北京大学数学系研究生课程体系
(试行)
2018/10/25
- 中级课程 
- 分析学与偏微分方程中级课程 
- 《实分析》(包含初步的几何测度论知识)+《调和分析》:上下学期开设,作为整体一年的课程。 
- 《复分析》:与复几何课程衔接。 
- 《泛函分析II》。 
- 《二阶椭圆型方程》+《双曲方程》:上下学期轮流开设。 
- 《非线性分析基础》;《变分学》:轮流开设,有区分度。《多复变函数论》。 
另:偏微分方程概论(各类偏微分方程,拟微分算子)列为初级课程,在本科生开设。
- 常微分方程与动力系统类课程 
- 《常微分方程定性理论》。 
- 《遍历论》。 
- 《动力系统》。 
- 代数与数论类课程 
- 《抽象代数II》+《交换代数》:上下学期开设,作为整体一年的课程。 
- 《数论I》+《数论II》:上下学期开设,作为整体一年的课程。 
- 《代数几何I》+《代数几何II》:上下学期开设,作为整体一年的课程。 
- 《群论》+《群表示论》:上下学期开设,作为整体一年的课程。 
- 《同调代数》。 
- 《李群,李代数及其表示》。 
- 《几何表示论》。 
- 《模形式》。 
- 代数应用基础:含《密码学》等。 
- 《有限域》。 
- 《齐性流,模空间与算术》。 
- 几何与拓扑类课程 
- 《同调论》+《同伦论》: 上下学期开设,作为整体一年的代数拓扑课程。 
- 《微分流形》+《微分拓扑》:上下学期开设,作为整体一年的微分几何课程。 
- 《黎曼几何引论》:更高内容的进入专题课程。 
- 《纤维丛与示性类》。 
- 《黎曼曲面论》:承接复分析,复几何,代数几何,模形式等课程。 
- 《复几何》:更高内容的进入专题课程。 
- 《辛几何》:更高内容的进入专题课程。 
- 《低维流形》。 
- 《双曲几何引论》;《几何群论》:轮流开设。 
- 数学物理类课程 
- 《经典力学中的数学方法》。 
- *《量子力学中的数学方法》。 
- *《Gromov-Witten理论》。 
- *《量子场论简介》。 
- *《凝聚态物理简介》。 
- *《生物数学》。 
- 数理逻辑,组合与离散数学类课程 
- 《组合数学》:作为专题课程之一。 
- *《数理逻辑》:作为数学系本科生必修课。 
- 《概率论》:作为数学系本科生必修课。 
- *《离散数学》:含图论等。 
- *《信息与大数据中的数学》。 
- 其他课程 
- 《数学技巧训练》:包括科研写作与演讲,数学软件等。 
- 《数学史》:偏重近现代。  
 
- 专题课程 
- 分析类专题:包括复分析,调和分析等,如《多复变函数论专题》等。 
- 偏微分方程专题:上下学期开设。 
- 常微分方程与动力系统专题:上下学期开设,如《光滑遍历论》等。 
- 代数学专题:上下学期开设。 
- 几何与拓扑专题: 
- 代数拓扑专题:《范畴论》 
- 几何拓扑专题:《切触拓扑引论》,《叶状结构》等。 
- 微分拓扑专题:《Morse理论》,《Floer同调群理论》等,上下学期开设。 
- 黎曼几何专题:《Gromov几何》,《几何分析》等,上下学期开设。 
- 整体微分几何专题:《纤维丛几何》等。 
- *模空间与规范场理论专题:上下学期开设。 
- 数学物理专题: 
- Gromov-Witten理论,Fukaya范畴理论,镜像对称等:上下学期开设,整个课程以两年为一个周期。 
- 热点专题课程 
针对数学发展的最新动向开设,每年至少开设1门课。
 
注记1:为选课需要,以上课表中所列所有课程均为一学期课程。
注记2:课表中以《XXX专题》命名的课程内容不固定,但在每次开设时需在数学系网页上提前公布本次拟讲授主要内容。