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Domination Relations in Four-dimensional Geometries
Kai Xu

—————————————————————————————————

Abstract: This article studies the virtual domination relation in four-dimensional ge-
ometries. This relation forms a partial order among the geometries, and can be shown
in a domination diagram. The author draws and proves the diagram. Furthermore, a
geometry X dominates another geometry Y if and only if X × En dominates Y × En.
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1 Introduction
Assupmtion: All manifolds in this article are assumed to be closed and oriented,

unless otherwise indicated.
The beginning of everything is the notion of domination:

Definition 1.1: Given two manifolds M1 and M2 of the same dimension, we say that M1

dominates M2 if there exists a map of non-zero degree from M1 to M2.
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Domination between manifolds has been extensively studied. [1], for example, gives a
topological criterion concerning the domination between highly-connected even-dimensional
manifolds. In dimension three, domination problems are in a much more active discussion.
In the survey paper [18], Shicheng Wang summarized important problems on the domi-
nation between 3-manifolds. Geometric decomposition of 3-manifolds plays an important
role, so do geometric manifolds. [13], [19] and [5], for example, studied non-zero degree
maps between geometric 3-manifolds.

This article is concentrated on the domination between geometric 4-manifolds. Our
target is the following domination relation between geometries:

Definition 1.2: Given two geometries X and Y of the same dimension. We say that X
virtually dominates Y (abbreviated as: dominates), if for every X-manifold M there
is a finite cover M ′ → M such that M ′ dominates some Y -manifold N . The domination
relation is written as X → Y .

It is easy to see that the domination relation is transitive: Let X,Y, Z be three ge-
ometries. if X → Y and Y → Z, then X → Z.

The domination relation between four-dimensional geometries is shown in the following
diagram:

H2 ×H2 (red) //___

(irred)
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S3 × E Nil4
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oo

S̃L2R× E // Nil × E

OO

Sol4m,n, Sol
4
0, Sol

4
1

OO

Diagram 1-1

Note that the arrow from H2 ×H2 separates into two parts: reducible (“red” in the
diagram) and irreducible (“irred” in the diagram). Reducible H2 × H2-manifolds are
finitely coverd by a product of surfaces, whilc irreducible manifolds are not. This notion
of irreducibility is essentially the same as the irreducibility of lattices in semisimple Lie
groups.

The behavior of reducible and irreducible manifolds in domination are quite different.
As we can see from the diagram, reducible manifolds (virtually) dominates H2 × E2, but
irreducible ones can only dominate S2 × S2. What happens to irreducible manifolds
is closely related to Margulis’s Normal Subgroup Theorem; see Section 9 for a detailed
explanation.

There are 4 geometries that do not appear in Diagram 1-1: H4, CH2, F4 and S4. All
geometries dominate S4 since all manifolds dominate S4. F4 admits no compact quotient.
We do not discuss H4 and CH2 in this passage; we know little about them so far.
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The domination diagram in dimension three is shown below. It is a part of the proof
of Diagram 1-1.

H2 × E // E3 // S2 × E // S3

H3 //

;;xxxxxxxxxx

**UUU
UUUU

UUUU
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UUUU
UUUU

UU S̃L2R // Nil

77oooooooooooooo

Sol

??��������������������

Diagram 1-2

Since there is geometric decomposition in dimension 3 as well as abundant topological
tools, people are able to prove much stronger results for 3-manifolds. For example, we
can prove that every 3-manifold 1-dominates only finitely many geometric 3-manifolds
([19, Corollary 1]). For another example, we can determine how many numbers of degrees
(finitely or infinitely many) could there be in the maps between two 3-manifolds, according
to their pieces in the geometric decomposition ([18, Theorem 1.3]).

However, there is no geometric decomposition for 4-manifolds, and there are not as
much tools as in dimension three. It is generally hard for us to tell precisely whether a
given 4-manifold dominates another one. But if we concentrate on geometric manifolds
and virtual domination, we have good and rather complete results.

Insight into the domination diagram can also suggest us of interesting discoveries.
Staring at Diagram 1-1 and 1-2, we can find that the map X 7→ X × E embeds Diagram
1-2 into Diagram 1-1 as a derived subgraph. Surprisingly, this holds in higher dimensions:

Corollary 7.5 (Embedding of Domination Diagram) Suppose X,Y are two geome-
tries of dimension (both) 2, 3 or 4. In addition, X 6= H2×H2 when Y is not contractible.
Then X → Y if and only if X × En → Y × En.

This conclusion is mainly based on two theorems:

Proposition 7.1 (Product Geometry Splitting) Let X be any geometry of dimension
2 or 3 or 4, n be any positive integer. Then every X × En-manifold is finitely covered by
N × T n where N is an X-manifold.

Proposition 7.3 (Domination Reduction) Suppose M1,M2 are two manifolds of the
same dimension. M2 is a K(G, 1) and π1(M2) is torsion-free. If M1 × S1 dominates
M2 × S1, then some finite cover of M1 dominates M2.

Proposition 7.1 is proved by investigating the geometries one by one. Proposition
7.3 is purely topological. We still do not know whether Proposition 7.1 generailzes to
dimension > 4, since its proof relies hevily on the properties of individual geometries.

Let us return to the proof of Diagram 1-1. In studying virtual domination, it is natural
to develop the notion of Typical Covering Manifolds. The typical covering manifolds of a
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geometry X is a ”supreme set” of X-manifolds under covering. That is, every X-manifold
is covered by one of them. Studying the domination between between geometries is sim-
plified to studying the domination between typical covering manifolds. Our two main
criterions are direct consequence of definitions:

Proposition 5.1 Let X and Y be geometries. If every typical covering manifold of X
dominates some Y -manifold, then X → Y holds.

Proposition 6.2 Assume that X, Y are two geometries, and A (resp. B) is a set of
typical covering manifold for X (resp. Y ). If for every M1 ∈ A and M2 ∈ B, M1 does
not dominate M2, then X 9 Y .

Finding the typical covering manifolds is thus a very important work. Fortunately,
for almost all geometries we can find typical covering manifolds that are simple enough.
For example, products of lower-dimensional manifolds. Table 3-1 contains our results.
Most of the items in Table 3-1 are special cases of Proposition 7.1, and their proofs also
generalizes to the proof of Proposition 7.1.

In proving Table 3-1, we frequently use the theorems on the discrete subgroup of Lie
groups. By intersecting a lattice with appropriate closed subgroups, we may find sub-
lattices and quotient lattices, and therefore construct fiber bundle structures. The bundle
structure becomes simple enough (for example, becomes trivial) after taking suitable
covers. This is a commonly used method in studying geometric manifolds. [15] and [16],
for example, gives a detailed study of the fibration structures that occur in 4-dimensional
geometries.

The remaining non-product geometries are Nil4, Sol4m,n, Sol
4
0 and Sol41. Their geomet-

ric manifolds are mapping torus of T 3 or Nil-manifold. This property is sufficient for us
to determine their domination relation with other geometries.

The arrows in Diagram 1-1 will be easy conclusions of section 3 and 4. Proving non-
arrows, however, needs more efforts. Some non-arrows are consequences of Diagram 1-2
and Corollary 7.5. Others have to be proved independently, mainly by using K(G, 1).
(As we know, K(G, 1) is a bridge between topological information and group-theoretic
information.)

The structure of this article is as follows. In section 2 we briefly introduce some basic
notions, including the notion of geometry, Seifert bundles, monodromy and Euler numbers
of torus bundles, and some discussion on Diagram 1-2. In section 3 we concern about
Typical Covering Manifolds, and prove the important Table 3-1. In section 4 we study
Nil4, Sol4m,n, Sol

4
0 and Sol41-manifolds. In section 5, 6 and 8, we complete the proof of

Diagram 1-1, except for H2 × H2. In section 7, we prove the Embedding Theorem for
domination relation. Finally in section 9, we discuss H2 × H2 and complete the whole
proof.

2 Preliminaries
1. Four-dimensional Geometries

A geometry is a pair (X,G, ρ), where X is a connected simply-connected manifold,
G is a connected Lie group, and ρ is an effective, transitive left action of G on X with

4



compact point stabilizer. We require two additional conditions:
1⃝ There exists a discrete subgroup Γ of G such that Γ\X is of finite volume.
2⃝ G is required to be maximal among those pairs (X,G′,ρ′) which satisfies all the

conditions above.
We normally abbreviate a geometry (X,G, ρ) to X, and G is called the structure group

of X. A manifold M is called to have the geometric structure of X, or to be of type X,
or to be an X-manifold, if there is a discrete subgroup Γ ⊂ G acting freely on X such
that M ∼= Γ\X. Since X is simply-connected, we have π1(M) ∼= Γ.

Important thing: We require here that the structure group of a geometry be con-
nected. For example, the structure group of Sol is Iso0(Sol) = Sol, which is a subgroup
of index 8 in Iso(Sol). In our sense, Sol-manifolds are precisely torus bundle over the
circle with Anosov glueing matrix (rather than being covered by them). Our requirement
does not lose essential information, since the virtual domination allows passing to covering.

There are 8 three-dimensional geometries: S3,E3,H3, S2 × E,H2 × E, Nil, S̃L2R and
Sol. [12] gives a very good introduction to them, and we assume that the reader is familiar
with their properties. The geometric structure on a 3-manifold is unique (if there is one),
and according to geometric decomposition, every prime manifold can be cut by tori into
geometric manifolds.

Four-dimensional geometries are classified by Filipkiewicz in [2]. The complete list is:
E4, S4,H4,CP2,CH2, S3 × E,H3 × E, Nil× E, Sol× E, S̃L2R× E, S2 × S2,E2 × S2,H2 ×
S2,H2 × E2,H2 × H2, Sol40, F

4, Nil4, Sol4m,n, Sol
4
1. Their precise definitions can be found

in the end of Filipkiewicz’s article [2, “Summary of Maximal Geometries”].
It is natural to ask about the uniqueness of geometric structure in dimaneion four, and

the answer is affirmative. In fact, the homotopy type completely determines the geometry,
just as in dimension three:

Theorem 2.1 ([17, §10]) Assume that M1 is an X-manifold and M2 is a Y -manifold.
If M1 is homotopy equivalent to M2, then X = Y . �

2. Seifert Bundles

The structure of Seifert bundle natually occurs to geometric manifolds. Suppose that
we have a geometry X with structure group G, and H is a normal subgroup of G. Let Γ
be discrete in G and acts freely on X. Assume that the image Γ′ of the projection map
Γ → G/H is also discrete. In most cases, Γ is a lattice and Γ ∩ H is also a lattice (see
section 3). There is a fibration sequence: (Γ ∩H)\X → Γ\X → Γ′\(X/H).

Normally Γ′ does not act freely on X/H. Therefore, the fibration is an orbifold
fibration. However, Γ\X is itself smooth. Hence we come to the following definition:

Definition 2.1 A Seifert bundle is an orbifold fibration M → B in which M is smooth
as orbifold.

In dimension three, the notion of Seifert bundle is used to denote those which the
general fiber is S1. Seifert invariants and Euler number can be defined on a Seifert bundle
([12, §3]). 3-dimensional Seifert bundles on geometric 2-orbifolds are all geometric, and
the geometric type is classified by the Euler number and the geometry of the base orbifold
([12, theorem 5.3]).
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Analogous to dimension three, some four-manifolds have the structure of Seifert bun-
dles with torus fiber over 2-orbifolds. Seifert invariants and Euler numbers (which consists
of two numbers) can be analogously defined. [15] and [16] gave a detailed introduction
to 4-dimensional Seifert torus bundles and their geometry types. Note that in dimension
four, not all Seifert torus bundle have geometric structure ([16, Theorem B]).

[14] gives an introduction to orbifolds and orbifold fibrations. Seifert bundles behave
well with respect to pullback. When the base manifold is smooth, a Seifert bundle is an
ordinary fiber bundle.

3. Monodromy and Euler Numbers of Torus Bundles

Given a torus bundle T n → M → B, we have an exact sequence of fundamental group:
0 → π1(T

n) → π1(M) → π1(B) → 1. Conjugation induces an action of π1(B) on π1(T
n).

If for every g ∈ π1(B), the action of g on π1(T
n) has determinant 1, then we say that M

is an oriented torus bundle.
Remark: Since our definition of geometry requires that the structure group be con-

nected (only contains orientation-preserving ones), all torus bundles arising in geometric
manifolds are orientable. The reader can check case by case when we deal with respective
geometries in section 3 and 4. In section 3, we can always take a double cover to make
the bundle orientable, so this is not a serious problem. For these considerations, in this
article we implicitly assume that all the torus bundles we meet are orientable.

Choose a basis of π1(T
n), and we have a homomorphism π1(B) → SLn(Z). This

homomorphism is called Monodromy.
When B = S1, monodromy has another name: glueing matrix. A T n-bundle over S1

can be regarded as a quotient of T n× [0, 1] under an equivalence relation (x, 0) ∼ (Ax, 1).
The matrix A ∈ SLn(Z) coincides with the monodromy of M .

When B is a surface, we can define the notion of Euler numbers to M . We start
with the presentation of π1(M): let π1(B, p) = 〈ai, bi|

∏
[ai, bi] = 1〉 be the standard

presentation of π1(B), (u1 . . . un) be a basis of π1(T
2), and Ai, Bi be the monodromy

matrices along ai, bi. Arbitrarily choose lifts āi, b̄i ∈ π1(M) that are projected to ai, bi.
Then π1(M) has presentation

π1(M) =< ui, āi, b̄i|[ui, uj] = 1, āi
(
u1 . . . un

)
ā−1
i =

(
u1 . . . un

)
Ai,

b̄i
(
u1 . . . un

)
b̄−1
i =

(
u1 . . . un

)
Bi, Π[āi, b̄i] = Πu−ei

i >

for some e1 . . . en ∈ Z. The numbers (ei) are called the Euler numbers of M .
For circle bundles over surfaces (i.e. n = 1), the minus Euler number is called the

b-invariant, which is explained as the obstruction to the existence of global sections. M
can be regarded as the unit circle bundle of a complex line bundle E. The Euler number
of M is the same as the Chern class of E.

When n > 1, the Euler numbers is not a good ”invariant”. It depend on many things:
the choice of the base point p, the choice of the basis of π1(Fp), and the choice of the
lifts of ai, bi. Changing the basis of π1(Fp) results in a contravariant change of the Euler
numbers. Defining the Euler numbers needs a base point because of monodromy: there is
no uniform way to define coordinate systems on every fiber. Changing the lifts of ai and
bi (such as replacing ai by ail) results in a very complicated change of the Euler numbers.

The Euler numbers, as elements in Zn, is subject to SLn(Z)-actions as we change the
presentation of π1(M). However, whether the Euler numbers is 0 or not is a well-defined
invariant, independent of the choice of all things.
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When all monodromy matrices are trivial, things are much more simple. In this case,
a torus bundle is just a S1 × . . . × S1-bundle, and different factors does not affect each
other. Thus we have separated Euler numbers with respect to the n factors.

One important property (when the monodromy is trivial) is the splitting of M . If
the Euler numbers have the form (a, 0 . . . 0), then M splits as N × T n−1. If we wish to
rigorously explain this, then we can do as below. For simplicity, we use the case n = 2 as
an example. Choose local trivializations of M : M |Ui

∼= Ui × T 2. Since the monodromy
is trivial, by choosing a particular basis on each trivilization, we can make the transition
map split: M |Ui

∼= Ui × S1 × S1, and ϕij = αij × βij. αij (resp. βij) is the transition
map of some circle bundle N1 (resp. N2), and M is isomorphic to the pullback N1×B N2.
Suppose that the Euler numbers have the form (a, 0), then N2 is trivial, i.e. N2 = B×S1.
Therefore M = N1 × S1.

4. Three-dimensional Domination Diagram

Recall Diagram 1-2:

H2 × E // E3 // S2 × E // S3

H3 //

;;xxxxxxxxxx

))SSS
SSSS

SSSS
SSSS

SSSS
S S̃L2R // Nil

;;wwwwwwwwww

Sol

DD


















Proposition 2.2 The arrows in Diagram 1-2 are indeed domination relations.

Proof:
All geometries dominate S3 since all manifolds dominate S3.
Sol → S2 × E can be proved as follows: Let M be a Sol-manifold, then M is a T 2-

bundle over S1. We can find a section s of M and a tubular neighborhood U ⊃ s such
that the intersection of U with each fiber is homeomorphic to a disk. By contracting the
complement of this disk on every fiber, we get a map from M to a S2-bundle over S1,
which must be isomorphic to the trivial bundle S2 × S1.

S̃L2R → Nil can be proved as follows: A S̃L2R-manifold M is a Seifert bundle
over a hyperbolic 2-orbifold B with nonzero Euler number. We first take a finite cover
g : B′ → B with B′ smooth ([12, Theorem 2.5]). The pull-back bundle M ′ = g∗M is
then a circle bundle over a smooth hyperbolic surface, whose Euler number is an integral
multiple of M . By doing vertical pinches ([10, Section 2]), we can produce a degree-one
map M ′ → N where N is a circle bundle over T 2 with the same Euler number as M ′

(nonzero). Therefore N is a Nil-manifold. Using the same method, these arrows can be
proved: Nil → S2 × E, and H2 × E → E3 → S2 × E.

Finally, H3 dominates all other geometries ([6, Theorem 1.1]). �

Proposition 2.3 The non-arrows in Diagram 1-2 are not domination relations.

We will leave this proposition to be proved in section 8; there our previous techniques
can be used.
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3 Typical Covering Manifolds
The typical covering manifolds for a geometry X is a set A of X-manifolds, such

that every X-manifold M has a finite cover M ′ → M such that M ′ ∈ A. For example,
a torus is a typical covering manifold for E4 by Biberbach Theorem ([9, Theorem 8.26]).
Note that the set of typical covering manifolds is not unique.

Table 3-1 below lists examples of typical covering manifolds for some 4-dimensional
geometries. In the lists and also in the remaining parts of this passage, we always assume
that g > 1 in the expression “Σg”.

from now on, when talking about the geometries in Table 3-1, we make the convention
that the typical covering manifolds for them are those described in the table.

Geometry Typical Covering Manifolds
(1) E4 T 4

(2) H3 × E (H3-manifolds)×S1

(3) S3 × E S3 × S1

(4) S2 × E2 S2 × T 2

(5) H2 × E2 Σg × T 2 (g > 1)
(6) H2 × S2 Σg × S2 (g > 1)

(7) S̃L2R× E (S̃L2R-manifolds)× S1

(8) Nil × E (Nil-manifolds)× S1

(9) Sol × E (Sol-manifolds)× S1

(10) S2 × S2 S2 × S2

Table 3-1: typical covering manifolds for some geometries

The notion of typical covering manifolds works as follows. In order to prove X → Y ,
we only need to prove that every typical covering X-manifold dominates some Y -manifold.
If we wish to prove X 9 Y , then we only need to prove that every typical covering X-
manifold does not dominate any typical covering Y -manifold. This idea leads to Propo-
sition 5.1 and 6.2, which is our basic consideration for proving the diagram.

The following theorems on the discrete subgroups of Lie groups are very useful. A
discrete subgroup Γ of a Lie group G is called a lattice if Γ\G has finite volume.

Lemma 3.1 ([9, Theorem 3.1]) If G is solvable and Γ ⊂ G is a lattice, then Γ\G is
compact. �

Lemma 3.2 ([9, Theorem 3.3]) Let G be solvable and N be its nilradical. If Γ is a
lattice of G, then Γ ∩N is a lattice of N , and Γ/(Γ ∩N) is a lattice of G/N . �

Lemma 3.3 ([9, Corollary 2.3-1]) Let G be nilpotent and G′ be its commutator sub-
group. If Γ is a lattice in G, then Γ ∩G′ is a lattice in G′. �

Lemma 3.4 ([9, Theorem 8.27]) Let G be connected and N be the radical of G, such
that G/N has no compact component. If Γ is a lattice in G, then Γ∩N is a lattice in N .
�
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Proof of Table 3-1:
In the following paragraphs, we fix our notation: Γ ∼= π1(M) is a discrete subgroup

of the structure group of X, with M = Γ\X compact. Denote by G the structure group
of X. Γ\G is a principle bundle over M , and the fiber is the point stablizer of X. Hence
Γ\G is compact.

(1) X = E4:
This follows from Bieberbach Theorem ([9, Theorem 8.26]) which says that every com-

pact flat manifold is covered by flat torus. �

(2) X = H3 × E:
In this case, Γ ⊂ Isom0(H3)× Isom0(E) =: G1 × R. From Lemma 3.4 we know that

Γ ∩ R is a lattice; assume that s ∈ R such that Γ ∩ R = Zs. Let H be the image of the
projection map Γ ↪→ G1 × R → G1; H is also discrete. There is an exact sequence

0 → Zs → Γ → H → 0

which expresses M as a Seifert bundle (with circle fiber) over the hyperbolic orbifold
H/H3. Every hyperbolic 3-orbifold has a finite smooth cover. To prove this, we needd
only look at the remark below ([12, Theorem 2.5]), and replace the group PSL2(R) by
PSL2(C).

By taking pull-back, we have a finite cover M ′ → M such that M ′ is a circle bundle over
a hyperbolic 3-manifold N . There is an exact sequence: 0 → Zs → π1(M

′) → π1(N) → 0,
where π1(N) ⊂ G1.

Let Σ be any immersed surface in N and let j be the immersion map. Let {ai,
bi} be a set of standard generator of π1(Σ) and let a′i = j∗(ai), b′i = j∗(bi). Clearly∏
[a′i, b

′
i] = 1 ∈ π1(N). Let āi, b̄i be any lift of a′i, b′i in π1(M

′); the Euler number e(j∗M ′)
satisfies the relation

∏
[āi, b̄i] = s−e(j∗M ′). But since π1(M

′) ⊂ G × R, āi and b̄i can be
written as (a′i, s

xi) and (b′i, s
yi), and we immediately have e(j∗M ′) = 0.

Let e be the Euler class of M ′, i.e. the Euler class of the line bundle E = M ′×S1C. By
the above paragraph, e is mapped to zero under the map H2(N,Z) → Hom(H2(N,Z),Z).
Hence e lies in Ext(H1(N,Z),Z) in the Universal Coefficient Theorem. Now we know that
e is torsion.

There exists an integer n such that ne = 0. This implies that π1(M
′) is an index n

subgroup of another group that is isomorphic to π1(N) × Z(s/n). The following lemma
shows that there exists a subgroup of π1(M

′) isomorphic to π′×Z (π′ ⊂ G1) and has index
no greater than n. Now we find a finite cover of M ′ which is a product of H3-manifold
and S1. �

Lemma 3.5 Let H ⊂ G1×G2 be a subgroup such that the projection of H to Gi are both
surjective. Let Hi = H ∩Gi, then H/(H1 ×H2) ∼= G1/H1

∼= G2/H2
∼= (G1 ×G2)/H.

Proof: The kernel of the projection map H → G1 is H∩G2 = H2, so we have G1 = H/H2

and G1/H1 = H/(H1 ×H2). This establishes the first isomorphism. The second isomor-
phism is analogous. Four the last isomorphism, we demote I = G1/H1. The first two
isomorphisms show that H/(H1×H2) ⊂ G1/H1×G2/H2

∼= I× I is precisely the graph of
some automorphism f : I → I. Thus (G1×G2)/H = (G1/H1×G2/H2)/(H/(H1×H2)) =
(I × I)/graph(f) ∼= I. �
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(3) X = S2 × E2:
The structure group is SO(3)× Iso0(E2). Γ∩SO(3) = 1 because Γ acts without fixed

point on X. Thus the projection Γ → Iso0(E2) induces an isomorphism of Γ with its
image. We can check that the image must be discrete and has compact quotient. This
expresses M as a S2-bundle over the T 2. All S2-bundles over T 2 are trivial. �

(4) X = S3 × E: Analogous to (3), a S3 × E-manifold M is homeomorphic to the
mapping torus of an automorphism of spherical 3-manifold. Any self-homeomorphism of
a space lifts to its universal cover, hence M is finitely covered by a S3-bundle over S1,
which is isomorphic to S3 × S1. �

(5): X = H2 × E2:
The structure group here is G = Iso(H2)×Iso(E2). By Lemma 3.4, Γ′ = Γ∩Iso(E2) is

a lattice, hence must be a rank two translation group. This expresses M as a Seifert torus
bundle over a hyperbolic 2-orbifold. Taking a finite cover we can assume that the base
orbifold B is smooth; now M is an ordinary torus bundle. The monodromy matrices lie in
SO(2)∩SL(Γ′) and is a finite group. The kernel of monodromy π′ = ker(π1(B) → SL(Γ′))
is of finite index. We take the covering space of B with respect to this subgroup, and
also take a cover of M by pullback (and replace the old M by the new one). Now lift the
standard generators of π1(B) to G, they generates a discrete subgroup H ⊂ G. We have
Γ = Γ′ ×H, and hence M = Σg × T 2. �

(6) X = H2 × S2:
Analogous to (3). �

(7) X = S̃L2R× E:
Here G = (S̃L2R ×Z R) × R. The radical of G is R2 = R × R. Lemma 3.4 works in

this case, and we have Γ∩R2 is a lattice. This expresses M as a Seifert torus bundle over
hyperbolic 2-orbifolds. Taking finite cover we assume that the base orbifold B is smooth,
and M is a ordinary torus bundle. Since R2 is the center of G, the monodromy is trivial.
The Euler numbers must be nonzero (otherwise M would be a H2 × E2-manifold). By
changing the basis of π1(F ) (where F denotes the fiber), we can assume that the Euler
number of M is of the form e(M) = (e1, 0). Then M splits as M = N × S1 where N

is the circle bundle over B with Euler number equal to e1. N is clearly a S̃L2R-manifold. �

(8) X = Nil × E:
Here Γ ⊂ G = Iso0(Nil × E) = (Nil o S1) × R. The nilradical of Iso0(Nil × E) is

N ′ = Nil × R. Hence Γ ∩N ′ is a lattice (Lemma 3.2). Γ/(Γ ∩N ′) is a lattice in S1 and
is finite. Passing to a finite cover, we can assume that Γ ⊂ N ′.

The commutator subgroup of N ′ is Z(Nil) = R. Γ∩R is a lattice and so is Γ′ = Γ/(Γ∩
R) ⊂ N ′/Z(Nil) = R2×R. We claim that the intersection of Γ with N = Z(N ′) = R×R
is also a lattice. The proof is as follows: Let Γ∩R = Zz0 and ei = (xi, yi, ti) be a basis of
Γ/(Γ∩R). Let ēi ∈ Γ∩N ′ be arbitrary elements that projects to ei. By simple calculation,

[ē1, ē2] =

1 0 x1y2 − x2y1
0 1 0
0 0 1

; thus j3 = x1y2−x2y1 must be an integral multiples of z0.

Similarly define j1 and j2, they are all integral multiple of z0. Since {ei} is a basis, one of
the ji, say j3, is nonzero. Cramer Rule tells us that (j3/z0)e3 − (j2/z0)e2 + (j1/z0)e1 has
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the form (0, 0, ∗). Note that we have already proved that Γ ∩N is a lattice.
We have the following exact sequence that gives a torus bundle structure to M :

0 → Z2(= Γ ∩N) → Γ → Z2(= Γ/(Γ ∩N)) → 0

By definition, N is the center of N ′, hence the monodromy is trivial. Choose the base
(l, h) of Γ ∩ N such that l ∈ Z(Nil). The Euler numbers now have the form (∗, 0), and
this shows that M splits as a product of S1 and a Nil-manifold. �

The following statement is now trivial (but will be used later):

Proposition 3.1 Let M be a typical covering manifold of Nil×E. Then M is a T 3-bundle
over S1. Furthermore, every finite cover of M is again a typical covering manifold.

Remark: The glueing map for M is of the form:1 0 0
0 1 ∗
0 0 1


(9) X = Sol × E:
The structure group of Sol × E is Sol × R. R3 = R2 × R (where R is the direct

summand and R2 ⊂ Sol) is the nilradical of Sol × E. By Lemma 3.2, Γ′ = Γ ∩ R3 is a
lattice, and the image of projection Γ ↪→ Sol×R → (Sol×R)/R3 ∼= R is equal to Zt for
some t ∈ R. Assume that t̄ ∈ Sol is any element that projects to t.

For any v = (x, y, z) ∈ Γ′, t̄vt̄−1 − v = ((x, y)(

(
et 0
0 e−t

)
− I), 0). As the choice of v is

arbitrary, Γ′ ∩ R2 (R2 ⊂ Sol) must be a lattice in R2. Therefore we can choose a set of
basis v1 = (v11, v12, 0), v2 = (v21, v22, 0), v3 = (v31, v32, v33) of Γ′. Under the basis {v1, v2},
conjugation by t̄ is represented by an integral Anosov matrix C.

There exists d1, d2 ∈ Z such that t̄v3t̄
−1 = v3 + d1v1 + d2v2 since the conjugation

t̄(_)t̄−1 preserves Γ′. From this formula we get(
v31
v32

)
= (

(
et 0
0 e−t

)
− I)−1(d1v1 + d2v2) =

(
v1 v2

)
(C − I)−1

(
d1
d2

)
Thus there exists integer numbers a, b, c such that v4 = av1 + bv2 + cv3 = (0, 0, u) lies
in the R summand of Sol × R. The subgroup Γ1 generated by {v1, v2, v4, t̄} is an in-
dex c subgroup of Γ. Furthermore, the conjugation by t̄ on (v1, v2, v4) is represented by
the matrix A = diag(C ′, 1) where C ′ is an Anosov matrix. Now let M ′ be the covering
space corresponding to Γ1, and we know that M ′ is a product of a Sol-manifold and S1. �

Sometimes we need to know the structure of all Sol× E-manifolds. Already we have:

Proposition 3.2 Any Sol×E-manifold has the structure of a T 3-bundle over S1. In the
basis of (v1, v2, v3) described above, the glueing matrix is of the form: C

a
b

0 0 1

 (C is Anosov)

(10) X = S2 × S2:
Iso0(S2 × S2) = SO(3)× SO(3) is compact. �
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4 Manifolds of Nil4, Sol4m,n, Sol
4
0 and Sol41 Geometry

In this section, we will determine the structure of Nil4, Sol4m,n, Sol
4
0 and Sol41-manifolds.

One common point of these geometries is that their point stablizers are trivial, i.e. they
are the structure group of themselves ([2, Section 6.5]). Manifolds of these geometries are
bundles over S1 with T 3 or Nil-manifold fiber.

1. Nil4-manifolds

By definition, Nil4 = R3 oA R, in which

A(t) =

1 t t2/2
0 1 t
0 0 1


Nil4 is nilpotent. Denote by e1, e2, e3; t the standard coordinates; the commutator

subgroup is N = [Nil4, Nil4] = R(e1, e2). By lemma 3.3, if Γ is a lattice in Nil4, then
Γ ∩N is again a lattice, and the quotient Γ′ = Γ/Γ ∩N is a lattice in Nil4/N = R2.

We can get more information about Γ ∩ N . Suppose v = (v1, v2, 0; 0) ∈ Γ ∩ N , then
for any h ∈ Γ′, hvh−1 − v lies in Re1. There must exist a h such that hvh−1 6= v; hence
Γ ∩ Re1 is nonzero. We can therefore assume that Γ ∩ N is generated by l = (l1, 0, 0; 0)
and h = (h1, h2, 0, 0).

Assume x = (x1, x2, x3;x4), y = (y1, y2, y3; y4) are two elements of Γ that project to a
basis of Γ′ (i.e. x3y4 − x4y3 6= 0). By concrete calculation we have the following relation:

x
(
l h

)
x−1 =

(
l h

)(1 λ
0 1

)
(for some λ ∈ Z)

The same relation holds for y. Changing the basis elements x, y we can assume that x
commutes with l, h. This implies x4 = 0. Finally we calculate [y, x]:

[y, x] = (x2y4 + x3y
2
4/2, x3y4, 0; 0)

we find that [x, y] = lahb for a, b ∈ Z, b 6= 0.
The exact sequence 0 → Z(l, h, x) → Γ → Zy → 0 gives M the structure of T 3-bundle

over S1. To summarize, we have:

Proposition 4.1 If M is a Nil4-manifold, then M is a T 3-bundle over S1 with glueing
matrix

A =

1 λ a
0 1 b
0 0 1


such that λ 6= 0, b 6= 0. �

Calculating the homology groups of M , we have:

Proposition 4.2 H1(M,Z) = Z2 ⊕ (torsion), H2(M,Z) = Z2 ⊕ (torsion), H3(M,Z) =
Z2.
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Proof: We use the following mapping torus long exact sequence; its proof can be found
in [3, Section 2.2, Example 2.48].

H3(T
3,Z) 0 // H3(T

3,Z) // H3(M,Z) // H2(T
3,Z) 1−Λ2A // H2(T

3,Z) →

→ H2(M,Z) // H1(T
3,Z) 1−A // H1(T

3,Z) / / H1(M,Z) → Z → 0

Let x, y, z be a basis of H1(T
3,Z), such that A is represented by the matrix in Propo-

sition 4.1.
We have coker(1− A) = Z⊕ (torsion) where the Z-summand is generated by z.
Under the basis {x ∧ y, x ∧ z, y ∧ z} of H2(T

3,Z),

Λ2A =

1 λ λb− a
0 1 b
0 0 1


Hence coker(1−Λ2A) = Z⊕(torsion) where the Z-summand is generated by y∧z. Further-
more we have ker(1−A) = Z which is generated by x. Thus H2(M,Z) = Z2 ⊕ (torsion).
ker(1− Λ2A) = Z is generated by x ∧ y, and hence H3(M,Z) = Z2. �

Remark: From the proof of Proposition 4.1, we can find the generator of the torsion-
free parts of the homology groups. H1(M,R) is generated by two elements: α, being
represented by a section of the bundle, and β, a 1-dimensional ”subspace” of the T 3

fiber spanned by z, which is actually a S1. H2(M,R) is generated by two elementa: γ, a
hyperplane in T 3 spanned by {y, z}, and δ, a subbundle of M — its fiber is a 1-dimensional
subspace in T 3 spanned by x. H3(M,R) is generated by two elements: ε, the fiber T 3,
and φ, a subbundle of M whose fiber is the hyperplane in T 3 generated by {x, y}.

Using these generators, we can determine the product structure of H∗(M). We will
do the calculation in Proposition 5.5 and 6.5(2).

2. Sol4m,n-manifolds

By definition, Sol4m,n = R3 oA R, in which

A(t) =

eat 0 0
0 ebt 0
0 0 ect


The three real numbers a, b, c are the three roots of the equation x3−mx2+nx− 1 =

0(m,n ∈ Z) and are required to be nonzero and be different from each other. If two roots
have the same value, then there would S1 action, and the geometry becomes Sol40.

Sol4m,n is solvable and its nilradical is R3. If Γ is a lattice, then Γ∩R3 is a lattice and
Γ/(Γ ∩ R3) = Zt ⊂ R. Hence every Sol4m,n-manifold M can be regarded as a T 3-bundle
over S1. Let A be its glueing map. A is also the operator by which t(_)t−1 acts on the
lattice Γ ∩ R3. By the definition of Sol4m,n, ±1 are not eigenvalues of A.

Definition 4.1 If a (integral/real/complex) matrix A with det(A) = 1 does not have
eigenvalue λ such that |λ| = 1, then A is called Anosov. Such matrix always has
det(1− A) 6= 0.

13



Proposition 4.3 Sol4m,n-manifold has the structure of T 3-bundle over S1 with Anosov
glueing matrix A ∈ SL3(Z), and A has three different real eigenvalues. �

Proposition 4.4 Let M be a Sol4m,n-manifold. Then H1(M,R) = R and H2(M,R) = 0.

Proof: Again we use the mapping torus sequence. The sequence has the same form as in
Proposition 4.2, but the matrix A here is Anosov. Since Λ2A = A−1, Λ2A is also Anosov.
Hence in real coefficient, 1−A and 1−Λ2A are both isomorphisms. The homology groups
are now clear. �

3. Sol40-manifolds

By definition, the structure group of Sol40 is G = R3 oA (R× SO(2)) where

A(t, θ) =

 et cos θ et sin θ 0
−et sin θ et cos θ 0

0 0 e−2t


and the geometry is Sol40 = G/SO(2). Let Γ ⊂ G be discrete and M = Γ\X is compact.
Γ\G is a S1-bundle over X and hence is compact; therefore Γ is a lattice in G. G is
solvable and its nilradical is N = R3. By Lemma 3.2, Γ′ = Γ ∩N ⊂ N and H = Γ/Γ′ ⊂
G/N = R× SO(2) are both lattices.

There are only two kinds of lattices in R× SO(2): Z and Z⊕ Zn. If H ∼= Z, then we
suppose that H is generated by (t0, θ0), t0 6= 0. In this case, M is a T 3-bundle over S1

with glueing matrix A ∈ SL3(Z) which is conjugate to et0 cos θ0 et0 sin θ0 0
−et0 sin θ0 et0 cos θ0 0

0 0 e−2t0


If H ∼= Z⊕ Zn, then suppose that H is generated by a = (t, θ), t 6= 0, and b = (0, φ),

where φ = 2π/n. The conjugation action by a and b both preserves Γ′ ∼= Z3 and are
isomorphisms on it. They are represented by matrices

A =

 et cos θ et sin θ 0
−et sin θ et cos θ 0

0 0 e−2t

 , B =

cos(2π/n) sin(2π/n) 0
sin(2π/n) cos(2π/n) 0

0 0 1


Let (x, y, z) be standard coordinates in R3. We claim that Γ′ has non-empty in-

tersection with the z-axis. Otherwise, there must exist v = (v1, v2, v3) ∈ Γ′ such that
(v1, v2) 6= (0, 0) and v3 6= 0. However, v + Bv + B2v + . . . + Bn−1v is nonzero and must
lie in the z-axis, which is a contradiction.

Clearly z is an eigenvector of A with eigenvalue e−2t. However, the z-axis has non-
empty intersection with Γ′, which implies that e−2t must be an integer, and since t 6= 0
it is not equal to 1. det(A), which is an integer, is divisible by e−2t, hence cannot be 1.
This leads to a contradiction, and hence H ∼= Z⊕ Zn cannot happen.

Summarizing our results, we have:

Proposition 4.5 Sol40-manifold has the structure of T 3-bundle over S1 with Anosov glue-
ing matrix A ∈ SL3(Z). A either has one real and two complex eigenvalues, or has three
real eigenvalues in which two are equal. �
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For the converse statements, we have:

Proposition 4.6 Let M be a T 3-bundle over S1 with glueing matrix A, and A is an
Anosov matrix. Then M has Sol4m,n or Sol40 structure.

Proof: A either has 1⃝: three distinct real eigenvalues, or 2⃝: a double eigenvalue, or 3⃝:
one real and two complex eigenvalues.

1⃝: If A has three real eigenvalues a 6= b 6= c, then suppose its characteristic
polynomial is pA(x) = x3 − mx2 + nx − 1, where we let the numbers m,n be the
same as the numbers m,n in Sol4m,n. A is diagonalizable: P−1AP = diag(a, b, c) for
some real matrix P . Let vi(i = 1, 2, 3) be the column vectors of P , and the lattice
Γ = (jv1 + kv2 + lv3 +m)|j, k, l,m ∈ Z ∈ Sol4m,n has Γ\Sol4m,n = M .

3⃝ can be proved by the same method as 1⃝. 2⃝ is just a special case of 3⃝. �

Proposition 4.7 If M is a Sol40-manifold, then H1(M,R) = R and H2(M,R) = 0.

Proof: it is the same as Proposition 4.4 �

4. Sol41-manifolds

By definition, Sol41 = Nil oA R, where

A(t) :

1 x z
0 1 y
0 0 1

 7→

1 etx z
0 1 e−ty
0 0 1



Note that the center of Sol41 is spanned by z =

1 0 1
0 1 0
0 0 1

. Sol41 is solvable and its

nilradical is Nil. If Γ ⊂ Sol41 is a lattice, then by Lemma 3.2, Γ′ = Γ ∩ Nil is also a
lattice, and Γ/Γ′ = Zl ⊂ Sol41/Nil = R. Let L ∈ Γ be any element which projects to l.

The structure of Γ′ is quite clear. The group Nil has an exact sequence 0 → R →
Nil → R2 → 0, where the first term R is spanned by z. There is also an exact sequence
of Γ′ which is compatible with that of Nil:

0 → Γ′ ∩ R(∼= Z) → Γ′ → Γ′/(Γ′ ∩ R)(∼= Z2) → 0

This expresses E = Γ′\Nil as a circle bundle over T 2 (with nonzero Euler number).
The conjugation action by L induces an isomorphism of Γ. Since [z, L] = 1, this

isomorphism respects the exact sequence of Γ′:

0 // Γ′ ∩ R //

=

��

Γ′ //

��

Γ′/(Γ′ ∩ R)(∼= Z2) //

C
��

0

0 // Γ′ ∩ R // Γ′ // Γ′/(Γ′ ∩ R)(∼= Z2) // 0

By looking at the definition of Sol41, we know that C is an Anosov matrix.
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M = Γ\Sol41 is a E-bundle over S1 with glueing map f . By the above discussion, f
can be described as:

S1 //

=
��

E //

f
��

T 2

C
��

S1 // E // T 2

i.e. F is a bundle isomorphism of E covering an Anosov map of T 2. This describes the
structure of Sol41-manifolds.

Summarizing our results:

Proposition 4.8 Let M be a Sol41-manifold. Then there exists a 3-manifold E which is
a circle bundle over T 2 (with nonzero Euler number), and a bundle isomorphism f of E,
such that M is a E-bundle over S1 with glueing map f . �

The converse conclusion is also correct:

Proposition 4.9 Let E be a circle bundle over T 2 with Euler number k 6= 0. M is a
E-bundle over S1 with glueing map f ∈ Aut(E), such that f is a bundle isomorphism of
E which covers an Anosov map C of T 2. Then M has Sol41 geometry.

Remark: The isotopy class of bundle isomorphism is classified by [T 2, S1] = H1(T 2,Z),
and is determined by the induced isomorphism f∗ on π1. What we essentially prove here
is that all possible bundle isomorphism f can be realized.

Proof: π1(M) is generated by π1(E) and an additional element K, which satisfies the
relation KgK−1 = f∗(g) for g ∈ π1(E).

Let x =

1 1 0
0 1 0
0 0 1

 , y =

1 0 0
0 1 1
0 0 1

 , z =

1 0 1
0 1 0
0 0 1

 be standard generators of Nil.

For a real number u, denote by xu the matrix

1 u 0
0 1 0
0 0 1

 (yu, zu is analogous).

We first embed π1(E) into Nil. Suppose that π1(E) = Γ′ ⊂ Nil is generated by
e1 = xuyv, e2 = xwyt and e3 = z. The real numbers u, v, w, t are to be determined.
The Euler number of E is k(k 6= 0) implies that [e1, e2] = zk, which is equivalent to
ut− vw = k.

Let C =

(
p q
r s

)
. Then we can suppose that f∗(e1) = ep1e

r
2z

b1 , f∗(e2) = eq1e
s
2z

b2 and

f∗(z) = z. Since C is Anosov,(
u′ w′

v′ t′

)−1

C

(
u′ w′

v′ t′

)
=

(
el 0
0 e−l

)
for some real numbers u′, v′, w′, t′, l. By multiplying with a constant number, we can make
u′t′ − v′w′ = k hold. Then we set u = u′, v = v′, w = w′, t = t′.

Set D =

(
u w
v t

)
and define

(
i
j

)
= D−1C−1

(
b1
b2

)
. Let L = (0; l) ∈ Nil o R = Sol40.

Define K = xjy−iL. By direct calculation, we can check that K(_)K−1 is the same
as f∗, both being isomorphisms of Γ′. Therefore, the subgroup of Sol41 generated by
{e1, e2, e3, K} is isomorphic to π1(M). �

Finally we calculate the homology of Sol41-manifolds.
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Proposition 4.10 Let M be a Sol41-manifold. Then H1(M,R) = R, H2(M,R) = 0.

Proof: The notations E, f has the same meaning as above.
The homology of E can be calculated by the Wang sequence:

0 / / H1(T 2,R) // H1(E,R) // H1(S1,R) e
=

// H2(T 2,R)

which implies that H1(E,R) = H2(E,R) = R2.
Then we apply the mapping torus sequence:

H3(E,R) 0 // H3(E,R) // H3(M,R) // H2(E,R)
1−f∗|H2 // H2(E,R) →

→ H2(M,R) // H1(E,R)
1−f∗|H1// H1(E,R) // H1(M,R) → R → 0

Since f is an bundle morphism, f ∗ respects the Wang sequence. Hence f ∗|H1 = tC
and is Anosov. By Poincare duality, f ∗|H2 = C−1 is Anosov; so does f∗|H1 and f∗|H2 .
Now 1− f∗|H1 and 1− f∗|H2 are both isomorphism, and the result follows. �

We have another observation for Sol41-manifolds:

Proposition 4.11 If M is a Sol41-manifold, then M has the structure of a circle bundle
over a Sol-manifold B, and the Euler class is non-torsion.

Proof:: The bundle structure comes from the circle bundle structure of E. f is a bundle
isomorphism of E which covers an Anosov map C of T 2. The projection of E to T 2 is
f -equivariant, so induces a global circle bundle structure on M . The base manifold B is
a T 2-bundle over S1 with glueing map C, and hence is a Sol-manifold.

If e(M) is torsion, then M will finitely cover B × S1, and will have Sol×E geometry.
This contradicts Theorem 2.1. �

For Nil4-manifolds, we have anlogous results:

Proposition 4.12 If M is a Nil4-manifold, then M has the structure of a circle bundle
over Nil-manifold, and the Euler class is non-torsion.

Proof: By Proposition 4.1, M is a T 3-bundle over S1 with glueing matrix

A =

1 λ a
0 1 b
0 0 1


such that λ 6= 0, b 6= 0. By projecting to the last two coordinates, M is expressed as a
circle bundle over a Nil-manifold. If the Euler class is torsion, then M will have Nil×E
geometry, which contradicts Theorem 2.1. �
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5 Proof of Diagram 1-1 (without H2 ×H2): Arrows
Let us recall Diagram 1-1:

H2 × E2 //

��

H2 × S2

��

CP2

H3 × E

&&NN
NNN

NNN
NNN

88qqqqqqqqqqq

��;
;;

;;
;;

;;
;;

;;
;;

;;
; E4 // S2 × E2

((QQ
QQQ

QQQ
QQQ

QQ
// S2 × S2

OO

Sol × E

77ppppppppppp
S3 × E Nil4

ggPPPPPPPPPPPPP
oo

S̃L2R× E // Nil × E

OO

Sol4m,n, Sol
4
0, Sol

4
1

OO

Using the results developed in section 3 and 4, it is now easy to prove the arrows. Our
purpose to develop the notion of typical covering manifold is the following statement:

Proposition 5.1 Let X and Y be geometries. If every typical covering manifold of X
dominates some Y -manifold, then X → Y holds. �

Then we can begin the proof of arrows:

Proposition 5.2 (1) H2 ×E2 → H2 × S2 → S2 ×E2 → S2 × S2 → CP2. (2) H2 ×E2 →
E4 → S2 × E2 → S3 × E.

Proof: Use Proposition 5.1 and Table 3-1.
(1) Since high-genus surface dominates low-genus surface, we clearly have Σg1 × T 2

dominates Σg1 × S2 dominates T 2 × S2 dominates S2 × S2 dominates CP2.
(2) It is also clear that Σg ×T 2 dominates T 2 ×T 2 dominates S2 ×T 2 = S2 ×S1 ×S1

dominates S3 × S1. �

Proposition 5.3 (1) H3 ×E dominates H2 ×E2, Sol×E and S̃L2R×E. (2) Sol×E →
S2 × E2. (3) S̃L2R× E → Nil × E → S2 × E2.

Proof: This is a direct consequence of Corollary 7.5. �

Proposition 5.4 Nil4, Sol4m,n, Sol
4
0, Sol

4
1 dominates S3 × E.

Proof: By Proposition 4.1, 4.3, 4.5 and 4.8, manifolds with Nil4, Sol4m,n, Sol
4
0 or Sol41

geometry have the structure of a fiber bundle over S1. Let M be such a manifold. We
can find a section s of M and a tubular neighborhood U ⊃ s such that the intersection of
U with each fiber is homeomorphic to a disk. By contracting the complement of this disk
on every fiber, we get a map from M to a S3-bundle over S1, which must be isomorphic
to the trivial bundle S3 × S1. �

To determine which geometry dominates S2 × S2, we need to develop a technical
lemma:
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Lemma 5.1 There exists f : M → S2 × S2 with deg(f) 6= 0 iff b2(M) > 1 and there is a
nonzero element x ∈ H2(M,R) such that x2 = 0.

Proof: Let a, b be the standard generators of H2(S2 × S2,R).
If such f exists, then f ∗(a)f ∗(b) = f ∗(ab) = deg(f)[M ] 6= 0 and f ∗(a)2 = f ∗(b)2 = 0.

This implies that f ∗(a) and f ∗(b) are linearly independant, and thus b2(M) > 1. a is our
desired element x.

Conversely: x2 = 0 means that the intersection form of M is not definite. Hence there
exists another nonzero element y ∈ H2(M,R) such that y2 = 0 and xy 6= 0. x induces
a map fx : M → CP∞ which by cellular approximation, can be homotopied to a map
f ′
x : M → CP2. Since x2 = 0, we have deg(f ′

x) = 0. This implies that f ′
x can be deformed

to a map f ′′
x : M → S2. Similarly, we can define f ′′

y . Consider f = f ′′
x ×f ′′

y : M → S2×S2.
We have deg(f)[M ] = xy hence deg(f) 6= 0. �

Proposition 5.5 Nil4 → S2 × S2.

Proof: By Proposition 4.2, a Nil4 manifold has b2 = 2. �

Now the arrows in Diagram 1-1 are all proven.

6 Proof of Diagram 1-1: Non-arrows (Part 1)
In this section, we prove a part of the non-arrows. Those we wish to prove cannot

be derived from lower-dimensional results, and must be proved independently. The proof
depends on several technical lemmas:

Lemma 6.1 If f : M → N is of nonzero degree, then the image of f∗ : π1(M) → π1(N)
is of finite index in π1(N).

Proof: Let d = deg(f) and H = Im(f∗). If [π1(N) : H] > d, then there exists a subgroup
H ′ ⊂ π1(N) such that ∞ > [π1(N) : H ′] > d. Let N ′ be the (finite) covering space of N
such that π1(N

′) = H ′, and denote by p the projection map. By knowledges of covering
spaces, there exists a map f ′ : M → N ′ such that f = pf ′. Calculating the degree we get
a contradiction. �

Corollary 6.1 If g1 < g2, then Σg1 does not dominate Σg2. If S is simply-connected,
then S × Σg1 does not dominate S × Σg2.

Proof: If f : Σg1 → Σg2 has nonzero degree, then by Lemma 6.1, there exists a finite
cover Σg3 → Σg2 and a lifted map f̃ : Σg1 → Σg3 , such that f̃∗ : π1(Σg1) → π1(Σg3) is
surjective. Obviously g3 > g2; and f̃∗ : H1(Σg1 ,Z) → H1(Σg3 ,Z) is also surjective. This is
impossible.

The second conclusion holds for the same reason. �

A K(G, 1) is a CW complex which has contractible universal cover and has fundamen-
tal group G; the homotopy type of K(G, 1) is unique. A detailed introduction of K(G, 1)
can be found in section 1.B of [3]. If X is a geometry which is not S4, S3 × E2, S2 ×
S2, S2 × E2 or S2 ×H2, then every X-manifold is a K(G, 1).
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Lemma 6.2 ([3, Proposition 1B.9]) Let M be a connected CW complex and let N be
a K(G, 1). Then every homomorphism π1(M) → π1(N) is induced by a map M → N
which is unique up to homotopy. �

The fundamental criterion for non-arrows is the following statement. This criterion is
much stronger than the definition of non-domination, but still grabs the essence.

Proposition 6.2 Assume that X, Y are two geometries, and A (resp. B) is a set of
typical covering manifold for X (resp. Y ). If for every M1 ∈ A and M2 ∈ B, M1 does
not dominate M2, then X 9 Y .

Proof: Pick any X-manifold M1, and assume that M1 dominates some Y -manifold M2.
M2 is finitely covered by some M ′

2 ∈ B. The pull back M ′
1 = M1 ×M2 M

′
2 is a finite cover

of M1, and is covered by some M ′′
1 ∈ A. The composition map M ′′

1 → M ′
1 → M ′

2 is of
nonzero degree, which contradicts the assumption in our proposition. �

Now we start proving non-arrows. We do not need to prove every non-arrow, since
the domination relation is transitive. For example, if we wish to prove that Nil4 does
not dominate any other geometries except those shown in the diagram, we only need to
show that it does not dominate S2 × E2, Sol40, Sol

4
m,n and Sol41. For another example, if

we have shown that H2 ×E2,H3 ×E, Sol40, Sol4m,n and Sol41 does not dominate Nil4, then
there would be no extra arrows pointing toward Nil.

With a little effort, we can check that the propositions proved below, combined with
Corollary 8.1, are sufficient to imply all non-arrows.

Proposition 6.3 (1) CP2 9 S2×S2, CP2 9 S3×E. (2) S2×S2 9 S3×E, S3×E 9 CP2.

Proof:
(1) Note that CP2 is the only CP2-manifold — a consequence of the Lefschetz fixed-

point formula. The first conclusion is from Lemma 5.1 and b2(CP2) = 1. The second
conclusion is from H1(CP2) = 0 so that CP2 does not dominate S3×S1. By Table 3-1(3),
S3 × S1 is the typical covering manifold of S3 × E.

(2) Clearly S2×S2 does not dominate S3×S1 and S3×S1 does not dominate CP2. �

Corollary 6.4 S2 × S2 and S3 × E dominates no other geometry except those indicated
in the domination diagram. �

Proposition 6.5 (1) Sol4m,n, Sol
4
0, Sol

4
1 does not dominate CP2. (2) Nil4 does not dom-

inate S2 × E2. (3) Nil4, Sol4m,n, Sol
4
0, Sol

4
1 does not dominate each other.

Proof:
(1) By Proposition 4.4, 4.7, 4.10, Sol4m,n, Sol

4
0, Sol

4
1-manifolds have b2 = 0.

(2) Let M be any Nil4-manifold. Again we look back at the remark below Proposition
4.2, and use the notations defined there. H3(M,R) is generated by ε, which is represented
by the T 3-fiber, and φ, which is a subbundle. The intersection of these two chains is a
hyperplane in the T 3 fiber, which is spanned by {x, y}. Denote this chain by c. From the
proof of proposition 4.2, we can know that c lies in the image of 1−A (here the coefficient
is real numbers), and thus projects to zero in H2(M,R). Now denote by ε̂, φ̂ ∈ H1(M,R)
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the Poincare dual of ε, φ, then we have ε̂φ̂ = 0 ∈ H2(M,R). Since they generates H1, for
any two elements u, v ∈ H1(M,R) we have uv = 0.

Suppose that f : M → S2×T 2 is of nonzero degree. Assume that a, b ∈ H1(S2×T 2,R)
and c ∈ H2(S2 × T 2,R) are standard generators, then we have abc = ±[S2 × T 2] and
f ∗(abc) = (f ∗(a)f ∗(b))f ∗(c) = 0, thus deg(f) = 0. Finally use Proposition 5.6 and Table
3-1(4).

(3) By Proposition 4.1, 4.3, 4.7 and 4.10, if M is a manifold of Nil4, Sol4m,n, Sol
4
0 or

Sol41 type, then π1(M) has the form π1(M) = N oA Z, where N is Z3 or the fundamental
group of a Nil-manifold, and A ∈ Aut(N).

Let M1 be a Sol41-manifold, M2 be of Nil4, Sol4m,n or Sol40 type, and suppose f :
M1 → M2 be of nonzero degree. By Lemma 6.1, after taking a finite cover of M2 we can
assume that f∗ : π1(M1) → π1(M2) is surjective. Assume that π1(M1) = N oA Z and
π1(M2) = Z3oBZ, where N is nilpotent but not abelian. f∗ maps N to a normal subgroup
of π1(M2), which must be contained in Z3. Therefore, f∗ factors through N/[N,N ] = Z2.
Clearly N cannot be sent surjectively onto Z3, and hence f∗ is not surjective. This implies
M1 cannot dominate M2. For analogous reason, M2 does not dominate M1.

Now let M1,M2 both be of Nil4, Sol4m,n or Sol40 type, and their geometries are different.
Suppose that f : M1 → M2 be of nonzero degree. By taking a finite cover of M2, we can
assume that f∗ is surjective. Assume that π1(M1) = Z3oAZ and π1(M2) = Z3oBZ, where
A and B are elements in SL3(Z). f∗ takes Z3 ⊂ π1(M1) into Z3 ⊂ π1(M2), and must be
an isomorphism. Denote this isomorphism by P . Let t be the generator of Z ⊂ π1(M1)
and t′ the generator of Z ⊂ π1(M2). Then f∗ maps t to ut′ for some u ∈ Z3. For any
v ∈ Z3 ⊂ π1(M1), we have

PAv = f∗(Av) = f∗(tvt
−1) = ut′f∗(v)t

′−1(−u) = Bf∗(v) = BPv

which implies B = PAP−1. But M1 and M2 has different geometry. Proposision 4.1, 4.3
and 4.5 tell us that A and B cannot be conjugate. Therefore the assumed f does not
exist. �

Corollary 6.6 Nil4, Sol4m,n, Sol
4
0, Sol

4
1 dominates no other geometry except those indi-

cated in the domination diagram. �

Proposition 6.7 (1) S2 × E2 9 H2 × S2. (2)S2 × E2, H2 × S2 dominates no other
geometry except those indicated in the domination diagram.

Proof:
(1) follows from Table 3-1(4)(7), Corollary 6.1 and Proposition 6.2.
(2) Let M be of S2 ×E2 or H2 ×S2 geometry, thus is finitely covered by Σg ×S2 (g ≥

1). Assume that N is geometric and the geometry of N is not S2 × E2,H2 × S2, nor
S2 ×S2, S3 ×E,CP2. Note that all other geometries are contractible; N is a K(G, 1). By
Lemma 6.2, every map Σg × S2 → N is homotopic to a map Σg × S2 → Σg → N where
the first map is the projection. This map has zero degree for dimension reason. �

Proposition 6.8 E4, Nil × E, Sol × E and S̃L2R× E does not dominate H2 × S2.
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Proof: Let M be a typical covering manifold of any of these geometries. M has the form
N × S1. π1(M) has non-trivial center, which must be mapped to zero by f∗. By Lemma
6.2, f∗ can be homotopied to compress the S1 factor of M , hence has zero degree. �

Proposition 6.9 H3 × E does not dominate Nil4, Sol4m,n, Sol
4
0 or Sol41.

Proof: Assume that M1 = N × S1 is a typical covering manifold of H3 × E, and M2 is
any Nil4, Sol4m,n, Sol

4
0 or Sol41-manifold. f : M1 → M2 is a map of nonzero degree. By

taking a finite cover of M2, we assume that f∗ is surjective on fundamental groups.
For Sol4m,n and Sol40 case: By Proposition 4.3 and 4.5, π1(M2) has trivial center. But

π1(M1) has nontrivial center, thus we have a contradiction.
For Nil4 and Sol41 case: By Proposition 4.12 and 4.11, M2 is a circle bundle: S1 →

M2 → F where F is of Nil or Sol type. Thus π1(M2) fits into an exact sequence:
0 → Z → π1(M2) → π1(F ) → 0. Furthermore, Z is the center of π1(M2); and f∗ must
send π1(S

1) ∈ π1(M) isomorphically onto Z. Regarding M1 as a trivial circle bundle
over F , and by Lemma 6.2, f is homotopic to a bundle morphism f ′. f ′ induces a map
g : N → F . g is of nonzero degree since f is (otherwise, g can be homotopied to a map
from N to the 2-skeleton of F . By the homotopy lifting property, f ′ can be homotopied
to the 3-skeleton of M2).

Note that f ′ induces a bundle isomorphism between M1 and g∗M2, so we have g∗e(M2) =
e(g∗M2) = e(M1) = 0 where e denotes Euler class. By Proposition 4.12 and 4.11, e(M2) is
non-torsion, hence is nonzero in H2(F,R). By Poincare duality, there exists a ∈ H1(F,R)
such that ae(M2) = λ[F ] (λ 6= 0). However, λg∗([F ]) = g∗(ae(M2)) = g∗(a)g∗(e(M2)) = 0,
so deg(g) = 0. �

7 Product Geometry Splitting
Inspired by Table 3-1 and its proof, we are able to prove the following generalized

conclusion:

Proposition 7.1 Let X be any geometry of dimension 2, 3 or 4, and n be any positive
integer. Then every X × En-manifold is finitely covered by N × T n where N is a X-
manifold.

Proof: Discuss case by case. First we fix our notation: G0 is the structure group of
X × En, G is the structure group of X. Γ is a discrete subgroup of G0 acting freely on
X such that M = Γ\X is compact. We have explained in section 3 that Γ is a lattice in G0.

(1) X = Sk(k = 2, 4):
G0 = SO(k + 1) × Iso0(En). Odd-dimensional orthogonal operator has fixed-point,

hence the projection map Γ → Iso0(En) is an isomorphism. M is expressed as a Sk-
bundle over a Euclidean n-manifold. Passing to a finite cover we can assume that the base
manifold B is T n, and now Γ ∼= Zn. Let gi = (φi, vi) be a basis of Γ where φi ∈ SO(k+1).
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As all the φi commutes, they are simultaneously diagonalized to the form

cos a − sin a
sin a cos a

1

 or


cos a − sin a
sin a cos a

cos b − sin b
sin b cos b

1


This means that φi has common fixed point on Sk. This fixed point induces a section of
M over B, and thus M is a trivial circle bundle over B. �

The case X = S2 × S2 can be proved in the same way.

(2) X = S3:
M is a smooth orbifold fibration over Euclidean n-orbifold with general fiber a S3-

manifold. Taking covering spaces first with respect to the base orbifold and then with
respect to the fiber (the reader can check this), we can show that M is finitely covered
by a S3-bundle over T n.

Next, the situation is analogous to (1). The difference is that φi does not necessarily
has fixed point. But we can still diagonalize φi to the form:

cos ai − sin ai
sin ai cos ai

cos bi − sin bi
sin bi cos bi


Let us fixed the basis of R4 such that φi has the form above. The following map

induces a section of M over T n:

Σλivi 7→
1√
2
(cos(Σλiai), sin(Σλiai), cos(Σλibi), sin(Σλibi))

Hence M is a trivial S3-bundle over T n. �

The same method applies to the case X = CP2, where G0 = SU(3)× Iso0(En).

(3) X = H2,H3,H2 ×H2:
In this case, G0 = G × Iso(En). G is semisimple. By Lemma 3.4 (for n = 1, 2) and

Lemma 7.1 below (for n > 2; the group S is G × SO(n) here), Γ′ = Γ ∩ Iso0(En) is a
lattice (because Γ ∩ Rn is a lattice), and the image H of the projection map Γ → G is
also a lattice.

If Γ′ contains only translation, then M is a Seifert T n-bundle over H/X. Passing to a
finite cover we can assume that H/X is smooth. The monodromy lies in SO(n)∩SL(Γ′).
This is a finite group (since SL(Γ′) is discrete, and any x ∈ SO(n) has ||x||2 = 1). The
rest of proof is the same as Table 3-1(5).

Suppose that Γ′ contains a non-translation element g. The translation subgroup of Γ′

(denote by Γ′′) is of finite index. Denote by K the image of projection: Γ → Iso0(En).
K fit into an exact sequence: 0 → K ′ → K → K ′′ → 0 where K ′ = K ∩ Rn and
K ′′ = K/K ′ ⊂ SO(n). From conjugation acions (K ′ on Γ′, and K ′′ on Γ′′), we can show
that Γ′′ is of finite index in K ′, and K ′′ ⊂ SO(n)∩ SL(Γ′′). Hence K is discrete. Then it
is easy to show that Γ ∩G is a lattice in G, and K/Γ′ is finite. Finally, Γ′ × (Γ ∩G) is a
finite-index subgroup in Γ; M is finitely covered by (En-manifold)×(X-manifold). �
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Lemma 7.1 ([9, Corollary 8.28]) Let G be a connected Lie group, R be its radical. Let
S be a semisimple subgroup of G such that G = SR. Denote by σ the conjugation action
of S on R. Assume that ker(σ) has no compact factor in its identity component. Then if
Γ is a lattice in G, Γ ∩R is a lattice in R. �

(4) X = S̃L2R:
G0 = (S̃L2R ×Z R) × Iso0(En). Denote N = R × Iso0(En), in which the R factor is

the center of Iso0(S̃L2R). We claim that Γ′ = Γ ∩N is a lattice. The remaining part of
the proof works in the same way as in (3) and Table 3-1(7).

The case n = 1, 2 follows from Lemma 3.4; it suffices to prove the case n > 2. The
proof here is based on the proof of ([9, Theorem 8.27]). Denote R = R × Rn, and by p1
the projection map G0 → G0/R = Iso0(H2) × SO(n). Denote by p2 the projection map
Iso0(H2)×SO(n) → Iso0(H2). Let U be the closure of p1(Γ). According to ([9, Theorem
8.24]), the identity component U0 is solvable. The group V = p2(p1(Γ)) ⊂ Iso0(H2) has
property (S) as defined in Chapter 5, [9]. For the same reason as in ([9, Theorem 8.27]),
p2(U

0) is a normal subgroup of Iso0(H2), and is trivial. V̄ 0 has three possibilities: 1⃝ is
trivial, then our claim is proven. 2⃝ V̄ 0 is a proper closed subgroup of Iso0(H2). Its Lie
algebra v is preserved by the adjoint action of V . By [9, Corollary 5.16(i)], v is normal
in iso(H2), and is trivial. 3⃝ V̄ 0 = Iso0(H2), i.e. V is dense. In addition that SO(n)
is compact, given any p ∈ Iso0(H2), there exists a sequence gi ∈ p1(Γ) converging to
(p, q) for some q ∈ SO(n). This means that p2(U) = Iso0(H2). On the other hand, since
U0 ⊂ SO(n), p2(U) = p2(p1(Γ)). Γ is finitely-generated, this is impossible. �

(5) X = H2 × S2:
M is a S2-bundle over a H2 × En-manifold, hence is covered by a S2-bundle over

Σg × T n. Let ai, bi(i ≤ i ≤ g), ei(1 ≤ i ≤ n) be the standard generetors of Σg × T n. Since
[ai, ej] = [bi, ej] = [ei, ej] = 1, for the same reason as in (1), M has a section and is a
trivial bundle. �

(6) X = Nil:
The proof is quite similar to Table 3-1(8). In this case, G0 = (NiloS1)×(RnoSO(n)).

From Lemma 7.1 (for n > 2) and Lemma 3.2 (for n = 1, 2) we know that Γ∩(Nil×Rn) is a
lattice. The quotient group is finite; taking a finite cover we can assume that Γ ⊂ Nil×Rn.
Working as in Table 3-1(8), we can then prove that Γ∩(R×Rn) is a lattice. Hence M is a
T n+1-bundle over T 2. The monodromy is again trivial, and finally M splits as a product
of T n and a Nil-manifold. �

The remaining cases are Sol,Nil4, Sol40, Sol
4
m,n, Sol

4
1. They are their own structure

group, and are solvable. In these cases, G0 = G× Iso0(En) = (G×Rn)oSO(n). Lemma
7.1 applies to all cases for n > 2: Denote G′ = G × Rn, then Γ ∩ G′ is a lattice. The
quotient is a lattice in SO(n), hence is finite. Replacing M by a finite cover, in the
following paragraphs we assume that Γ ⊂ G′.

(When n = 2, use Lemma 3.2 instead and we can prove the same conclusion after
some adjustment of the proofs below.)

(7) X = Sol:
Γ ⊂ Sol×Rn is a lattice. Denote N = V1 × V2 where V1 = R2 is the nilradical of Sol,

and V2 = Rn. By Lemma 3.2, Γ∩N is a lattice. Analogous to Table 3-1(9), we can show

24



that there exists a finite-index sublattice Γ′ = Γ1 × Γ2 ⊂ Γ such that Γi are lattices in Vi.
Thus M is finitely covered by (Sol-manifold)×T n. �

(8) X = Sol40, Sol
4
m,n:

We have Proposition 4.3, 4.5. Then the proof is analogous to (7). �

(9) X = Nil4:
Now Γ ⊂ Nil4 × Rn. Denote by (e1, e2, e3; t) the standard coordinates in Nil4. The

commutator subgroup is N = R(e1, e2). By Lemma 3.3, Γ ∩N is a lattice. According to
the conjugation relation (see section 4, part 1), we can assume that l = (l1, 0, 0; 0), h =
(h1, h2, 0; 0) is a basis of Γ ∩ N . Γ′ = Γ/(Γ ∩ N) ⊂ R2+n is also a lattice. Assume
that gi = (ui1, ui2, ui3; ti; vi1 . . . vin) ∈ Γ are n + 2 elements that projects to a basis of Γ′.
Without losing generality, we can assume that u13t2 − u23t1 6= 0. By some calculation,

[gi, gj] = (∗, uj3ti − ui3tj, 0; 0; 0 . . . 0)

Thus sij = uj3ti − ui3tj is an integral multiple of h2. For i = 3, 4 . . . n + 2, the element
g′i = g

s12/h2

i g
−s2i/h2

2 g
s1i/h2

1 has the form (wi1, wi2, 0; 0; ∗ . . . ∗). Assume t1 6= 0; calculating
g1hg

−1
1 and g1g

′
ig

−1
1 , we find that h2t1 and wi2t1 are all integral multiples of l1. Thus the

ratio between h2 and wi2 are all rational. Define g′′i = ag′i + bh (a, b ∈ Z), they will have
the form g′′i = (∗, 0, 0; 0; ∗ . . . ∗).

Denote by Γ1 the lattice generated by l, h, g1, g2, g
′′
3 . . . g

′′
n+2. It is a finite-index sub-

lattice of Γ. g′′3 . . . g′′n+2 freely generates an abelian subgroup U1 ⊂ Γ1. l, h, g1, g2 generates
a subgroup U2 which is isomorphic to a lattice in Nil4. Clearly Γ1 = U1 × U2. Hence M
is a product of Nil4-manifold and T n. �

(10) X = Sol41:
Γ ⊂ Sol41 × Rn is a lattice. In section 4 (part 4), we introduced the structure of Sol41.

By Lemma 3.2, Γ′ = Γ∩ (Nil×Rn) is a lattice. From our results in (6) and Table 3-1(8),
we can assume that Γ′ is generated by z, x, y, v1 . . . vn, where z ∈ Z(Nil), [x, y] = zk, vi ∈
Z(Nil)×Rn. Γ/Γ′ ⊂ Sol41/Nil = Z is also a lattice, and we suppose that t ∈ Γ projects to
the generator of it. Now v1 . . . vn freely generates an abelian group V1. z, x, y, t generates
a group V2 which is isomorphic to a lattice in Sol40. Also, Γ = V1 × V2. The product
structure follows. �

Finally, X = Ek follows from Bieberbach Theorem. �

Corollary 7.2 Suppose the dimension of X,Y are both 3 or 4. Then X → Y implies
X × En → Y × En. �

It is natural to may ask whether the converse holds. The answer is affirmative.

Proposition 7.3 Suppose M1,M2 are two manifolds of the same dimension. M2 is a
K(G, 1) and π1(M2) is torsion-free. If M1 × S1 dominates M2 × S1, then some finite
cover of M1 dominates M2.

Proof: Let f : M1×S1 → M2×S1 be a nonzero degree map. Denote by ti the generator
of Z = π1(S

1) ⊂ π1(Mi × S1). f∗(t1) is nonzero: otherwise from Lemma 6.2, f can be

25



homotopied to factor through M1 × {pt}, and cannot have nonzero degree. Since π1(M2)
is torsion-free, we have ker(f∗) ⊂ π1(M1). Let H ⊂ π1(M2×S1) be the image of f∗; clearly
H has finite index. Assume that the projection map H → Zt2 is surjective (otherwise we
replace the S1 factor in M2 × S1 by a finite cover of it).

Let m be the smallest integer such that t′2 = mt2 lies in H. Denote I = H ∩ π1(M2).
Then I × Zt′2 has finite index in H (Lemma 3.5). On the other hand: define L =
π1(M1)/ ker(f∗), then H = L× Z(f∗(t1)).

If f∗(t1) 6= t′2, then we use the following method to reduce to the case f∗(t1) = t′2.
First we claim that H ′ = (I ∩L)× (Z(f∗(t1))×Zt′2) is of finite index in H. This is clearly
a direct product. We have an exact sequence 1 → IL/(I ∩L) → H/(I ∩L) → H/IL → 1.
IL contains L and is not equal to L, thus is of finite index in H. There exists a, b ∈ Z
such that af∗(t1) ∈ IL, bt′2 ∈ IL. IL/(I ∩ L) is isomorphic to (IL/I) × (IL/L), and
af∗(t1), bt

′
2 generates a finite-index subgroup of it. Our claim then follows.

Then we take a finite cover of M1×S1 with respect to f−1
∗ (H ′). Since f∗(t1) ∈ H ′, the

covering map has the form p × id : M ′
1 × S1 → M1 × S1. K(H ′, 1) can be regarded as a

covering space of M2 × S1; it is a manifold. There is an automorphism of H ′ exchanging
f∗(t1) and t′2. This map induces a self homotopy equivalence φ : K(H ′, 1) → K(H ′, 1)
which has degree -1. Define a composed map F : M ′

1 × S1 → K(H ′, 1) → K(H ′, 1) →
M2×S1, where the first map is induced by f , the second map is the φ defined above, and
the third map is the natural projection. From our construction, deg(F ) is nonzero, and
F∗ maps t1 to t′2. Replacing M1 by M ′

1, and f by F , we reduce to the case f∗(t1) = t′2.
Now the homomorphism f∗ can be represented by a matrix:(

f∗1 : π1(M1) → π1(M2) 0 : π1(S
1) → π1(M2)

f∗2 : π1(M1) → π1(S
1) (×m) : π1(S

1) → π1(S
1)

)
By Lemma 6.2, f is homotopic to the following matrix of maps:(

f1 : M1 → M2 pt : S1 → M2

f2 : M1 → S1 g : S1 → S1

)
From the matrix, we have deg(f) = ± deg(f1) deg(g). deg(f) and deg(g) are both

nonzero, hence deg(f1) is. Our proposition follows. �

Proposition 7.4 Suppose that X,Y are geometries, and has dimension 3 or 4. in ad-
dition, X 6= H2 × H2 when Y is not contractible. Then X × En → Y × En implies
X → Y .

remark: The additional requirement is because we do not know whether H2 × H2

dominates non-contractable geometries (such as H2 × S2). Note that Proposition 7.3 is
not available in this case.

Proof: By Proposition 7.1, all X × En-manifolds are covered by N × T n, where N is
a typical covering X-manifold. Checking case by case (see Table 3-1), we can confirm
that the fundamental group of all typical covering X-manifolds are torsion-free. If Y is
contractible, then the conclusion follows from Proposition 7.3 and induction by n.

The remaining cases in which Y is not contractible can be implied by one of the terms
below:
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1⃝: S2 × S2 × En and S3 × En+1 does not dominate each other. It suffices to prove
S2 × S2 × T n and S3 × T n+1 does not dominate each other. This easily follows from
cohomology ring computation.

2⃝: CP2 × En 9 S2 × S2 × En. It suffices to prove CP2 × T n does not dominate
S2 × S2 × T n. It is also easy from cohomology.

3⃝: Nil4 × En does not dominate S2 × En+2. Cohomology computation can be found
in Proposition 6.5(2).

4⃝: (Sol4m,n, Sol
4
0, Sol

4
1)× En does not dominate CP2 × En. Cohomology computation

has been done in Proposition 4.4, 4.7 and 4.10.
5⃝: En+4, Sol × En+1 and S̃L2R × En+1 do not dominate H2 × S2 × En. The typical

covering manifolds of these geometries all have the form M = N ×T r(r > n). Every map
from M to Σg ×S2×T n can be homotopied to compress at least one S1 factor, hence has
zero degree for dimension reason. �

The following main theorem will be proved once we complete the discussion of H2×H2.

Corollary 7.5 Let X,Y be geometries of (the same) dimension 2,3,4. Then X → Y if
and only if X × En → Y × En.

8 Proof of Diagram 1-1: Non-arrows (Part 2)
We have come to the final step of the proof of Diagram 1-1. What is left is the

non-arrows in Diagram 1-2, which implies the remaining non-arrows of Diagram 1-1.

Lemma 8.1 ([10, Proposition 2.1]) Assume that M and N are two 3-dimensional
Seifert bundles which are both K(G, 1). f : M → N is of nonzero degree. Then e(M)
and e(N) are either both nonzero or both zero. �

Proof of Proposition 2.3:
Recall Diagram 1-2:

H2 × E // E3 // S2 × E // S3

H3 //

;;xxxxxxxxxx

))SSS
SSSS

SSSS
SSSS

SSSS
S S̃L2R // Nil

;;wwwwwwwwww

Sol

DD


















We need only prove:
(1) S3 9 S2 × E. This is clear.
(2) S2×E does not dominate any geometry except for S3. The method in Proposition

6.7 applies here.
(3) Sol 9 E3 because the first betti number of Sol-manifold is smaller than 3. Sol 9

Nil for the same reason as in the proof of Proposition 6.5(3).
(4) There are no more arrows between H2 × E,E3, S̃L2R and Nil. The reason is

Lemma 8.1. The conclusion is even stronger: any two manifolds having geometries that
are not connected by arrows does not have domination relation.
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(5) H2 × E, S̃L2R does not dominate Sol. This is because the fundamental group of
Sol-manifold has trival center. �

Corollary 8.1 Let X,Y be any 3-dimensional geometries. Except for those indicated in
Diagram 1-1, there is no more arrows between X × E and Y × E. �

With Corollary 8.1 and the propositions in section 6, we have completed the proof of
non-arrows in Diagram 1-1.

9 Results on H2 ×H2

In this section, we treat the last case: H2×H2. Our previous results are mainly based
on virtual splitting. However, not all H2 × H2-manifold virtually split into a product of
surfaces.

An H2 × H2-manifold M is called reducible if it is finitely covered by Σg1 × Σg2 .
Otherwise it is called irreducible. The fundamental group of a reducible manifold is
commensurable with a product of Fuchsian groups. The fundamental group of an irre-
ducible manifold is arithmetic, in the sense of [4, §9.5].

We separate H2 × H2-manifolds into two class: reducible ones and irreducible ones.
Manifolds belonging to different classes are not the covering of each other. The dominating
ability of these two classes of manifolds are quite different.

Reducible H2 × H2 clearly dominates H2 × E2. For non-domination, we have the
following result:

Proposition 9.1 Σg1×Σg2 does not dominate any Sol×E, Nil4, Sol4m,n, Sol
4
0, Sol

4
1-manifold,

as well as any typical covering Nil × E-manifold.

Proof:
Suppose that f : M1 → M2 has nozero degree, where M1 = Σg1 × Σg2 , M2 is any

Sol× E, Nil4, Sol4m,n, Sol
4
0 or Sol41-manifold, or any typical covering manifold of Nil× E.

By Lemma 6.1, we can take a finite cover of M2 such that f∗ is surjective on fundamental
groups. Proposition 3.1 guarantees that this causes no problem in the case of Nil×E. By
Proposition 3.1, 3.2, 4.1, 4.3, 4.5 and 4.8, π1(M2) has the form 1 → N → π1(M2) → Z → 0
where N is abelian or nilpotent.

Writting π1(M2) in the form π1(M2) = N oA Z, the action A is described in the
conclusions or proofs of the Propositions. We do not use the concrete form of A here,
only note that A is non-trivial.

Consider the subgroup f−1
∗ (N) ⊂ π1(Σg1)× π1(Σg2) = π1(M1), and denote by Hi the

image of the projection map f−1
∗ (N) ⊂ π1(Σg1)×π1(Σg2) → π1(Σgi). There are two cases:

(1): One of the Hi, say H1, is of infinite index in π1(Σg1). But there is an exact sequence
1 → f−1

∗ (N) → π1(Σg1)× π1(Σg2) → Z → 0 induced from the exact sequence of π1(M2).
Now f−1

∗ (N) ⊂ H1×π1(Σg2), and the only possibility is that f−1
∗ (N) = H1×π1(Σg2) and

π1(Σg2)/H1 = Z. Therefore, π1(Σg2) is mapped by f∗ into N .
In the cases of Nil × E, Sol × E, Nil4, Sol4m,n and Sol40, N = Z3. By Lemma 6.2, f is

homotopic to a composed map f ′ : Σg1 ×Σg2 → Σg1 ×T 3 → M2; we denote the latter map
Σg1 × T 3 → M2 by g. In the case of Nil × E , the center of π1(M2) is isomorphic to Z2.
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Hence by a further homotopy, g compresses one S1 factor of T 3 and thus factors through
Σg1 × T 2. Proposition 7.3 and 2.3 now tells us that deg(g) must be zero. In other cases,
the center of π1(M2) is either trivial or is isomorphic to Z, g∗ must send π1(T

3) = Z3 to
zero or Z. Anyway, g is homotopic to a map Σg1 × T 3 → Σg1 × S1 → M2, which has zero
degree for dimension reason. In all situations, we have deg(f) = 0.

In the case of Sol41, N is the fundamental group of a Nil-manifold E and can be
presented as N =< z, x, y : [z, x] = [z, y] = 1, [x, y] = zk >. z generates the center of N ,
which is also the center of π1(M2). f∗ factors through N , hence by Lemma 6.2, f is ho-
motopic to a composed map f ′ : Σg1 ×Σg2 → Σg1 ×E → M2; we denote the latter map by
g. To avoid confusion, we let π1(E) be presented as π1(E) =< z′, x′, y′ : [z′, x′] = [z′, y′] =
1, [x′, y′] = z′k >, which is isomorphic to N . By construction, g∗ maps z′ to z. Obviously
π1(Σg1 × E)/Zz′ ∼= π1(Σg1)× Z2. By Proposition 4.11, π1(M2)/Zz := L is isomorphic to
the fundamental group of a Sol-manifold. Taking this quotient on both sides, g∗ induces
a homomorphism ḡ∗ : π1(Σg1) × Z2 → L. However, being the fundamental group of a
Sol-manifold, L has trivial center. Hence Z2 ⊂ ker(ḡ∗). Returning to g∗, this means that
g∗ maps x′ and y′ into Zz. Then zk = g∗(z

′k) = g∗([x
′, y′]) = [g∗(x

′), g∗(y
′)] = 1 which is

a contradiction.

(2): Both Hi has finite index in π1(Σgi). Take a finite cover M ′
1 → M1 corresponding

to H1×H2, and still denote by f the composed map M ′
1 → M2. f∗(π1(M

′
1)) still contains

N ∈ π2(M2). We take a further cover M ′
2 → M2 corresponding to the image f∗(π1(M

′
1)).

Now π1(M
′
2) fits into the exact sequence 1 → N → π1(M

′
2) → Zm → 0, and we have

an induced map f ′ : M ′
1 → M ′

2 which has the same degree as f . f ′
∗ is still surjective on

fundamental groups. M ′
1 still has the form of Σg′1

×Σg′2
. f−1

∗ (N) is not changed. We now
replace M1 by M ′

1 and M2 by M ′
2, and inherit all the notations defined above.

The difference is that now we have Hi = π1(Σgi). Define Ii = f−1
∗ (N)∩π1(Σgi). Clearly

Ii are normal subgroups of π1(Σgi). According to Lemma 3.5, we have an isomorphism
f−1
∗ (N)/(I1 × I2) ∼= π1(Σg1)/I1

∼= π1(Σg2)/I2
∼= (π1(Σg1) × π1(Σg2))/f

−1
∗ (N) ∼= Z. If

x = (x1, x2) ∈ f−1
∗ (N) projects to a generator of f−1

∗ (N)/(I1 × I2), then x′ = (x1, 1)
projects to a generator of (π1(Σg1)× π1(Σg2))/f

−1
∗ (N). Clearly f∗(x

′) /∈ N and its image
generates π1(M2)/N = Z. Also, xi(i = 1, 2) projects to the generator of π1(Σgi)/Ii

∼= Z
(see the proof of Lemma 3.5).

We claim that f∗(x) 6= 1. Otherwise, for any y ∈ π1(Σg1), f∗((y, 1)x(y
−1, 1)) =

f∗(yx1y
−1, x2) = 1. Miltiplying by x−1 we get [x1, π1(Σg1)] ⊂ ker(f∗). Analogously,

[x2, π1(Σg2)] ⊂ ker(f∗). f∗(x) = 0 also implies that f∗ sends I1 × I2 surjectively onto N .
For any i = (i1, i2) ∈ I1 × I2, x′(i1, i2)x

′−1 = (x1i1x
−1
1 , i2) = (i1, i2)j where j ∈ ker(f∗),

but f∗(x
′)f∗(i)f∗(x

′−1) is not always equal to f∗(i), because π1(M2) = N oA Z and A is
not trivial. This leads to a contradiction.

Now since f∗(x) 6= 1, ker(f∗) ⊂ I1 × I2. We wish to determine the quotient group
(I1 × I2)/ ker(f∗). This is a normal subgroup of f−1

∗ (N)/ ker(f∗) ∼= N with quotient
f−1
∗ (N)/(I1 × I2) ∼= Z. Depending on the geometry of M2, N is isomorphic to Z3 or
Z2 oC Z(C is idempotent). Anyway, (I1 × I2)/ ker(f∗) must be isomorphic to Z2.

Denote by Ji the intersection ker(f∗) ∩ Ii, and by Pi the image of the projection:
ker(f∗) ↪→ I1 × I2 → Ii. For any a ∈ P1 and b ∈ π1(Σg1), by definition, there exists c ∈ I2
such that f∗((a, c)) = 1. Also 1 = f∗((b, 1)(a, c)(b, 1)

−1) = f∗((bab
−1, c)). Multiplying by

(a−1, c−1) ∈ ker(f∗), we have the conclusion [P1, π1(Σg1)] ⊂ ker(f∗). The conclusion for
P2 is analogous.

By Lemma 3.5, ker(f∗)/(J1 × J2) ∼= P1/J1 ∼= P2/J2 ∼= (P1 × P2)/ ker(f∗). The last
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group is a subgroup of (I1 × I2)/ ker(f∗) ∼= Z2. Hence there are three cases:
(a) (P1×P2)/ ker(f∗) = 0. This means that ker(f∗) = P1×P2 and (I1/P1)× (I2/P2) ∼=

Z2. Hence either I1/P1
∼= I2/P2

∼= Z, or I1 = P1, I2/P2
∼= Z2.

For the former case, π1(Σg1)/P1 must be isomorphic to Z2 or the Klein bottle group
since there is an exact sequence

0 → Z(= I1/P1) → π1(Σg1)/P1 → Z(= π1(Σg1)/I1) → 0

So does π2(Σg1)/P2. If both are Z2, then f∗ factors through Z2×Z2 which is abelian, and
cannot have finite-index image. If any one π1(Σgi)/Pi is the Klein bottle group, then we
take a double cover of Σgi and can derive the same contradiction.

For the latter case, π1(Σg1)/P1 = π1(Σg1)/I1
∼= Z. By Lemma 6.2, f is homotopic to

a map f ′ : Σg1 × Σg2 → S1 × Σg2 → M2 which has zero degree for dimension reason.
(b) (P1×P2)/ ker(f∗) ∼= Z. This means that (I1/P1)×(I2/P2) = (I1×I2)/(P1×P2) ∼= Z,

which implies that one of the groups Ii/Pi, say I1/P1, is trivial. As explained above,
Z ∼= (P1 × P2)/ ker(f∗) ∼= P1/J1, so I1/J1 ∼= Z. Again we have π1(Σg1)/J1

∼= Z2 (or
the Klein bottle group; and we take double cover). By Lemma 6.2, f is homotopic to
a map f ′ : Σg1 × Σg2 → T 2 × Σg2 → M2. Denote by g the latter map. For Sol ×
E, Nil4, Sol4m,n, Sol

4
0, Sol

4
1 geometry, the center of π1(M2) is either trivial or isomorphic to

Z. Hence after a homotopy, g compresses one S1 factor of T 2, therefore has zero degree
for dimension reason. For Nil×E geometry, Proposition 7.3 and Proposition 2.3 tells us
that deg(g) = 0.

(c) (P1×P2)/ ker(f∗) ∼= Z2. This means that P1 = I1 and P2 = I2. From the conclusion
above, [Ii, π1(Σgi)] ⊂ ker(f∗) (i = 1, 2). As a smaller subgroup, [Ii,Zxi] ⊂ ker(f∗). Now
we need another simple lemma:

Lemma 9.1 Let G be a group, H1, H2, H3 be subgroups. Assume that H2 is normal. Then
we have [H1, H2H3] ⊂ [H1, H2]N([H1, H3]). The notation N(H) denotes the smallest
normal subgroup of G containing H (abuse of notation).
Proof: It is easy to check that for any hi ∈ Hi, [h1, h2h3] = [h1, h2]h2[h1, h3]h

−1
2 . �

Proposition 9.1 cont’d: It is easy to see that [π1(Σgi),Zxi] = [IiZxi,Zxi] = [Ii,Zxi] ⊂
ker(f∗). Recall that Ii is normal in π1(Σgi). Use Lemma 9.1, we have [π1(Σgi), π1(Σgi)] =
[π1(Σgi), IiZxi] ⊂ ker(f∗) (ker(f∗) is normal). Thus f∗ factors through a map π1(Σg1) ×
π1(Σg2) → Z2g1+2g2 → π1(M2) which cannot be surjective. We get a contradiction. �

Corollary 9.2 Σg1 × Σg2 does not dominate any Nil × E-manifold.
Proof: Any finite cover of Σg1 × Σg2 is finitely covered by Σg′1

× Σg′2
for some g′1, g

′
2. �

The dominating ability of irreducible H2 ×H2 is much weaker:

Proposition 9.3 Let M be a irreducible H2×H2-manifold. Then M dominates S2×S2.
Proof: According to Matsushima’s result in [8], M satisfies b2(M) = 2+ b(2,0)(M), where
b(2,0) is the dimension of H(2,0)(M) (with respect to the natural Kahler structure on
M). Simple calculation of the dimension of cohomology groups leads to the conclusion
σ(M) = 0 (Wall has an elegant explanation of this in [17, §6]). It is well-known that
any indefinite unimodular quadratic form on an integral lattice represents zero (see [11,
§V.2]). Hence M satisfies the conditions of Propositon 5.1. �
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Proposition 9.4 Let M be a irreducible H2 ×H2-manifold. Then M does not dominate
any geometric manifold except CP2, S2 × S2 and its quotients.

Proof: The Margulis Normal subgroup Theorem (see [7, Chapter IV]) implies that any
normal subgroup of π1(M) has finite index.

Let M ′ be a typical covering manifold of any geometry except CP2 and S2 × S2; we
have b1(M

′) > 0 (check the geometries one by one). By Margulis’s Theorem, M cannot
dominate M ′, otherwise the inverse image of [π1(M

′), π1(M
′)] will be an infinite-index

normal subgroup of π1(M). �

In fact, all domination relations between irreducible H2 × H2-manifolds are trivial,
i.e. M dominates N iff M covers N . This follows from Margulis’s Theorem and Mostow
Rigidity.

One can easily see that no geometry dominates H2 × H2. The other geometries are
wither solvable, or has S2 or S3 factors, or has non-trivial center. The H2 × H2-part of
Diagram 1-1 is thus complete.

Completion of proof of Theorem 7.5: Except for what we have proved in Proposition
7.4, we only need to prove: When X = H2×H2 and Y is non-contractible, X 9 Y implies
X × En 9 Y × En.

It suffices to prove M × T n does not dominate S3 × T n+1, where M is any irreducible
H2 ×H2-manifold. For the same reason as in Proposition 9.4, we can prove that M × T n

dominates another manifold M1 only if b1(M1) ≤ n. �

Remark: We can regard the reducible and irreducible H2×H2 as two different geome-
tries. In this case, the reducible one dominates H2×E2 and the irreducible one dominates
S2×S2. If we regard H2×H2 as one geometry, it can only dominate S2×S2. Proposition
7.5 holds for both cases.

—————————————————————————————————
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