagine a large population with individuals who are ex-

posed to different reproductive risks—some individuals are only
exposed to idiosyncratic risk (λ= 0), some individuals are only
exposed to systematic risk (λ= 1), and some individuals are ex-
posed to a mix of both risks. The same parameters apply to their
offspring. These different groups of individuals have different be-
haviors in terms of Eq. 4 as well as different growth rates.

Individual Preferences
We assume that there exists an objective function Vλðz; yÞ that
describes an individual’s preference, where z represents systematic
risk and y represents idiosyncratic risk, in the sense that ðz1; y1Þ is
favored over ðz2; y2Þ if and only if Vλðz1; y1Þ>Vλðz2; y2Þ. In other
words, the individual maximizes Vλðz; yÞ to determine its choice
over random outcomes.
The objective function Vλðz; yÞ can take any form. For exam-

ple, Vλðz; yÞ=maxz+yE½Uðz+ yÞ� corresponds to expected utility
that does not distinguish between systematic and idiosyncratic
risks. However, some functions will give individuals an evolutionary
advantage over others in the population; we derive the evolution-
arily dominant function in environments with varying proportions of
systematic risk.
When λ= 1, the individual faces only systematic risk. The evolu-

tionarily dominant behavior f p is given by f p = arg maxf Ez½logðzf Þ�;
hence, the evolutionarily implied individual maximization cri-
terion is

Vλ=1ðz; yÞ=Ez½logðzÞ�:

This function is simply the expected log utility of the total
number of offspring, which Bernoulli (1) proposed in 1738 to
resolve the St. Petersburg Paradox.
When λ= 0, the individual faces only idiosyncratic risk.

The dominant behavior f p in this case is given by f p =
arg maxf logðEy½yf �Þ. Therefore, the evolutionarily implied indi-
vidual maximization criterion is

Vλ=0ðz; yÞ=Ey½y�:

This function is expected linear utility of the total number of
offspring. In other words, the optimal criterion for an individual
is simply the expected value—individuals are risk neutral in this
environment.
In the general case in which 0< λ< 1, reproductive risk con-

tains both systematic and idiosyncratic components. The implied
individual maximization criterion from the evolutionary perspec-
tive is, therefore,

Vλðz; yÞ=Ez
�
log

�
λz+ ð1− λÞEy½y�

��
: [6]

This objective function does not conform to the traditional ex-
pected utility framework, in which the individual’s behavior can
be represented as the outcome of a constrained optimization of
the expected value of a concave function of the total number of
offspring: λz+ ð1− λÞy. The idiosyncratic component gives rise to
a linear expectation in y, and the systematic component gives rise
to a logarithmic function of z and the expectation in y. Risk
aversion emerges as a consequence of systematic risk, and risk
neutrality emerges as a consequence of idiosyncratic risk, regard-
less of the species. This characteristic is a novel implication of
natural selection that has not appeared, to our knowledge, in prior
studies of human or animal risk preferences. We explore this
implication further in the next section.

Risk Aversion and Systematic Risk
From Eq. 6, it is clear that the level of risk aversion is determined
by natural selection as a function of the level of systematic risk in
the environment. Suppose an individual is faced with a random
number of offspring λz+ ð1− λÞy, and ð1− λÞμ=Ey½ð1− λÞy� is the
expectation of the idiosyncratic component. As a function of z,
Eq. 6 can be written as the expected utility function Vλðz; yÞ=
Ez½Uλ;μðzÞ�, where

Uλ;μðzÞ= logðλz+ ð1− λÞμÞ: [7]

This expression defines a class of utility functions with utility
measured as a function of the number of offspring arising from
the systematic component. Different amounts of systematic risk
in the environment correspond to different evolutionarily domi-
nant utility functions. Fig. 1 shows nine example utility functions
with λ= 0:1;  0:5;  and  0:9 and μ= 1;   2;   and 3. All nine utility
functions are normalized by an affine transformation that sets
Uλ;μð0Þ= 0 and Uλ;μð10Þ= 10.
We can see from Fig. 1 that variation in the proportion (λ) of

systematic risk drives the concavity of utility functions, whereas
variation in the level of idiosyncratic risk (μ) also plays a role in
determining the level of risk aversion. More specifically, we consider
the Arrow–Pratt measure of absolute risk aversion of Uλ;μð·Þ:

Aλ;μðzÞ=−
Uλ;μ″ ðzÞ
Uλ;μ′ ðzÞ=

1

z+
�
1
λ− 1

�
μ
; [8]

and the Arrow–Pratt–De Finetti measure of relative risk aver-
sion of Uλ;μð·Þ:

Rλ;μðzÞ= zAλ;μðzÞ= 1

1+
�
1
λ− 1

�μ
z

  : [9]

As the number of offspring gets larger, absolute risk aversion
gets smaller, whereas relative risk aversion gets larger:

�
Aλ;μðz1Þ≥Aλ;μðz2Þ if z1 ≤ z2;
Rλ;μðz1Þ≤Rλ;μðz2Þ if z1 ≤ z2:
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Moreover, both measures of risk aversion are increasing functions
of the proportion-λ of systematic risk:

�
Aλ1;μðzÞ≤Aλ2;μðzÞ if λ1 ≤ λ2;
Rλ1;μðzÞ≤Rλ2;μðzÞ if λ1 ≤ λ2;

and decreasing functions of the level of idiosyncratic risk-μ:
�
Aλ;μ1ðzÞ≥Aλ;μ2ðzÞ if μ1 ≤ μ2;
Rλ;μ1ðzÞ≥Rλ;μ2ðzÞ if μ1 ≤ μ2:

In other words, risk aversion arises from natural selection in
environments with systematic risk. More generally, the degree
of risk aversion is determined by the stochastic nature of the
environment: the more systematic risk that is in the environment,
the more risk averse are the evolutionarily dominant utility
functions.

Testable Implications
Although our theory of the evolutionary origin of risk aversion is
a highly simplified mathematical caricature of reality, its impli-
cations should be empirically verifiable if the theory has captured
the most relevant features of decision-making under uncertainty,
which we claim. Although formal tests of these implications are
beyond the scope of this study, in this section, we describe several
methods for conducting such tests to illustrate the potential
practical relevance of the theory.

Biology and Behavioral Ecology. Because the individuals in our
theory are not assumed to be intelligent beings—they need not
even possess CNSs—the theory’s implications should apply to
the full cross-section of the animal kingdom for which risk-sen-
sitive foraging behavior has been observed (15–19). Therefore,
one direct test of our theory is to perform controlled experiments
on nonhuman animal species, in which the amount of systematic
and idiosyncratic reproductive risk is varied and the impact of
these variations on behavior is documented and compared with
the theory’s predictions (4).

A particularly promising species with which to conduct such
experiments is bacteria, which engage in remarkably varied and
sophisticated behaviors (19, 39–46). Although an individual
bacterium is clearly mindless, colonies of bacteria, such as Pae-
nibacillus vortex, have been observed to engage in seemingly in-
telligent behavior, such as competition, collaborative foraging,
and cell-to-cell chemotactic and physical communication (19).
Moreover, this setting most closely matches two key assumptions
of our theory: asexual reproduction (bacteria reproduce by bi-
nary fission and other forms of cellular division) and no envi-
ronmental resource constraints (unless purposely imposed by
the experimenter).
A direct test of our theory may be constructed by focusing on a

simple behavior, such as chemotaxis—cell movement in response
to gradients in the concentration of a specific chemical agent,
which is usually a food source—and manipulating the environ-
ment to generate systematic or idiosyncratic risk. Given the speed
with which bacteria reproduce, the growth-optimal chemotactic
behavior should be observable within a short timespan. Although
such behavior can ultimately be traced to genetic structures (45),
our complementary approach of linking behavior directly to re-
productive outcomes may yield additional insights into the com-
mon evolutionary origins of risk preferences.

Financial Economics.A less direct test of our theory may be performed
by applying statistical inference to retrospective data on human
behavior. Although the outcome is likely to be considerably noisier
and more difficult to interpret because of the complexity of human
cognitive abilities, the simplicity of our evolutionary framework
suggests that risk aversion is an extremely primitive adaptation
possessed by most animal species. Nevertheless, human evolutionary
biology is at odds with several of our theory’s assumptions, including
asexual semelparous reproduction and no resource constraints.
Moreover, current human lifespans make controlled experiments
with human subjects impractical. However, our theory’s growth-
optimal behavior may be a reasonable approximation to human
decision-making over long timespans, in which case a statistical
hypothesis test of the theory can be conducted using historical data
involving financial risk and reward. The challenge is to identify
scenarios in which human decision-making is driven primarily by this
adaptation and no other cognitive mechanisms, such as strategic,
cooperative, altruistic, or ethical behaviors, and distinguish between
systematic and idiosyncratic reproductive risk in these scenarios.
One possible context is the stock markets of developed econ-

omies, which reflect the decisions of many investors facing both
systematic and idiosyncratic risks [although we are using these
terms in a different sense than Sharpe (36), who focused on
systematic and idiosyncratic financial risks, it is not hard to see
how this type of risk might be related to reproductive risk over
long timespans]. The impact of economy-wide shocks, such as
natural disasters, technological hazards, and financial crises, can
proxy for systematic risk (47), and low-frequency, high-impact
events have been used in the financial economics literature to
explain a variety of asset-pricing anomalies, including high equity
risk premia, low risk-free rates, and excess volatility in stock
returns (48, 49), all of which yield a high level of implied risk
aversion in expected utility rational expectations equilibrium mod-
els. However, an example of idiosyncratic reproductive risk is infant
mortality caused by accidental suffocation (50), preterm birth (51,
52), and congenital malformations (53). Although each of these
risks may contain a systematic component (e.g., birth defects caused
by environmental pollutants in a given geographical region), this
component should become less influential in country-level data.
An indirect hypothesis test of our theory can then be per-

formed by comparing the estimated risk aversion of populations
with varying exposures to systematic risk—those populations
with greater systematic risk should be more risk averse. Measures
of risk aversion can be obtained from several sources, including
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Fig. 1. Utility functions implied by environments with different portions of
systematic risk and different levels of idiosyncratic risk: λ= 0:1 represents
a low level of systematic risk, λ= 0:9 represents a high level of systematic risk,
μ= 1 represents a low level of idiosyncratic risk, and μ= 3 represents a high
level of idiosyncratic risk. All nine utility functions are normalized by setting
Uλ,μð0Þ= 0 and Uλ,μð10Þ= 10.
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human subject experiments and surveys (6, 7), portfolio choices
for financial investors (8), labor–supply behavior (9), deductible
choices in insurance contracts (10, 11), contestant behavior on
game shows (12), option prices (13), and auction behavior (14).
By comparing aggregate risk aversion across countries with

high and low amounts of systematic reproductive risk, an indirect
econometric test of the evolutionary origin of risk aversion may
be constructed.

Discussion
Risk aversion is one of the most widely observed behaviors in the
animal kingdom; hence, it stands to reason that it must confer
certain evolutionary advantages. This intuition is confirmed in
our simple but general binary-choice model of behavior, in which
risk aversion emerges from mindless behavior as the evolutionarily
dominant behavior in stochastic environments with correlated re-
productive risk across the population. Our evolutionary framework
shows how the stochastic properties of the environment shape
preferences, yielding specific utility functions that depend on the
nature of reproductive risk. Logarithmic utility and linear utility
arise as special cases for the two extremes of pure systematic and
idiosyncratic risk, respectively. However, for environments con-
taining a mixture of both types of risk, there is a continuum of
evolutionarily dominant behaviors that do not conform to expected
utility theory. The simplicity of our framework suggests that our
results are likely to apply across species and that the degree of
risk aversion in animal behavior is significantly influenced by the
stochastic properties of the environment as it affects fecundity.
These results are closely related to but distinct from those in

the extant literature on evolution and economic behavior (25, 26,
28–29)‡. In particular, the seminal paper by Robson (26) on the
evolutionary origins of utility functions specifies an increasing
concave relation between the number of offspring and the amount
of resources available to a given individual, from which the re-
lation between expected/nonexpected utility and systematic/idio-
syncratic risk follows naturally. In particular, Robson (26) shows
that “properties of risk aversion or risk preference for gambles
over commodities derive from a biological production function
relating expected offspring to commodities” (ref. 26, p. 405),
where this “biological production function” is exogenously speci-
fied to be increasing and concave (the concavity hypothesis).
Our model highlights a different and simpler origin of risk

aversion—the stochastic nature of the environment—without refer-
ence to any biological production function. By developing a formal
theory of the evolution of preferences in stochastic environments in
the context of the simplest possible nontrivial choice problem (a
binary choice), we show that the origin of risk aversion is consid-
erably more primitive than previously thought. Moreover, we de-
rive a class of utility functions that emerges from natural selection
as the proportion of systematic risk-λ in the environment that is
varied (Eqs. 7, 8, and 9), which may explain the large amount of
heterogeneity in risk preferences observed in empirical studies (7–11).
Other studies have also made use of the concavity hypothesis

to generate risk aversion (27, 28), and this specification can also
be incorporated into our binary-choice framework to yield sim-
ilar results (35). There is no doubt that the concavity hypothesis
provides one explanation for risk aversion, simply because de-
creasing marginal returns is a common pattern found in nature.
However, the economics literature is also replete with examples
of nondecreasing marginal returns in both consumption and pro-
duction. For example, early research on nonconvex preferences
(which implies nonconcave utility functions) (54–57) has mo-
tivated a large and diverse literature on general equilibrium
with nonconvexities [e.g., the Shapley Folkman Lemma (58) that

guarantees existence of approximate general equilibria with many
consumers]. From the producer perspective, nondecreasing mar-
ginal returns have been considered since 1926 (59), giving rise to
an extensive literature on monopolies, oligopolies, externalities,
and regulatory policy designed to correct such market failures. In
fact, the concavity hypothesis is necessarily restrictive in hardwir-
ing, a particular degree of risk aversion (i.e., curvature), after a
particular concave function is specified. No single function can
explain the large degree of heterogeneity observed in human risk
preferences or the state-dependent nature of risk aversion, unless
these features are also exogenously specified in multiple time-
varying state-dependent biological production functions.
We have purposely avoided the use of any such function, be-

cause we wish to highlight the more fundamental role that sto-
chastic environments play in generating risk aversion. Our simple
binary-choice framework shows that a concave biological pro-
duction function is unnecessary for generating risk aversion,
which in our setting, is simply a consequence of natural selection
operating in stochastic environments with systematic risk, irre-
spective of any additional functional transformations. Moreover,
a byproduct of our simpler framework is a natural explanation
for the large heterogeneity in risk preferences observed in em-
pirical studies: natural variation in the proportion of systematic
risk across a geographically diverse population. Because our
binary-choice model is so simple and because its results follow
from a minimal set of assumptions, its implications are likely to
apply much more generally across species, time, and contexts.
The evolutionary origins of strategic behavior have also been

considered (27, 28), and natural selection can also produce
overconfidence (60) and altruism (23), both of which emerge as
a result of more complex environmental conditions. In contrast,
our framework does not require any strategic interactions, and
individual decision-making is deliberately mindless, allowing us
to determine the most fundamental links between stochastic
environments and adaptive behavior.
Extensions of the binary-choice framework include regime-

switching environmental conditions (37), mutation through sexual
reproduction (37), resource-constrained environments (which gen-
erate strategic interactions), and emergence of intelligent behavior
and bounded rationality (61). A recent study‡ considers an
evolutionary framework in continuous time and distinguishes
between systematic variations that are instantaneous drops in
population size and future shifts in death and birth rates. The
former corresponds to the systematic environmental risk in our
model, whereas the latter is closely related to extensions to
regime-switching environments (37).
Our results have several broader implications for financial

economics and public policy. The role of systematic risk in shaping
individual and aggregate behavior provides a more fundamental
channel through which the relation between systematic financial
risk and expected asset returns defined by Sharpe (36) can arise
[as long as systematic reproductive risk is positively correlated with
systematic financial risk, which is implied by the concave repro-
duction function described by Robson (26)]. However, unlike the
fixed preferences assumed in the Capital Asset Pricing Model by
Sharpe (36), our framework implies that preferences vary over time
and across environmental conditions; hence, large systematic finan-
cial shocks can lead to more risk aversion over time and vice versa.
From a policy perspective, our results underscore the impor-

tance of addressing systematic risk through insurance markets,
capital markets, and government policy to allow individuals to
transfer or mitigate such risks. If not properly managed, systematic
risk can lead to increases in risk aversion, implying higher risk
premia and borrowing costs and lower economic growth. How-
ever, our results also highlight the potential dangers of sustained
government intervention, which can become a source of sys-
tematic risk in its own right (62, 63).

‡See Robatto R, Szentes B (2013) On the biological foundation of risk preferences. Work-
ing paper. Available at sites.google.com/site/robertorobatto/research.
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SI Appendix
Assumptions and Corollaries. Throughout the binary-choice model,
we assume that ðza; zbÞ, ðya;i; yb;iÞ, logðfza + ð1− f ÞzbÞ, and
logðfya;i + ð1− f Þyb;iÞ have finite moments up to order 2 for all
f ∈ ½0; 1� and i. We assume further that, for all f ∈ ½0; 1�, E½ fza +
ð1− f Þzb�=E½ fya;i + ð1− f Þyb;i� for all i, so that we can compare
growth rates of populations in different environments. More
specifically, the optimal log geometric average growth rate in-
creases as the portion of idiosyncratic risk increases:

αλ1
�
f pλ1
�
≥ αλ2

�
f pλ2
�

if 0≤ λ1 ≤ λ2 ≤ 1:

To prove this result, for any given f, take the first derivative of αλðf Þ
with respect to λ:

∂αλðf Þ
∂λ

=Ez

"
zf −E

�
yf
�

λzf + ð1− λÞE
�
yf
�
#
:

Evaluate the first derivative at λ= 0; 1, and recall that our as-
sumptions imply that Ez½zf �=Ey½yf �:

∂αλðf Þ
∂λ

����
λ=0

=Ez

"
zf −Ey

�
yf
�

Ey

�
yf
�

#
= 0;

∂αλðf Þ
∂λ
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λ=1

=Ez

"
zf −Ey

�
yf
�

zf

#
= 1−Ey

�
yf
�
Ez

�
1
zf

�
≤ 0;

where the last step uses Jensen’s Inequality. Now, take the second
derivative of αλðf Þ with respect to λ:

∂2αλðf Þ
∂λ2

=Ez

"
−
�
zf −E

�
yf
��2

�
λzf + ð1− λÞE�yf ��2

#
≤ 0:

Therefore, for any given f, αλðf Þ is a nonincreasing concave function
in the interval 0≤ λ≤ 1. Because αλðf pλ Þ is themaximumof αλðf Þ over
all f , it follows that αλ1ðf pλ1 Þ≥ αλ2ðf pλ2Þ whenever λ1 ≤ λ2; as desired.

Proof of Eqs. 2 and 3. The total number of offspring of type f in
generation t is simply the sum of all of the offspring from the
type f individuals of the previous generation:

nft =
Xnft−1
i=1

xfi;t = λ
Xnft−1
i=1

zfi;t + ð1− λÞ
Xnft−1
i=1

yfi;t

= λ

0
@za;t

Xnft−1
i=1

Ifi;t + zb;t
Xnft−1
i=1

	
1− Ifi;t


1A

+ ð1− λÞ
0
@Xnft−1

i=1

Ifi;t ya;i;t +
Xnft−1
i=1

	
1− Ifi;t



yb;i;t

1
A;

where we have added time subscripts to the relevant variables to
clarify their temporal ordering. As nft−1 increases without bound,
the Law of Large Numbers implies that

nft =
p nft−1

�
λ
�
fza;t + ð1− f Þzb;t

�
+ ð1− λÞ�fEy½ya�+ ð1− f ÞEy½yb�

��
= nft−1

�
λ
�
fza;t + ð1− f Þzb;t

�
+ ð1− λÞEy

�
yf
��
;

where =
p
denotes equality in probability. Through backward re-

cursion and assuming that nf0 = 1 without loss of generality, the
population of type f individuals in generation T is given by

nfT =
p YT

t=1

	
λ
�
fza;t + ð1− f Þzb;t

�
+ ð1− λÞEy

�
yf
�


:

Taking the logarithm on both sides and again, using the Law of
Large Numbers, we get

1
T
log nfT =

p 1
T

XT
t=1

log
	
λ
�
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where →
p

denotes convergence in probability, which completes
the proof of Eq. 2. Eq. 3 simply rewrites Eq. 2.

Examples for Common Distributions of Relative Fecundity. Define
R=ωλ

a=ω
λ
b to be the relative fecundity of two actions. We can

characterize the growth-optimal behavior f p for common distri-
bution of R. Fig. S1 plots f p for five distributions of R as a
function of distribution parameters.
Lognormal distribution. Let R follow the lognormal distribution
log NðΔα;Δβ2Þ. The expectations of R and 1=R are

E½R�= exp
�
Δα+

Δβ2

2

�
  and

E½1=R�= exp
�
−Δα+

Δβ2

2

�
:

Therefore, the optimal behavior f p is given by

f p =

8>>>>>>>><
>>>>>>>>:

1 if  
Δβ2

2
<Δα

between  0  and  1 if  
Δβ2

2
≥ jΔαj

0 if  
Δβ2

2
< −Δα:

γ-Distribution. Let R follow the γ-distribution γðα; βÞ, where
α> 0; β> 0. The expectation of 1=R exists only for α> 1, and
therefore, the parameter space is restricted to α> 1; β> 0:

E½R�= α

β
and

E½1=R�= β

α− 1
:

Therefore, the optimal behavior f p is given by

f p =

8<
:

1 if   β< α− 1
between  0  and  1 if   α− 1≤ β≤ α
0 if   β> α:
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As special cases of γ-distribution, we automatically have the re-
sults for the exponential, χ2, and Erlang distribution.
Pareto distribution. Let R follow the Pareto distribution Paretoðxm; αÞ,
where xm > 0; α> 0. The expectation of R exists only for α> 1, and
therefore, the parameter space is restricted to xm > 0; α> 1:

E½R�= αxm
α− 1

and

E½1=R�= α

ðα+ 1Þxm:

Therefore, the optimal behavior f p is given by

f p =

8>>>>>>><
>>>>>>>:

1 if   xm > 1−
1

α+ 1

between  0  and  1 if   1−
1
α
≤ xm ≤ 1−

1
α+ 1

0 if   xm < 1−
1
α
:

β′-Distribution. Let R follow the β′-distribution β′ðα; βÞ, where
α> 0; β> 0. The expectation of R exists only for β> 1, and the
expectation of 1=R exists only for α> 1; therefore, the parameter
space is restricted to α> 1; β> 1:

E½R�= α

β− 1
and

E½1=R�= β

α− 1
:

Therefore, the optimal behavior f p is given by

f p =

8<
:

1 if   β< α− 1
between  0  and  1 if   α− 1≤ β≤ α+ 1
0 if   β> α+ 1:

Weibull distribution. Let R follow the Weibull distribution
Weibullðk; λÞ, where k> 0; λ> 0. The expectation of 1=R exists
only for k> 1, and therefore, the parameter space is restricted
to k> 1; λ> 0:

E½R�= λΓ
�
1+

1
k

�
and

E½1=R�= 1
λ
Γ
�
1−

1
k

�
;

where Γð:Þ is the γ-function. Therefore, the optimal behavior f p
is given by

f p =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

1 if   λ>Γ
�
1−

1
k

�

between  0  and  1 if  
1

Γ
�
1+

1
k

�≤ λ≤Γ
�
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1
k

�

0 if   λ<
1

Γ
�
1+

1
k

�:

Fig. S1. Optimal behavior f* for several distributions of relative fecundity R=ωλ
a=ω

λ
b. In A–E, different colors correspond to deterministic (f* = 0 or 1) or

randomizing (0< f* < 1) behavior given the particular parameters of the distribution.
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