Weak universality results for singular SPDEs

Wenhao Zhao

Joint work with Fanhao Kong

Peking University

June 11, 2023

KPZ equation

The 1+1 dimensions KPZ equation is given by

$$\partial_t h = \partial_x^2 h + \mu (\partial_x h)^2 + \boldsymbol{\xi}.$$

- $(t, x) \in \mathbf{R}^+ \times \mathbf{T}$.
- ξ is the space-time white noise.
- μ describes the strength of asymmetry.

The 1+1 dimensions KPZ equation is given by

$$\partial_t h = \partial_x^2 h + \boldsymbol{\mu} (\partial_x h)^2 + \boldsymbol{\xi}.$$

- $(t, x) \in \mathbf{R}^+ \times \mathbf{T}$.
- ξ is the space-time white noise.
- μ describes the strength of asymmetry.

Renormalization: $\partial_t h_{\varepsilon} = \partial_x^2 h_{\varepsilon} + \mu (\partial_x h_{\varepsilon})^2 + \xi_{\varepsilon} - C_{\varepsilon}.$

• $C_{\varepsilon} = \frac{c}{\varepsilon} + \mathcal{O}(1).$

Theorem (Hairer 13' 14') h_{ε} converges in probability in some sense as $\varepsilon \to 0$ independent of regularization.

• The solution is defined as the limit, denote the solution family by $\text{KPZ}(\mu)$.

< 回 > < 回 > < 回 >

Microscopic model:
$$\partial_t \tilde{h} = \partial_x^2 \tilde{h} + \sqrt{\varepsilon} F(\partial_x \tilde{h}) + \tilde{\xi}.$$

- $\sqrt{\varepsilon}$: weak asymmetry.
- F: even function.
- $\tilde{\xi}$: smooth space-time Gaussian field.

Microscopic model: $\partial_t \tilde{h} = \partial_x^2 \tilde{h} + \sqrt{\varepsilon} F(\partial_x \tilde{h}) + \tilde{\xi}.$

- $\sqrt{\varepsilon}$: weak asymmetry.
- F: even function.
- ξ : smooth space-time Gaussian field.

Rescaled process $h_{\varepsilon} := \sqrt{\varepsilon} \widetilde{h} \left(\frac{t}{\varepsilon^2}, \frac{x}{\varepsilon} \right) - C_{\varepsilon} t$ solves

$$\partial_t h_{\varepsilon} = \partial_x^2 h_{\varepsilon} + \varepsilon^{-1} F(\sqrt{\varepsilon} \partial_x h_{\varepsilon}) + \xi_{\varepsilon} - C_{\varepsilon}.$$

Microscopic model: $\partial_t \tilde{h} = \partial_x^2 \tilde{h} + \sqrt{\varepsilon} F(\partial_x \tilde{h}) + \tilde{\xi}.$

- $\sqrt{\varepsilon}$: weak asymmetry.
- F: even function.
- $\tilde{\xi}$: smooth space-time Gaussian field.

Rescaled process $h_{\varepsilon} := \sqrt{\varepsilon} \widetilde{h}\left(\frac{t}{\varepsilon^2}, \frac{x}{\varepsilon}\right) - C_{\varepsilon} t$ solves

$$\partial_t h_{\varepsilon} = \partial_x^2 h_{\varepsilon} + \varepsilon^{-1} F(\sqrt{\varepsilon} \partial_x h_{\varepsilon}) + \xi_{\varepsilon} - C_{\varepsilon}.$$

Theorem(Hairer-Quastel 18') If F is an even polynomial, then there exists $C_{\varepsilon} \to +\infty$ such that $h_{\varepsilon} \to KPZ(\mu)$.

Microscopic model:
$$\partial_t \tilde{h} = \partial_x^2 \tilde{h} + \sqrt{\varepsilon} F(\partial_x \tilde{h}) + \tilde{\xi}.$$

- $\sqrt{\varepsilon}$: weak asymmetry.
- F: even function.
- $\tilde{\xi}$: smooth space-time Gaussian field.

Rescaled process $h_{\varepsilon} := \sqrt{\varepsilon} \widetilde{h}\left(\frac{t}{\varepsilon^2}, \frac{x}{\varepsilon}\right) - C_{\varepsilon} t$ solves

$$\partial_t h_{\varepsilon} = \partial_x^2 h_{\varepsilon} + \varepsilon^{-1} F(\sqrt{\varepsilon} \partial_x h_{\varepsilon}) + \xi_{\varepsilon} - C_{\varepsilon}.$$

Theorem(Hairer-Quastel 18') If F is an even polynomial, then there exists $C_{\varepsilon} \to +\infty$ such that $h_{\varepsilon} \to KPZ(\mu)$. Theorem(Gubinelli-Perkowski 16', Yang 23'): If F is Lipschitz, then Hairer-Quastel universality holds in law at stationarity/non-stationarity.

- Require knowledge of invariant measure.
- The microscopic process should be Markovian.

Heuristic explanation: Let Z_{ε} solves $\partial_t Z_{\varepsilon} = \partial_x^2 Z_{\varepsilon} + \xi_{\varepsilon}$ and $\Psi_{\varepsilon} = \partial_x Z_{\varepsilon}$. Then $u_{\varepsilon} := h_{\varepsilon} - Z_{\varepsilon}$ solves

$$\partial_t u_{\varepsilon} = \partial_x^2 u_{\varepsilon} + \varepsilon^{-1} F(\sqrt{\varepsilon} \Psi_{\varepsilon} + \sqrt{\varepsilon} \partial_x u_{\varepsilon}) - C_{\varepsilon}.$$

- $\sqrt{\varepsilon}\Psi_{\varepsilon}$ is asymptotically distributed as $\mathcal{N}(0, \sigma^2)$.
- $\partial_x u_{\varepsilon}$ has order $\varepsilon^{-\kappa}$.

Heuristic explanation: Let Z_{ε} solves $\partial_t Z_{\varepsilon} = \partial_x^2 Z_{\varepsilon} + \xi_{\varepsilon}$ and $\Psi_{\varepsilon} = \partial_x Z_{\varepsilon}$. Then $u_{\varepsilon} := h_{\varepsilon} - Z_{\varepsilon}$ solves

$$\partial_t u_{\varepsilon} = \partial_x^2 u_{\varepsilon} + \varepsilon^{-1} F(\sqrt{\varepsilon} \Psi_{\varepsilon} + \sqrt{\varepsilon} \partial_x u_{\varepsilon}) - C_{\varepsilon}.$$

• $\sqrt{\varepsilon}\Psi_{\varepsilon}$ is asymptotically distributed as $\mathcal{N}(0,\sigma^2)$.

• $\partial_x u_{\varepsilon}$ has order $\varepsilon^{-\kappa}$.

Taylor expanding $\varepsilon^{-1} F(\sqrt{\varepsilon} \Psi_{\varepsilon} + \sqrt{\varepsilon} \partial_x u_{\varepsilon})$:

$$\underbrace{\varepsilon^{-1}F(\sqrt{\varepsilon}\Psi_{\varepsilon})-C_{\varepsilon}}_{\mu\Psi^{\diamond^{\diamond}}}+\underbrace{\varepsilon^{-\frac{1}{2}}F'(\sqrt{\varepsilon}\Psi_{\varepsilon})}_{2\mu\Psi}\partial_{x}u_{\varepsilon}+\frac{1}{2}\underbrace{F''(\sqrt{\varepsilon}\Psi_{\varepsilon})}_{2\mu}(\partial_{x}u_{\varepsilon})^{2}+\mathcal{O}(\varepsilon^{\kappa}).$$

Heuristic explanation: Let Z_{ε} solves $\partial_t Z_{\varepsilon} = \partial_x^2 Z_{\varepsilon} + \xi_{\varepsilon}$ and $\Psi_{\varepsilon} = \partial_x Z_{\varepsilon}$. Then $u_{\varepsilon} := h_{\varepsilon} - Z_{\varepsilon}$ solves

$$\partial_t u_{\varepsilon} = \partial_x^2 u_{\varepsilon} + \varepsilon^{-1} F(\sqrt{\varepsilon} \Psi_{\varepsilon} + \sqrt{\varepsilon} \partial_x u_{\varepsilon}) - C_{\varepsilon}.$$

• $\sqrt{\varepsilon}\Psi_{\varepsilon}$ is asymptotically distributed as $\mathcal{N}(0,\sigma^2)$.

• $\partial_x u_{\varepsilon}$ has order $\varepsilon^{-\kappa}$.

Taylor expanding $\varepsilon^{-1} F(\sqrt{\varepsilon} \Psi_{\varepsilon} + \sqrt{\varepsilon} \partial_x u_{\varepsilon})$:

$$\underbrace{\varepsilon^{-1}F(\sqrt{\varepsilon}\Psi_{\varepsilon})-C_{\varepsilon}}_{\mu\Psi^{\diamond^{\diamond}}}+\underbrace{\varepsilon^{-\frac{1}{2}}F'(\sqrt{\varepsilon}\Psi_{\varepsilon})}_{2\mu\Psi}\partial_{x}u_{\varepsilon}+\frac{1}{2}\underbrace{F''(\sqrt{\varepsilon}\Psi_{\varepsilon})}_{2\mu}(\partial_{x}u_{\varepsilon})^{2}+\mathcal{O}(\varepsilon^{\kappa}).$$

Question: Does the weak universality result of Hairer and Quastel hold for $F \in C^{2+}$?

Theorem (Hairer-Xu 19'): For KPZ equation, if even function $F \in C^{7+}$ with polynomial growth, then there exist $C_{\varepsilon} \to +\infty$ and μ such that $h_{\varepsilon} \to KPZ(\mu)$.

regularity structure + convergence of stochastic terms $\uparrow \qquad \uparrow \qquad \qquad \uparrow \\
F \in \mathcal{C}^{2+} \qquad F \in \mathcal{C}^{7+}$ Theorem (Hairer-Xu 19'): For KPZ equation, if even function $F \in C^{7+}$ with polynomial growth, then there exist $C_{\varepsilon} \to +\infty$ and μ such that $h_{\varepsilon} \to KPZ(\mu)$.

regularity structure + convergence of stochastic terms

 $\begin{array}{c} \Uparrow & & & & \\ F \in \mathcal{C}^{2+} & & F \in \mathcal{C}^{7+} \end{array}$

Theorem(Kong-Z. 22+) The same result holds for even function $F \in C^{2+}$ with polynomial growth.

Weak universality for Φ_3^4 equation

Rescaled process ϕ_{ε} solves

$$\partial_t \phi_{\varepsilon} = \Delta \phi_{\varepsilon} - \varepsilon^{-\frac{3}{2}} V'(\sqrt{\varepsilon} \phi_{\varepsilon}) + \xi_{\varepsilon} + \frac{C_{\varepsilon}}{\varepsilon} \phi_{\varepsilon}.$$

Take $u_{\varepsilon} := \phi_{\varepsilon} - \Psi_{\varepsilon}$ where Ψ_{ε} solves $\partial_t \Psi_{\varepsilon} = \Delta \Psi_{\varepsilon} + \xi_{\varepsilon}$. Then u_{ε} solves

$$\partial_t u_{\varepsilon} = \Delta u_{\varepsilon} - \varepsilon^{-\frac{3}{2}} V'(\sqrt{\varepsilon}\Psi_{\varepsilon} + \sqrt{\varepsilon}u_{\varepsilon}) + \frac{C_{\varepsilon}}{\varepsilon}(\Psi_{\varepsilon} + u_{\varepsilon}).$$

э

く 戸 ト く ヨ ト く ヨ ト

Weak universality for Φ_3^4 equation

Rescaled process ϕ_{ε} solves

$$\partial_t \phi_{\varepsilon} = \Delta \phi_{\varepsilon} - \varepsilon^{-\frac{3}{2}} V'(\sqrt{\varepsilon} \phi_{\varepsilon}) + \xi_{\varepsilon} + \frac{C_{\varepsilon}}{\varepsilon} \phi_{\varepsilon}.$$

Take $u_{\varepsilon} := \phi_{\varepsilon} - \Psi_{\varepsilon}$ where Ψ_{ε} solves $\partial_t \Psi_{\varepsilon} = \Delta \Psi_{\varepsilon} + \xi_{\varepsilon}$. Then u_{ε} solves

$$\partial_t u_{\varepsilon} = \Delta u_{\varepsilon} - \varepsilon^{-\frac{3}{2}} V'(\sqrt{\varepsilon} \Psi_{\varepsilon} + \sqrt{\varepsilon} u_{\varepsilon}) + \frac{C_{\varepsilon}(\Psi_{\varepsilon} + u_{\varepsilon})}{C_{\varepsilon}(\Psi_{\varepsilon} + u_{\varepsilon})}$$

Taylor expanding $\varepsilon^{-\frac{3}{2}} V'(\sqrt{\varepsilon}\Psi_{\varepsilon} + \sqrt{\varepsilon}u_{\varepsilon})$:

Weak universality for Φ_3^4 equation

Rescaled process ϕ_{ε} solves

$$\partial_t \phi_{\varepsilon} = \Delta \phi_{\varepsilon} - \varepsilon^{-\frac{3}{2}} V'(\sqrt{\varepsilon} \phi_{\varepsilon}) + \xi_{\varepsilon} + C_{\varepsilon} \phi_{\varepsilon}.$$

Take $u_{\varepsilon} := \phi_{\varepsilon} - \Psi_{\varepsilon}$ where Ψ_{ε} solves $\partial_t \Psi_{\varepsilon} = \Delta \Psi_{\varepsilon} + \xi_{\varepsilon}$. Then u_{ε} solves

$$\partial_t u_{\varepsilon} = \Delta u_{\varepsilon} - \varepsilon^{-\frac{3}{2}} V'(\sqrt{\varepsilon} \Psi_{\varepsilon} + \sqrt{\varepsilon} u_{\varepsilon}) + \frac{C_{\varepsilon}(\Psi_{\varepsilon} + u_{\varepsilon})}{C_{\varepsilon}(\Psi_{\varepsilon} + u_{\varepsilon})}$$

Taylor expanding $\varepsilon^{-\frac{3}{2}} V'(\sqrt{\varepsilon}\Psi_{\varepsilon} + \sqrt{\varepsilon}u_{\varepsilon})$:

Question: How about arbitrary $V \in \mathcal{C}^{4+}$?

Theorem(Furlan-Gubinelli 19'): For Φ_3^4 equation, if even function $V \in \mathcal{C}^{10+}$ with exponential growth, then there exist $C_{\varepsilon} \to +\infty$ and μ such that $\phi_{\varepsilon} \to \Phi_3^4(\mu)$.

paracontrolled structure + convergence of stochastic terms $\uparrow \qquad \uparrow \qquad \uparrow \\ V \in \mathcal{C}^{4+} \qquad V \in \mathcal{C}^{10+}$ Theorem(Furlan-Gubinelli 19'): For Φ_3^4 equation, if even function $V \in \mathcal{C}^{10+}$ with exponential growth, then there exist $C_{\varepsilon} \to +\infty$ and μ such that $\phi_{\varepsilon} \to \Phi_3^4(\mu)$.

paracontrolled structure + convergence of stochastic terms

Theorem(Kong-Z. 22+) The same result holds for even function $V \in C^{4+}$ with polynomial growth.

Main bounds

Wenhao Zhao (PKU)

Notations: $X_j := \sqrt{\varepsilon} \Psi_{\varepsilon}(x_j), \quad Y_j := \sqrt{\varepsilon} \Psi_{\varepsilon}(y_j).$ Hairer-Xu 19': $\left| \mathbf{E} \prod_{j=1}^{2n} (\sin(\theta X_j)) \right| \lesssim \theta^{2n} \mathbf{E} \prod_{j=1}^{2n} X_j = \mathbf{E} \prod_{j=1}^{2n} (\theta X_j).$

< 4[™] >

Main bounds

Notations: $X_j := \sqrt{\varepsilon} \Psi_{\varepsilon}(x_j), \quad Y_j := \sqrt{\varepsilon} \Psi_{\varepsilon}(y_j).$ Hairer-Xu 19': $\left| \mathbf{E} \prod_{j=1}^{2n} (\sin(\theta X_j)) \right| \lesssim \theta^{2n} \mathbf{E} \prod_{j=1}^{2n} X_j = \mathbf{E} \prod_{j=1}^{2n} (\theta X_j).$ Hairer-Xu 19':

$$\mathbf{E}\prod_{j=1}^{2n}[\sin(\alpha X_j)\cdot\mathcal{T}_{(1)}(\cos(\beta Y_j))]\Big|\lesssim (|\alpha|+|\beta|)^{6n}\mathbf{E}\prod_{j=1}^{2n}(X_jY_j^{\diamond 2}).\quad (\star)$$

- Similar bounds hold for multi-frequency.
- We need (\star) to prove the convergence of stochastic objects like

$$\varepsilon^{-rac{3}{2}}\int K(x-y)F'(X)\mathcal{T}_{(1)}(F(Y))dy$$
 in $\mathcal{C}^{-rac{1}{2}-\kappa}$

Main bounds

Notations: $X_j := \sqrt{\varepsilon} \Psi_{\varepsilon}(x_j), \quad Y_j := \sqrt{\varepsilon} \Psi_{\varepsilon}(y_j).$ Hairer-Xu 19': $\left| \mathbf{E} \prod_{j=1}^{2n} (\sin(\theta X_j)) \right| \lesssim \theta^{2n} \mathbf{E} \prod_{j=1}^{2n} X_j = \mathbf{E} \prod_{j=1}^{2n} (\theta X_j).$ Hairer-Xu 19':

$$\mathbf{E}\prod_{j=1}^{2n}[\sin(\alpha X_j)\cdot\mathcal{T}_{(1)}(\cos(\beta Y_j))]\Big|\lesssim (|\alpha|+|\beta|)^{6n}\mathbf{E}\prod_{j=1}^{2n}(X_jY_j^{\diamond 2}). \quad (\star)$$

- Similar bounds hold for multi-frequency.
- We need (\star) to prove the convergence of stochastic objects like

$$\varepsilon^{-\frac{3}{2}}\int K(x-y)F'(X)\mathcal{T}_{(1)}(F(Y))dy$$
 in $\mathcal{C}^{-\frac{1}{2}-\kappa}$

Xu 18': The bound with one frequency θ is independent of θ . Proposition(Kong-Z. 22+) An integral version of (*) holds with bound independent of α and β .

Wenhao Zhao (PKU)

May 4, 2023

Solution

Final Solution:

$$\varepsilon^{-\frac{3}{2}} \| \int \int K(x-y) \sin(\alpha X) \mathcal{T}_{(1)}(\cos(\beta Y)) \varphi^{\lambda}(x) \sum_{Q \in A} \mathbf{1}_{x \in Q} dx dy \|_{2n}$$

$$\triangleq \varepsilon^{-\frac{3}{2}} \| \sum_{Q \in A} Z_Q \|_{2n} = \varepsilon^{-\frac{3}{2}} \Big(\sum_{\sigma: [2n] \to A} \underbrace{\mathbf{E} Z_{\sigma(1)} \cdots Z_{\sigma(2n)}}_{\sigma: [2n] \to A} \Big)^{\frac{1}{2n}}$$

$$= \int \int (\cdots) \mathbf{E} \prod_{i=1}^{2n} \Big(\sin(\alpha X_i) \mathcal{T}_{(1)}(\cos\beta Y_i) \mathbf{1}_{x_i \in \sigma(i)} \Big) d\vec{x} d\vec{y}$$

Whether there exists singleton depends only on σ . Bad σ is rare. $S := \{\sigma : \exists Q, |\sigma^{-1}(Q)| = 1\}$ $|S^c| \sim \left(\frac{\lambda}{\varepsilon}\right)^{nd}$

< /⊒> <

Solution

Furthermore, by Holder inequality we get

$$\sum_{\sigma \notin \mathcal{S}} \mathbf{E} Z_{\sigma(1)} \cdots Z_{\sigma(2n)} \leq \sum_{\sigma \notin \mathcal{S}} \| Z_{\sigma(1)} \|_{2n} \cdots \| Z_{\sigma(2n)} \|_{2n}.$$

★ ∃ >

æ

Solution

Furthermore, by Holder inequality we get

$$\sum_{\sigma \notin \mathcal{S}} \mathbf{E} Z_{\sigma(1)} \cdots Z_{\sigma(2n)} \leq \sum_{\sigma \notin \mathcal{S}} \| Z_{\sigma(1)} \|_{2n} \cdots \| Z_{\sigma(2n)} \|_{2n}.$$

We have a uniform bound on $||Z_Q||_{2n}$.

$$\begin{split} \|Z_Q\|_{2n} &= \|\int \int_{x \in Q} K(x-y) \sin(\alpha X) \mathcal{T}_{(1)}(\cos(\beta Y)) \varphi^{\lambda}(x) dx dy\|_{2n} \\ &\leq \int_{x \in Q} \varphi^{\lambda}(x) \|\int K(x-y) \sin(\alpha X) \mathcal{T}_{(1)}(\cos(\beta Y)) dy\|_{2n} dx \\ &\lesssim \varepsilon^{-\kappa} \int_{x \in Q} \varphi^{\lambda}(x) \|\int K(x-y) Y^{\diamond 2} dy\|_{2n} dx \\ &\lesssim \varepsilon^{-\kappa} \left(\frac{\varepsilon}{\lambda}\right)^{d} \varepsilon \end{split}$$

< 4 →

æ

∃ >

We would get

$$\begin{split} & \left(\sum_{\sigma \in \mathcal{S}^c} \|Z_{\sigma(1)}\|_{2n} \cdots \|Z_{\sigma(2n)}\|_{2n}\right)^{\frac{1}{2n}} \\ \leq & |\mathcal{S}^c|^{\frac{1}{2n}} \sup_Q \|Z_Q\|_{2n} \\ \lesssim & \left(\frac{\lambda}{\varepsilon}\right)^{d/2} \left(\frac{\varepsilon}{\lambda}\right)^d \varepsilon^{1-\kappa} \\ & = \left(\frac{\varepsilon}{\lambda}\right)^{d/2} \varepsilon^{1-\kappa} \\ \lesssim & \varepsilon^{\frac{3}{2}-\kappa} \lambda^{-\frac{1}{2}} \end{split}$$

<ロト <問ト < 国ト < 国ト

3

• Weak universality results for non-Gaussian noise ξ . Hairer-Shen 17': If F is even polynomial, then h_{ε} converges to KPZ for non-Gaussian $\tilde{\xi}$ (CLT). Question: How about general F with non-Gaussian $\tilde{\xi}$?

- Weak universality results for non-Gaussian noise ξ . Hairer-Shen 17': If F is even polynomial, then h_{ε} converges to KPZ for non-Gaussian $\tilde{\xi}$ (CLT). Question: How about general F with non-Gaussian $\tilde{\xi}$?
- Weak universality results for F(x) = |x| without the use of invariant measure.