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Fatou and Julia
Let S be a Riemann surface (usually S = Ĉ) and f ∈ Hol(S) (with
deg f ⩾ 2). If S = Ĉ, then f is a rational map.

The Fatou set F(f) is the largest domain where {fn}n∈Z+ constitute
a normal family. Its complement J(f) = S \ F(f) is called the Julia
set.
Theorem (No Julia set)
If f : S → S is conformal on a hyperbolic surface S, then the Fatou
set is the whole surface F(f) = S.

Both the Fatou set and the Julia set are forward and backward
f-invariant. Dynamics restricted to Fatou components can be
classified into 4 types (attracting, parabolic, and 2 types of
irrational rotations).
Theorem (Sulllivan’s no wandering domain theorem)
Every component of the Fatou set eventually cycles, and there are
finitely many periodic components.
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polynomial dynamics

Let f : Ĉ → Ĉ be a polynomial and A(∞) be the superattracting
basin of ∞. Its complement K(f) = Ĉ \ A(∞) is called the filled
Julia set. By Böttcher’s theorem (superattracting basin either is
conformally conjugate to zd or contains another critical point),
there is a dichotomy

Theorem

The filled Julia set K(f) is connected iff its complement A(∞) is
conformally conjugate to the action of zd on the unit disk D.
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polynomial dynamics

The closure of each (super)attracting basin contains the Julia set.
Hence J(f) = ∂A(∞) = ∂K(f).

Figure: Connected Julia sets of polynomials z2 + (−0.1226 + 0.7449i),
z2 + i, and z2 − 1.
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harmonic measures for polynomials

We moreover assume that f : Ĉ → Ĉ is a hyperbolic polynomial
with a connected Julia set J = J(f). The basin of ∞ is also
denoted by Ω = A(∞).
Hyperbolic: equipped with some conformal metric, |f ′(z)| > 1 for
all z ∈ J(f). That is, f is expanding on the Julia set J.

Definition
The harmonic measure {νx}x∈Ω is a family of Borel probabilities
{νx} ⊆ B(J) such that the following (Solution of Dirichlet
problem) holds: for all continuous function ϕ : J → R, the function

ϕ̃(x) :=
∫

z∈J
ϕ(z)dνx(z), x ∈ Ω, (1.1)

is a harmonic extension of ϕ.

6 / 29
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harmonic measures for polynomials

Consider a Riemann mapping ϕ : D → Ω from the unit disk to the
basin of ∞. The harmonic measure for D (seen from 0) is the
Lebesgue measure ν0,D = λ.

Recall: harmonicity is preserved by conformal maps. If ϕ extends
continuously to ∂D, then νϕ(0),Ω = ϕ∗λ. It remains true in general
by Fatou’s theorem (angular limit of ϕ exists λ-a.e.)

7 / 29
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ergodic properties of the harmonic measure: Brolin and
Lyubich

The harmonic measure ν = ν∞ seen from ∞ is f-invariant and
supported on the Julia set J. (By Böttcher’s theorem, choose ϕ
such that fϕ(z) = ϕ(zd))

The harmonic measure ν is the measure of maximal entropy.

Recall: variational principle for entropy:

hµ(f) ⩽ htop(f) = ln(deg f). (1.2)

Motivation of our work: generalize the classical harmonic measure.
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Sullivan’s dictionary
Discrete (finitely generated) (torsion-free) subgroup G of
Isom+(H3) = Conf(Ĉ) = PSL(2,C) (acting on S2 = Ĉ = ∂H3).

The limit set ΛG = { lim
n→∞

gnx : gn ∈ G} ⊆ S2. Its complement
ΩG = S2 \ ΛG is called the domain of discontinuity or the ordinary
set.

properties Kleinian groups rational maps
dichotomy:

chaotic v.s. normal limit set v.s. ordinary set Julia set v.s. Fatou set
parameters generators coefficients(preimages)

density of expansion dense in limit set dense in Julia set
in chaotic part hyperbolic fixed points expanding periodic points

finiteness of normal part Ahlfors finiteness theorem no wandering domain
hyperbolicity convex cocompact expansion on Julia set

structural stability
of hyperbolicity True True
geometrization Cannon’s conjecture Thurston’s characterization

… …
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Generalization of harmonic measures?

The simplest case: hyperbolic rational maps. Restricting to the
Julia set, we obtain an expanding map f : J → J.

Translate by Sullivan’s dictionary: harmonic measure for hyperbolic
groups, in particular, a discrete harmonic measure given by random
walks on groups.
What we have done: build a discrete harmonic measure given by
random walk on a self-similar graph associated with the expanding
dynamics.
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Gromov hyperbolic groups

Definition. A finitely generated group G =< S > is called Gromov
hyperbolic if the Cayley graph satisfies the δ-thin triangle property,
i.e.

For each geodesic triangle, each edge is contained in the
δ-neighborhood of other 2 edges.

13 / 29



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conformal Dynamical Systems and Sullivan’s Dictionary
boundary and measures

hyperbolic groups
Expanding dynamics

Gromov hyperbolic groups

Definition. A finitely generated group G =< S > is called Gromov
hyperbolic if the Cayley graph satisfies the δ-thin triangle property,
i.e.

For each geodesic triangle, each edge is contained in the
δ-neighborhood of other 2 edges.

13 / 29



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conformal Dynamical Systems and Sullivan’s Dictionary
boundary and measures

hyperbolic groups
Expanding dynamics

Boundaries

X be a (locally compact) hyperbolic space (with infinite diameter).
Gromov boundary (defined by using Gromov product);

horofunction (Busemann) boundary (defined by using
Busemann function β(x, y) = d(x, y)− d(0, y)).

If we moreover let X be a graph and p : X0 × X0 → [0, 1] be a
transition probability, then we have

Poissoin boundary (represents all bounded harmonic
functions);
Martin boundary (represents all harmonic functions);
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Boundaries

Definition.
The Gromov boundary is

∂X =

{
{xn}n∈Z+ : lim

n,m→∞
〈xn, xm〉o = ∞

}
/ ∼,

{xn} ∼ {yn} ⇐⇒ lim
n→∞

〈xn, yn〉o = ∞.

equipped with a class of visual metric ρa(ξ, η) � exp(−a〈ξ, η〉o).

The horofunction boundary is the boundary of the embedding
image of y 7→ β(·, y) w.r.t. pointwise convergence topology.
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The Gromov boundary is

∂X =

{
{xn}n∈Z+ : lim

n,m→∞
〈xn, xm〉o = ∞

}
/ ∼,

{xn} ∼ {yn} ⇐⇒ lim
n→∞

〈xn, yn〉o = ∞.

equipped with a class of visual metric ρa(ξ, η) � exp(−a〈ξ, η〉o).

The horofunction boundary is the boundary of the embedding
image of y 7→ β(·, y) w.r.t. pointwise convergence topology.
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Conformal Dynamical Systems and Sullivan’s Dictionary
boundary and measures

hyperbolic groups
Expanding dynamics

Random walk and Martin boundary
p(n)(x, y) - the n-step transition probability.

Z0, · · · ,Zn, · · · - random variables.

G(x, y) = E (#{n : Zn = y}) =
∞∑

n=0
p(n)(x, y) - the Green function.

F(x, y) = P (∃n ⩾ 0,Zn = y).
K(x, y) = G(x, y)

G(o, y) =
F(x, y)
F(o, y) - the Martin kernel.

Martin boundary ∂MX is constructed by

yn −→ ξ ∈ ∂MX ⇐⇒ K(·, yn)
pointwise−→ K(·, ξ).

Theorem (Poisson-Martin representation)
For every positive harmonic function h on X, there is a positive
Borel measure νh on ∂MX such that

h(x) =
∫
∂MX

K(x, ξ)dνh(ξ). (2.1)
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Conformal Dynamical Systems and Sullivan’s Dictionary
boundary and measures

hyperbolic groups
Expanding dynamics

Relations between the boundaries
Theorem (A. Ancona, 1988)
For uniformly irreducible, finite range random walks on hyperbolic
graph, Martin boundary ∼= Gromov boundary.

uniformly irreducible - ∃c0, v,s.t.,d(x, y) ⩽ 1 ⇒
v∑

j=0
p(j)(x, y) ⩾ c0.

(Γ, µ) - hyperbolic group with symmetric transition probability (i.e.
µ(g) = µ(g−1))
Green metric - dG(x, y) := − log F(x, y).
The Martin boundary is exactly the horofunction boundary w.r.t.
Green metric dG, which is hyperbolic, and Q.I. to d.
Theorem (A. Ancona’s Inequality, 1988)
∀δ ⩾ 0, ∃C = C(δ), for x, y ∈ X, z ∈ Nδ([x, y]),

F(x, z)F(z, y) ⩽ F(x, y) ⩽ C(δ)F(x, z)F(z, y).

17 / 29
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Conformal measure
Patterson-Sullivan measure

µs = lim
n→∞

∑
|g|⩽n

e−s|g|

−1 ∑
|g|⩽n

e−s|g|δg

 .

v - volume growth rate lim
n→∞

log(#B(0, n)/n).

0 < s < v =⇒
∑
|g|⩽n

e−s|g| �
n∑

k=0
e(v−s)k → 1/(1 − ev−s).

s → v =⇒ µv is supported on boundary (divergence type)

18 / 29



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conformal Dynamical Systems and Sullivan’s Dictionary
boundary and measures

hyperbolic groups
Expanding dynamics

Conformal measure
Patterson-Sullivan measure

µs = lim
n→∞

∑
|g|⩽n

e−s|g|

−1 ∑
|g|⩽n

e−s|g|δg

 .

v - volume growth rate lim
n→∞

log(#B(0, n)/n).

0 < s < v =⇒
∑
|g|⩽n

e−s|g| �
n∑

k=0
e(v−s)k → 1/(1 − ev−s).

s → v =⇒ µv is supported on boundary (divergence type)

18 / 29



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conformal Dynamical Systems and Sullivan’s Dictionary
boundary and measures

hyperbolic groups
Expanding dynamics

Conformal measure
Patterson-Sullivan measure

µs = lim
n→∞

∑
|g|⩽n

e−s|g|

−1 ∑
|g|⩽n

e−s|g|δg

 .

v - volume growth rate lim
n→∞

log(#B(0, n)/n).

0 < s < v =⇒
∑
|g|⩽n

e−s|g| �
n∑

k=0
e(v−s)k → 1/(1 − ev−s).

s → v =⇒ µv is supported on boundary (divergence type)
18 / 29



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
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boundary and measures
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Expanding dynamics

Harmonic measure

µ ∈ M(Γ) - transition probability.
µ(n) - n-th iteration of µ.
Fact: µ is transient =⇒ µ(n) ”converges” to a boundary
distribution µh.

Theorem (characterization of Poisson boundary)
If h is a bounded harmonic function on X, then there exists
φ ∈ L∞(∂X, µh), such that

h(x) =
∫

φK(x, ·)dµh.
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Conformal measure v.s. Harmonic measure
dilute a (weighted) uniform distribution ⇐⇒ iterate a transition
probability.

Conformality (w.r.t. visual metric ρa) - dg∗µ
dµ =

(
g∗ρa
ρa

)δ

.

Quasi-conformality - dg∗µv
dµv

�
(

g∗ρa
ρa

)δ

� e−aδβξ(g).

Harmonicity - dg∗µh
dµh

(ξ) = K(g, ξ).
lG = lim

n→∞
E(dG(1,Zn(g)))/n, l = lim

n→∞
E(d(1,Zn(g)))/n - drift

Theorem (S. Blachère, P. Haïssinsky , P. Mathieu, 2009)
The following are equivalent:

The equality of lG ⩽ vl holds.
µv � µh.
µh is quasi-conformal.

20 / 29



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conformal Dynamical Systems and Sullivan’s Dictionary
boundary and measures

hyperbolic groups
Expanding dynamics

Conformal measure v.s. Harmonic measure
dilute a (weighted) uniform distribution ⇐⇒ iterate a transition
probability.

Conformality (w.r.t. visual metric ρa) - dg∗µ
dµ =

(
g∗ρa
ρa

)δ

.

Quasi-conformality - dg∗µv
dµv

�
(

g∗ρa
ρa

)δ

� e−aδβξ(g).

Harmonicity - dg∗µh
dµh

(ξ) = K(g, ξ).
lG = lim

n→∞
E(dG(1,Zn(g)))/n, l = lim

n→∞
E(d(1,Zn(g)))/n - drift

Theorem (S. Blachère, P. Haïssinsky , P. Mathieu, 2009)
The following are equivalent:

The equality of lG ⩽ vl holds.
µv � µh.
µh is quasi-conformal.

20 / 29



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conformal Dynamical Systems and Sullivan’s Dictionary
boundary and measures

hyperbolic groups
Expanding dynamics

Conformal measure v.s. Harmonic measure
dilute a (weighted) uniform distribution ⇐⇒ iterate a transition
probability.

Conformality (w.r.t. visual metric ρa) - dg∗µ
dµ =

(
g∗ρa
ρa

)δ

.

Quasi-conformality - dg∗µv
dµv

�
(

g∗ρa
ρa

)δ

� e−aδβξ(g).

Harmonicity - dg∗µh
dµh

(ξ) = K(g, ξ).
lG = lim

n→∞
E(dG(1,Zn(g)))/n, l = lim

n→∞
E(d(1,Zn(g)))/n - drift

Theorem (S. Blachère, P. Haïssinsky , P. Mathieu, 2009)
The following are equivalent:

The equality of lG ⩽ vl holds.
µv � µh.
µh is quasi-conformal.

20 / 29



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conformal Dynamical Systems and Sullivan’s Dictionary
boundary and measures

hyperbolic groups
Expanding dynamics

Conformal measure v.s. Harmonic measure
dilute a (weighted) uniform distribution ⇐⇒ iterate a transition
probability.

Conformality (w.r.t. visual metric ρa) - dg∗µ
dµ =

(
g∗ρa
ρa

)δ

.

Quasi-conformality - dg∗µv
dµv

�
(

g∗ρa
ρa

)δ

� e−aδβξ(g).

Harmonicity - dg∗µh
dµh

(ξ) = K(g, ξ).

lG = lim
n→∞

E(dG(1,Zn(g)))/n, l = lim
n→∞

E(d(1,Zn(g)))/n - drift

Theorem (S. Blachère, P. Haïssinsky , P. Mathieu, 2009)
The following are equivalent:

The equality of lG ⩽ vl holds.
µv � µh.
µh is quasi-conformal.
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Conformal measure v.s. Harmonic measure
dilute a (weighted) uniform distribution ⇐⇒ iterate a transition
probability.
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Distance expanding dynamical systems

Definition. f : X → X is called λ-distance expanding if

∃ξ > 0∀d(x, y) < ξ, d(fx, fy) ⩾ λd(x, y).

S = {R1, · · · ,Rn} - Markov partition
intRi ∩ intRj = ∅ if i 6= j;
Ri = intRi;
f(intRi) ∩ intRj 6= =⇒ f(intRi) ⊃ intRj.

ARiRj = 1 ⇐⇒ f(intRi) ⊃ intRj.
semi-conjugacy(
Σ+

A = {(un)n⩾0 ∈ SZ⩾0 : Auiui+1 = 1}, σA
)
→ (X, f).
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Tile Graph

Vertices:
Γ0 = Sω = {u0 · · · un := u0 ∩ · · · ∩ f−nun : Auiui+1 = 1} ∪ {∅}.
(called tiles)
Edges: u − v iff

∣∣|u| − |v|
∣∣ ⩽ 1 and u ∩ v 6= ∅.

d is called a visual metric if for some Λ > 1,
dist(x, y) ≳ Λ−n, where x, y are disjoint n-tiles (in the sense of
closed subsets);
diam(x) � Λ−|x|;

Fact. Γ is Gromov hyperbolic with Gromov boundary X, and the
visual metric is Hölder equivalent to d.
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Tile graph

∅
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Figure: The tile graph of the doubling map on the circle.
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Adapt the random walk to dynamics

A transition probablity p : Γ → M(Γ) is called to have uniformly
bounded support if ∃C0, p(x, y) > 0 =⇒ d(x, y) ⩽ C0.

p is called f-invariant if for ∅ 6= x ∈ Γ, σ∗(p(x)) = p(σx).
(σ : u0 · · · un 7→ u1 · · · un)
We moreover assume that:
The random walk always goes down: for all x, y ∈ Γ, if p(x, y) > 0,
then |y| > |x|.
The random walk inherits the edges of the graph: for all x, y ∈ Γ, if
|y| = |x|+ 1 and d(x, y) = 1, then p(x, y) > 0.
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Our results

The Martin boundary of the random walk on the tile graph maps
surjectively to the phase space:

Theorem

Suppose that f : X → X is an open transitive distance-expanding
map on a compact metric space (X, ρ), α is a sufficiently fine
Markov partition, and (Γ, p) is random walk on the tile graph
Γ = Γ(f, α) with p satisfying the assumptions in the previous page.
Then there is a natural surjection Φ from the Martin boundary
∂MΓ of (Γ, p) to X.

26 / 29



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conformal Dynamical Systems and Sullivan’s Dictionary
boundary and measures

hyperbolic groups
Expanding dynamics

Our results

Is the Martin boundary homeomorphic to the phase space?
Not true. We provide a counterexample. Even for the z2 map on
the unit circle, it is not true when the transition probability p is
unbalanced. The radial growth rate of the Green function at a
single point x ∈ X may be different.
However, if the random walk is irreducible, the result of A. Ancona
implies the homeomorphism of the Martin boundary and the phase
space.
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Our results
Based on the asymptotic quantities including

lG := lim
n→+∞

−n−1 log(G(Z0,Zn)) and l := lim
n→+∞

−n−1|Zn|, (2.2)

we can give a formula of the fractal dimension of the harmonic
measure.
Theorem

Under the notations and hypotheses above, if X is equipped with
an a-visual metric ρ for a sufficiently small constant a > 0, then
the packing dimension of the harmonic measure ν on X is equal to
dimP ν =

lG
al .

The packing dimension of a measure is:
dimP µ = inf{dimP(A) : A ⊆ X, µ(A) > 0} = inf{dimP(A) : A ⊆ X, µ(A) = 1} = δ.

The packing dimension is equal to the supremum of the pointwise
local dimension. 28 / 29
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Conformal measure v.s. harmonic measure

The harmonic measure ν is f-quasi-invariant. If we moreover
assume that p(x, y) > 0 implies |y| = |x|+ 1, then ν is f-invariant.
Conformality f∗µ = dµ (d = number of preimages)
quasi-conformality f∗µc � dµc.
Questions:

Conformal measure/measure of maximal entropy � / ⊥
harmonic measure?
Is the Hausdorff dimension of the harmonic measure the same?
Is the fundamental inequality still true? Variation principle
understanding?
Can we apply the thermodynamical formalism and realize the
harmonic measure as a measure of maximal pressure? what is
the potential?
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