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Abstract

In this report, the author computed the homotopy ring of topological modular forms (tmf)
at the prime 2 using the Adams spectral sequence under the assumption that tmf is an Fo
ring spectrum and an He, ring spectrum with H*(tmf;Fa) = A ® 4¢2) Fo.
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1 Introduction

The Bott periodicity theorem is equivalent to the 8-periodicity of homotopy of the spectrum bo,
the connective real K-theory. By theorem 5.7, m,(bo) can give some informations (im.J) of ., (S°),
while the latter is difficult to compute. It is interesting to note that H*(bo;Fsy) = A®4(1)F2, where
A is mod (2) Steenrod algebra and A(1) is its sub-algebra generated by {Sq', S¢?}. It is nature to
consider if there is something with cohomology A ® 4(2) F2 and whether its homotopy can give us
more information about 7, (SY). Acturally, tmf, a spectrum constructed by Hopkins, Mahowald,
and Miller exactly has this property, and 7, (tmf) detects many (vs-)periodic families in 7, (S°)
indeed.

In this article, I will compute the homotopy of tmf by the Adams spectral sequence. In
section 2, the May spectral sequence for ¢tmf will be constructed and the structure of its E;-page
will be obtained. In section 3, I will compute differentials in the May spectral sequence by the
direct computation of cobar complex, algebraic Steenrod operations, and Massey products. Having
obtained the structure of F..-page of May spectral sequence, we will face the extension problems,
which I will solve in section 4 by shuffling Massey products in Adams Fs-page. In secction 5, I will
compute differentials in the Adams spectral sequence using algebraic Steenrod operations and a
"zig-zag” of differentials in the Mahowald square. In section 6, I will solve the extension problems
in the Adams spectral sequence by information in the sphere spectrum and the ring of classical
modular forms and by shuffling Toda brackets, which are possible to construct since tmf is a ring
spectrum. Then the homotopy ring of tmf is obtained.

In this article, all spectra are implicitly localized at the prime 2, and we use Zs to denote 2-adic
integers.

Acknowledgments. [ do not claim originality of any of the results of this paper. The com-
putation was first done by Hopkins and Mahowald and the result has been published in various
places.

I would like to thank Professor Houhong Fan, who leads me to get started in the field of
algebraic topology and teaches me a lot. I am also very grateful to Zhouli Xu, who helps me to
learn many knowledge about Adams spectral sequence and May spectral sequence, and suggests
me to have a try to compute the homotopy of tmf.



2 The Construction of the May Spectral Sequence

To compute the homotopy of tm f, we will use the Adams spectral sequence which converges
to the homotopy.

Theorem 2.1 (Adams spectral sequence)([Adab8]). Let X be a connective CW spectrum of finite
type. Then there is a spectral sequence ES' with differentials d,. : E3t — ESTHT=1 guch that
Byt = Ext' (H*(X),Fy) where A is the mod(2) Steenrod algebra;
B35t is the group associated with a certain filtration of m_s(X) ® Zs. [

There are three problems to be solved in the process of computing homotopy by Adams spectral
sequence: the Fs-page, the differentials, and the extensions. For the computations of Fs-page, we
will use the May spectral sequence. Before constructing the spectral sequence, we will first introduce
some definitions about Hopf algebroids and some relative algebraic structures as shown in [Rav04].

Definition 2.2 (Hopf algerboid). A Hopf algebroid (A,T") over a commutative ring K is a cogroupoid
object in the category of commutative K-algebras. The structure maps are denoted as

source np:A—T
target nr:A—T
coproduct A:T —T @,
counit e€: I — A
conjugation c¢:I' =T

A graded Hopf algebroid is said to be connected if the left and right sub-A-modules generated
by T'g are both isomorphic to A.

It can be easily seen that to give a Hopf algebroid (A,T') with n;, = ngr is equivalent to give a
commutative Hopf algebra I" over A.
The following definition is an analogy of modules over an algebra.

Definition 2.3 (Comodule). A left I'-comodule M is a left A-module M together with a left A-
linear map ¢ : M — T'®4 M which is counitary and coassociative. A right I'-comodule is similarly
defined.

To introduce more homological algebra in the category of I'-comodules, we need the following
theorem.

Theorem 2.4 ([HS71]). Suppose T is flat as an A-module, then the category of left T -comodules is
abelian. O

In this article, we only consider the case that A is the field Fy, when I' is always flat over A,
hence we may assume from now on that I' is flat over A.

Definition 2.5 (Cotensor). Let M be a right I'-comodule, N be a left I'-comodule. Their cotensor
product over I' is a K-module MUOr N defined by the exact sequence
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In fact, a left comodule M can be seen as a right comodule with the structure map

MY ToMI Mor M2 yeor

where T interchanges two factors. Then it can be directly deduced by the definition that
Proposition 2.6. MOrN = NOrM ]
The relationship between Hom and cotensor is shown by the following theorem

Theorem 2.7 ([Rav04]). Let M and N be left T'-comodules, M projective over A, then Hom (M, A)
s a right T'-comodule, and
Homp(M,N) = Homa(M,A)OrN

especially, Homp(A,N) = AOprN. O

By analogy with Ext and Tor in the category of modules, Ext and Cotor can be defined in
the category of comodules as follows

Definition 2.8 (Ext and Cotor). For left I'-comodules M, Exti(M,—) is the it" right derived
functor of Homr (M, —); for right T-comodules M, Cotort(M,—) is the it" right derived functor
Of MDF —.

The following lemma is a corollary of change-of-rings theorem, which will be of great help in
the computation later.

Proposition 2.9 ([Rav04]). Let K be a field and f: (K,T') — (K,X) is a surjective map of Hopf
algebras. Then for any left X-comodule N,

EItF(K, FDEN) = Extg (K, N)
where the right ¥-comodule structure is induced by f. O

Let’s turn to the case of tmf. We admit that H*(tmf) = A ®a(2) F2, where A is the mod(2)
Steenrod algebra and A(n) is its sub-algebra generated by {Sq',Sq¢?,---,S¢*"}. The following
theorem gives the Hopf algebra structure of A.

Theorem 2.10 ([Mil58]). A is a graded associative, cocommutative, coassociative Hopf algebra
with coproduct

k
A(Sq") =" Sq' @ Sq""
1=0

O

Notice that A is not commutative but is cocommutative, its dual A, is commutative, hence
can be seen as a Hopf algebroid over Fy. Besides, as we will show, A, has a clearer structure than
A. Therefore, we are more interested in A, and A(n)., the dual of A(n).

The following discussion on the structure of A, is shown in [Mil58].

Let & € A, be the dual of Sqlk € A, where I* is the admissible sequence (271,282 ... '1.0,--+).
Let R be the set of all infinite sequences of non-negative integers with finitely many non-zero en-
tries. Let J be the subset of R consisting of all admissible sequences with lexicographical order
from the right. Let ¢# denote the element I1;¢]* for each R = (r1,72,---) € R. Then there is a set
isomorphism

7\7—>Ra (a13a23"' ,ak,0,~'-)'—>(a1—2a2,a2—2a3,-~- aakvoa'“)



Theorem 2.11 ([Mil58]). For I,J € J, if I < J, then (&) S¢'y = 0; if I = J, then
(D, 5¢") =1

Proof. Let J = (a1,a2,--+ ,ak,0,-+-) and I = (by,ba, -+ ,bg,0,---), where ay, > 1 and ay, > by > 0.
Let J' = J — I*, then €77) = £7(/) ¢, Therefore, we have
(&) 8Ty = (¢, Sq')
= () ® &, A(Sq")
> (&Y),8¢") (6, 50"

IW+1>=1I

Notice that (£, Sq’2) # 0 if and only if S¢’2 has a summand of Sqlk. However, consider Adem
relations

b—j—1 o
Sq*Sq® = Z ( “ _J 9 )Sanrb]Sq] (0 < a < 2b)
J

It can be seen that if a + b = 35 to make Sq¢?/S¢’ appear on the right hand side, a — 2j must be
negative because a < 2b. As a result, Sq*Sq¢’ can not appear in the Adem relations, hence Sq'2
has a summand of Squ exactly when I, = I*.

If by = 0, then I # I*, and (7)), Sql) = 0. If by, # 0, then (&7, Sql) = (€YU=1") §gI=1%).
By downward induction, we only need to consider the case that I = (0,---), when the proposition
follows directly. O

Corollary 2.12 ([Mil58]). A, =Fq[§;:i=1,2,--]

Proof. By the previous theorem, {£7(/) . J € J} forms a vector space basis of A,, while {£7(/)}
runs over all the monomials generated by {;}, hence the result follows. O

The following theorem illustrates the coproduct structure of A,.

Theorem 2.13 ([Mil58]).
k: .
AlG) =) &G i®&
i=0
O

Notice that all the monomials of {£;} form a vector space basis of A, we can consider its dual
basis in A, which is called Milnor basis. Denote the dual of £1*€5% - -+ by Sq(r1,72,---). There are
some propositions about the Milnor bases.

Proposition 2.14. Sq(i,0,---) = Sq’

Proof. Notice that I; = (4,0, --) is the minimal admissible sequence I such that Sq! has degree i,
by Theorem 2.11, (z, Sq%) # 0 if and only if x = o) = &%, hence Sq' is the Milnor basis dual
to £t O

The product of two Milnor bases can be computed as follows.



Proposition 2.15 ([Mar83]).

Sq(ry,re, -+ )Sq(s1, 892, ) = Zﬂ(X)Sq(tl,tQ, o) (2.15.1)
X

where X is a matrix with non-negative integer entries

* ZTo1 202
10 T11

X =
Z20

with 3, x5 = s; and 32, 2w = 1;;

B(X) = H(xkOaxk—l,h"' ,Zok) € Z/2
k

where
(g, ) = )l (m+-~-+w)<n2+~-+nk)...(”k)
’ ’ ny!- - ng! ny o i
and
tk: Z Lij
itj=k

O

If we denote Sq(ry,re,---) with r; = 0 for all ¢ except that r, = 2% by P, there is a direct
corollary.

Corollary 2.16. P; is a summand of the right hand side of (2.15.1) if and only if the first factor
of the left hand side is P,f“fk and the second factor is P _, .

Proof. In order to get the summand P}, x;; must be zero except the ones with i + j = ¢. To
let B(X) # 0, there can only be one non-zero entry in X. Suppose that xj,_, = 2°, then the
only nonzero r; is 7, = 2°t'=* and the only nonzero s; is s;_ = 2°, which coincides with the
corollary. O

Then we can obtain the structure of A(n).,.
Theorem 2.17. A(n), =F[& :i=1,2,--- ,n+1]/(€2"")

To prove this, we only need to prove that A(n) has a vector space basis {Sq(r1,re, ) :1r; <
2n+2=i1 The following theorem will help on this.

Theorem 2.18 ([AMT74]). The sub Hopf algebra of A generated by {P7 : s < h(t)} as an algebra
is spanned by {Sq(ri,r2, ) : vy < 2MD} as a vector space, where h is a function from {1,2,---}
to {0,1,--- 00} 0

We can let h(t) = max{n + 2 — ¢,0} in this theorem, then it suffices to show that A(n) is
generated by {P : s +t < n+ 1}. By proposition 2.14, A(n) is generated by {P} : 0 < i < n},
hence the only remaining thing is that {Pf: s+t <n+1} C A(n).



proof of theorem 2.17. We will prove this by induction on n. For the case n = 0, {P : s+t <
n+ 1} = {PP} is a subset of A(0) indeed. Suppose that A(n — 1) is spanned by {Sq(r1,7r,--+) :
ry < 271t} we will show that all the elements P/"™'~(t > 2) are decomposable in the terms of
Pj* and terms in A(n — 1).

By corollary 2.16, to obtain P"*'~" as a summand, we need a product P,?H_th"jvl_t. The
second factor is contained in A(n — 1) by induction hypothesis, while the only known case about
the first factor is Pj* € A(n). So consider PP~ then we get the following equations of the
matrix entries:

T+ 27wy g = 28 T9=2" =21,y
- - (2.18.1)

Togp—1 + @11 = 2" Top1 =2"T—wy
When ¢ # 2, to make the corresponding summand not in A(n — 1), it is necessary that x19 >
2" or wot—1 > 2" or w141 > 2" hence w141 = 2"717F or z1;,1 = 0. The case
Tip—1 = 27+t1-t corresponds to the summand Pt"H_t, while the case z1;.-1 = 0 corresponds
to Sq(2",0,---,2"*t1=t 0,...). Therefore, it is natural to consider Pﬁfllftpfl, which gives the
equations:

(2.18.2)

—2x4_11

_ 1—t _
Tyo10+ 2w4-11 = 2" 201 = 2" —T4—11
=
Tt—1,0

{3901 +apo11=2" = ntl—t
To make the corresponding summand not in A(n — 1), it is necessary that z;_1; = 0, which
is corresponding to Sq(2",0,---,2"t1=t 0,...). Therefore, P, + ppprit=t 4 pril=tpp ¢
A(n —1).
When ¢ = 2, we still claim that Py~' + PPP* + P~ 'Pp € A(n — 1). By (2.15.1),

n pn—1
PP = E (%10, 201)Sq(wo1 + 710, 211,0,- - )
r10=2"—2x11
201=2"""1—x1;

= > (@' -22,2" = 2)Sq(2" + 2! = Bz, 21,0, )
0<z11 <27~ 1/3

+ Py~ 4 terms in A(n — 1)

PPy

E (710, 201)Sq(w01 + 10, 11,0, - )
z01=2"—211
z10=2"""—221;

Z (2" — 2211, 2" — 211)Sq(2" + 2" = 3211, 11,0, )
0<z1 <271 /3
+ terms in A(n — 1)

Notice the fact that (a + 2¥,b) = (a,b + 2¥) € Fy if a,b < 2%, the proof is thus accomplished. [

Back to the case of tmf. By the duality of modules and comodules, the Es-page of Adams
spectral sequence can be reformulated as

Ey' = Ext5' (Fo, H.(tmf))



where H,(tmf) is the dual of H*(tmf) = A ®4(2), F2. By the duality of modules and comodules
again, H,(tmf) = A.04(2),F2. By lemma 2.9,

E;t = Emtf‘{f?)* (Fz, Fg) = COtOTZé)* (FQ,FQ) = ﬂ't,s(tmf) ® ZQ

To compute the cotorsion, we may refer to the cobar resolution.

Definition 2.19 (Cobar resolution). For Hopf algebroid (A,T), a left T'-comodule M, and a right
['-comodule L which is projective over A, the cobar resolution C{:(L, M) is defined by C}(L, M) =
L®sT°®4 M, where I' = coker ng. The coboundary map is given by

ds: Co(L, M) — CH(L, M);
@71 ® @y ®m Y@M ®--- @y, @m

+Y (DIene @A) @@ @m
=1

+(=1)N @y @ @ vs @ har(m)

The element l@ v ® -+ ® s @ m is usually denoted by l[y1|- - |ys|m, where l or m can be omitted
if l =1 or m =1 respectively.

Proposition 2.20 ([Rav04]). H(CE(L,M)) = Cotorp(L, M) O

This proposition makes Cotor:&)* (Fy,F3) computable, but in practice, it can be really cum-

bersome. Therefore, some other methods are necessory. A feasible one is the spectral sequence
induced by filtration. The the case of decreasing filtration is similar to the increasing filtration, so
we will only introduce the increasing one below.

Definition 2.21 (Filtration). An increasing filtration on a Hopf algebroid (A,T) is an increasing
sequence of sub-K -modules
K=FKlcKHI'C---

with T' = | FsI' such that
T -FDC Fypl,
«¢(FsI') C F,T', and

A(FT) C @ F,T ©4 F,T.

ptq=s

A filtered Hopf algebroid is one equipped with an filtration, where the filtration of A is induced
by the one on T, i.e.,
FsA=n,(A)NF,T =nr(A)NF,T = ¢(F,T)

An increasing filtration on a I'-comodule M is an increasing sequence of sub-K-modules
K=FMCcCFMC---

with M =) FsM such that
FSA . FtM C E9+tF; and
B(EM) C @,y FyT ©4 F M.

Definition 2.22 (Associated graded object). The associated graded object of A is E°A with
EY2A = F,AJF,_1A, where we let F_1A=0. E°T and E°M can be similarly defined.



Proposition 2.23 ([May66]). (E°A, E°T) is a graded Hopf algebroid and E°M is a comodule over
it. O

Theorem 2.24 ([May66]). Assume E°T is flat over E°A, L, M are right and left comodules. Then
there is a natural spectral sequence converging to Cotorp(L, M) with B = Cotors,,.(EYL, E°M),
where the second grading comes from the filtration, and the differentials d, : ESt — ESTLt=T,

Proof. Cotoriyep(EYL, E°M) = H(Cgor(E°L, E°M)) = H(E°Cr(L, M)), while Cotorp(L, M) =
H(Cr(L,M)). Therefore there is a spectral sequence induced by the filtration on Cr(L, M), which
is the one stated in the theorem, where elements in each page is given by

B3t ={z € F,C°:6x € Fy ,C*T}/(Fy 1C® + §(Fysr1C*7 1))
where C* = C} (L, M), and 0 is the differentials in C*. O

In [May74], May gives A., and hence A(2)., an increasing filtration called May filtration.
As an algebra, A, = E(&; : 4 > 1,j > 0), where & ; = &', and the coproduct is given by
A&j) = Dok Cimkktj @ Ek,j, where o ; = 1. Then an increasing filtration can be given such that
&i.; has a filtration degree 2i — 1. As a result, A(§ ;) = 1 ®&; +&,; ® 1+ terms in F;_oA,.
Therefore, E°A, is an exterior algebra with all generators {&;} primitive. The following lemma

then gives the structure of Cotorgoa, (F2,F2) and Cotorgo z(a), (F2,F2).

Lemma 2.25 ([Rav04]). Let T’ be a commutative, connected graded Hopf algebra of finite type over
a field K which is an exterior algebra on primitive generators xi, T2, -+, each having odd degree if
char(K) # 2. Then

Cotorr(K,K) = P(y1,y2, )

where y; € Cotor™17il is represented by [x;] € OL(K, K). O

We state the following theorem as an accomplishment of the construction of May spectral
sequence.

Theorem 2.26 (May spectral sequence).
- ([May74]) There is a spectral sequence E™" converging to Cotori{i (FQ,FIQ) with E}™" =TFalhij :
i >1,j > 0] and differentials d, : ES"* — ESTL0U=T where h; ; € Ell’(21_1)2]’2i_1 is represented

by [&i,]-
- There is a spectral sequence ES™" converging to Cotori"é)*(ﬂ?g,]l*’g) with

E}™" =TFalh; ;1 <i+j <3]. And there is a map from the first one to the second one induced
by the map A, — A(2).. O



3 Differentials in the May Spectral Sequence

The differentials on the May spectral sequence are induced by the differentials on the cobar
complex, which give the most direct way to compute the differentials.
By theorem 2.26, the E-page of May SS for tmf is

E7™" = TFalhao, hay, haa, hao, hat, haol
Proposition 3.1. di(hij;) = > o i ik ktrihn,j

Proof. h; ; is represented by [f?j] € BY,_1Caa). (F3,Fy), where

318 = Y (€25 1€7'] € Fai—2Caa). (Fa,F2)
0<k<i

Hence di(hij) = Y gcpei Miekktihe,j- L

Table 3.1: May F1-page generators and their differentials

generators differentials

h1g 0

hi1 0

hi2 0

hao hiohi1

hay hii1hio

h3o hioho1 + hi2hao

Now we have di-cycles hig, hi1, hi2, h%o, h%l, h%o. We only need to consider the differentials
of hihd, h%,, where 0 < i, j,k < 1. In fact,

dy (hagha1) = hioh11ha1 + hi1hishao = di(hi1hso)

hence hy1hso+haoha is a di-cycle, which is denoted by ho(1), then ho(1)? is decomposable in terms
of other cycles ho(1)? = h?,h3, + h3,h3,. Besides,

di(haohso) = hiohi1hso + hiohaohar + hi2h3y = hioho(1) + hi2h3,
d1(ha1hso) = hi1hizhso + hioh3; + hiohaoha1 = hizho(1) + high3,
dy(haoha1hso) = di(hsoho(1) + h11h30) = ho(1)d1(hao)
Therefore, we get the structure of Es-page:

generators: {hio, hi1, hi2, h39, h31, h3g, ho(1)}
relations: {hioh11, hi1hi2, hioho(1) + hi2h3g,
hizho(1) + hioh3y, ho(1)? + hT k3o + hiohs, }

Then consider differentials on Ey-page. Since any generator h; ; has first grading and third
grading odd, the first grading and the third grading of all elements have the same odevity. While

10



d, : ESb — EsTLEu=T the even pages do not admit nontrivial differentials. In particular, the
elements in Es-page are exactly the ones in Es-page.

As for the differentials on Es-page, we only need to consider the generators of Ej-page. Since
5([€¥']) = 0 in Ca(2). (F2,Fy), there are no nontrivial differentials of h; ; admitted on any page,
that is

Proposition 3.2. d,(hi ;) =0, Vr O
Then consider ds(h%,), we have
Proposition 3.3. d3(h3,) = h3; + h3ghia

Proof.
0# h3y € B2%° = {z € F5C?% : 62 € F3C%0} /(F5C?0 + §(FC9))

where C%t = le’(g)* (F2,F3). Notice that FgC?6 is spanned by

Table 3.2: A basis of FzC?%

elements May filtration differentials

[£11€7] 3 [E1]€11€1] + [€11€7 6]

SIS ] [€1[€31€7] + (€117 €2) + [E1l&21€7] + (€116 16n]
(€3 1£4] 2 0

SHISTSI) [€71€11E2] + [EF1€71€7] + [€7 162 [€0] + [£7|€21&4]
[€31€3] 4 [€1[€31€7] + [€71€01€7] + 71601671 + (631617
(£ 1€2] 5 (1167 162] + [EF1€11&2] + [€71€3161]

[£2]€7] o [71611€3] + [£2]€11€3] + [£21€31€1]

[€2]E2] 6 €7 1€11&2] + [€21€7(61]

Slsd 2 0

[&160€3] 5 [€1]€21€7] + [E21€21€7] + [€31611€7] + [2l€a1€7]
[£2161] 3 [E1]€T1€1] + [€1]€216n]

[E&la] 5 [£21€63161] + [£21€2161] + [E21€8161] + [€21€116]

For an element x representing h3,, = should have May filtration 6 with May filtration of
dz being less than 3. From the table above, it can be figured out that h3, can be represented

by [62/62] + [€7]€162] + [€7€2[€1], and hence d3(h3)) can be represented by [¢7[€7(¢F] + [€1]61161]-
Therefore, d3(h3,) = h3; + h3,h12. O

It can be seen that the direct computation is really complicated, some other indirect methods
should be used, such as algebraic Steenrod operations and Massey products.

Like the ordinary Steenrod operations acting on the cohomology, there is an analogy that acts
on the Cotor as follows.

Theorem 3.4 ([May70]). Let ' be a Hopf algebroid over Fy and M, N right and left T'-comodule
algebras. Denote Cotorii’t(M, N) by H®!, then there exists natural homomorphisms

Sqi . Hs7t — Hs+i72t
fori> Q, such that:
-Sq"=01if1 > s;

11



-Sq*(x) = 2? for x € H*';

-Sqt is the Bockstein homomorphism;

AIf x € H% is represented by m[yi|---|vs|n, then Sq°(z) is represented by m?[+?| - - - |y2]n?;
-Sq® satisfies Cartan formula and Adem relations, that is

Sq'(zy) =Y 8¢’ (x)Sq" 7 (y)
j=0

b—i—1 i
Sq“qu:Z< Y >Sq“+b Sq* (a < 2b)

i>0
O

It can be deduced immediately that
Corollary 3.5. Sqo(hi’j) = hj j+1 where h; j with i 4 j > 3 is viewed as 0. ]

Then several differentials can be computed by comparing the Adams SS and May SS.

Another proof of proposition 3.3. Notice that highi; = 0 in Adams SS, we have
O = Sql(hlohll) = higl =+ h%ohlg

in Adams SS, hence it must be killed in May SS. Tt is an element in E3%3 while F3®* = 0 and
E3%* is spanned by h3, € E3*°, the only possibility is that ds(h3,) = b3, + h3ghia. 0

Proposition 3.6. ds3(h3,) = h3,

Proof. h3, = Sq'(hi1h12) = 0 in Adams SS, hence must be killed by some May differentials. Notice
that h3, cannot support a nontrivial differential by proposition 3.2, while Eg A2 g spanned by h3;,

therefore, d3(h3,) = hi,. O
Proposition 3.7. d3(h3,) = h11h3;
Proof. Whatever ds(ho(1)) is, d3(ho(1)?) = 0, where ho(1)? = h%,h3, + h3,h3,. Therefore,
hiids(h3g) = ds(h3ph3) = huz(hiohar + hishao)? + hithsy = hiyh3,
While E5''** is spanned by hi1h3,, the only possibility is that ds(h2,) = h11h3;. O
The following theorem will be useful in the computation of higher differentials.

Theorem 3.8 ([Nak72]). Forxz € ES%" (r > 3) in May SS and i such that s—i is even, there exists
an element in Eari1-page represented by Sqi(x) such that its differential is the element (possibly
zero) to which Sq*(d.(x)) survives. O

Proposition 3.9. d;(hi,) = hi2h3;
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: 2,14,10
Proof. Consider h3, € E"""", we have

d7(h§o) :d7(5q2(h§0))
=5q*(ds(h3p))
=S5q*(hi1h3,)

=hi2h3
O

Then we will introduce the Massey product, which turns out to be useful in the computation.
We will assume from now on that 2 = 0 so that signs can be ignored.

Definition 3.10 (Massey products). Let C be a differential graded algebra (DGA), aq,--+ ,ay, €
MH*(C) such that the adjacent two matrices are compatible with entries of their products homo-
geneous. Their Massey product (a1, -+ , o) is defined if there is ¢ defining system a, ; € MC' for
0 <1t < j<n such that:

-a; can be represented by a;—1 ;;

‘d(ai,j) = > aikak,; for (i,7) # (0,n).
and (a1, , o) is defined to be {the homology class represented by > ao kak.n}. It is said to be
strictly defined if all lowerproducts have trivial indeterminacy (hence are {0} ).

About the indeterminacy, we have the following theorem.

Theorem 3.11 ([May69]). Let (o1, -+ ,an) be defined. For 1 < k < n let the degree of x) €
MH*(C) be one less than that of apagy1.

In{ar, as, as) = J(arze + 2103)

Jf (a1, g, ag, aq) is strictly defined, then

In{ay, as, as, aq) = J({a1, ag, x3) + (a1, 2, ag) + (X1, a3, q)) O

One reason that Massey product is useful is that there are relations between Massey products
and ordinary products as stated in the following theorem, which will be used widely in dealing with
extension problems.

Theorem 3.12 ([May69)]).

Af {aq, -+, an) ds defined then (aq, -+ o) = (o), af)

If (g, -+, ) is defined then ag{ag, -+ ,an) C{arag, s, -+ ,ap)

df (aran, a3, -+, o) is defined then (o, a3, -+, ap) C (o, 003, 0, -+ 5 Oty

df {aq, - an—1) and {ag, -+ ,ay) are strictly defined then aq{ag, -, an) = (a1, ,Qpn_1)0n

df (o, -, Qy oo Q) s defined, (aq, -+ Q- o) is strictly defined then
(01, - 0 0m) Cla, oy am) 4 (an, s ag + ol om)

df (o, -+, ) is defined and 1, 1 < 1 < n, is given with (a1, , ;) = {0} for 1 < j <1, then
Gr{in, - 10 C ({0, 00} 041, ) 0

Another reason is that in the spectral sequence induced by a filtration on a DGA, the differ-
entials of Massey products can be computed using the following theorem.

Theorem 3.13 ([May69]). Let C be a DGA equipped with a regular increasing filtration with the
inducing spectral sequence indexed such that d, : EP9 — EPTLI=" Let (aq, - ,ap) be defined
in E,.41, where each a; is a matriz with entries being permanent cycles and a; converges to 3; €
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MH*(C). Letk be with 1 < k < n—2 such that each {B;,-- -, Bitr) is strictly defined in H*(C) and
that if an entry of a; j with 1 < j—i < k in the defining system for (o1, --- , o) has bidegree (p,q),

then each element of Eff:;ill with m > 0 is a permanent cycle. Let s > r be such that for each

P, q) as above with k < j —i < n and for each t with r <t < s, =0, and if j—i >k +
b ith k< j—i d ht with r <t EPTHt — 0 and k+1
then EPF 297" = 0. Then for each a € (o, -+, ay)

di(e) =0 Vr<t<s

Besides, there are permanent cycles ; € ME,.1 for 1 < i < n — k converging to elements in
(Biy+++ y Bivk) such that (y1,- -+ ,Yn—k) is defined in E,y1 and contains an element y surviving to
ds(a), where

oy 0 . Oy,
Y= (51 Oé1), Yi = < (;ir ai> (I<i<n—k), Yn-rk= (5nk)

Assuming further that each §; is unique, that each (a1, -+ ,0i—1,0;, Qitgt1," " ,Qn) 18 strictly de-
fined, and that all Massey products in sight, except possibly (B;,- - , Bitk), have zero indeterminacy,

then we have
n—k

ds(<a17"' 7an>) = Z<a17"' ,ai—lvéi,ai—l—k—‘rl;”' 7an>
i=1

O

There is also a converging theorem assuring that Massey products converge to the correspond-
ing Massey products if some conditions are satisfied.

Theorem 3.14 (May’s Convergence Theorem)([May69]). With notation as above let (o, -+ , )
be defined in Eyi1, where each «; is a matriz with entries being permanent cycles and a; converges
to By € MH*(C). If (B1,- -+, Bn) is strictly defined, and there are no crossing differentials, i.e., if

an entry of a; ; with 1 < j —i < n in the defining system for (cu,--- , ) has bidegree (p,q), then
each element of Ef’j%ﬁ with m > 0 is a permanent cycle. Then each element in (a1, ,ap,) is a
permanent cycle converging to an element in (1, -+, Bn)- O

There is also an analogy of this theorem assuring that Massey products in Adams spectral
sequence converge to the corresponding Toda brackets if similar conditions are satisfied, which is
called Moss’s Convergence Theorem ([Mos70]).

Then we can use the Massey products to compute some differentials in May SS.

Proposition 3.15. d3(ho(1)) = hioh3,

Proof. Consider (hi1, hig, h11, h12) in Ea-page of May SS, it has a defining system:

0 h30

Hence ho(l) S <h11,h10,h11,h12>. By theorem 3.11, <h11,h10,h11> and <h10,h11,h12> have zero
indeterminacy since E21’3’4 = E;’6’4 =0, so (hi1,h10, 11, h12) is strictly defined. By theorem 3.11
again, <h11, h107 hlla h12> has zero indeterminacy, thus <h11, h107 hll; h12> = {ho(l)}

14



In theorem 3.13, let » = 1. hyg, h11, h12 are permanent cycles, hence converge to elements in
Adams FEs-page, temporarily denoted by x, y, z respectively. Since highi1 and hi1hio are killed by
dy in May SS and there is no elements for extensions, xy and yz are 0 in Adams Fs-page. Therefore
(y,z,y) and (z,y,z) are defined and hence strictly defined since every 2-fold product has trivial
indeterminacy, so we can let k = 2 in theorem 3.13. Nonexistence of crossing diffrentials is easy
to be verified. For hsg € E}'"° in the defining system, Ey"* = 0; for 0 € E}"™° in the defining
system, E§’5’3 =0, but E§’5’2 is spanned by highi2, hence we can let s = 3 in theorem 3.13.

Then consider (y, z,y) in Adams Ey-page. E5® = 0, hence it has zero indeterminacy. There is
a defining system

(3] (1] [€7]
[€2] &2 + &}
{y,z,y) = {the homology class of [¢}[€2-+&7]+-[€2[&7]}, where ([€76a]) +[E1 161] = [€F|E2+-¢7] +[E21€7],
hence (y,z,y) = {zz}, to which only hjghia converges. On the other hand, Fy"* = 0 in May
spectral sequence, hence the uniqueness of §; is satisfied, where §; = hiph12 and d2 = 0. Then by
theorem 3].3, dg(ho(l)) = hl(]h%Q. O

So far we have computed all the differentials in the Fs-page.

Table 3.3: May FEs-page generators and their differentials

generators  differentials

hio 0

hi1 0

hia 0

h3g h3) + highiz
h3, hi,

h3o hi1h3,

ho(1) hioh,

The differentials of monomials of the generators have the form of
R I RT3 g ha't® igg® ho (1) d (hgt by hisg ho(1)™)
where 41, 12,13,14 € {0, 1}, which can be listed as follows:

Table 3.4: The differentials of monomials of generators in F3-page

monomials differentials

h3g hiy + hiphaz

h31 hi

h3o hi1h3,

ho(1) hioh3,

h3oh3, h1yd3(h3)

h3oh3 hitho(1)? + highi2h3,
h3ho(1) hi ho(1)

(to be continued)

15



(continued)

monomials differentials

h31h30 high3y + hiihs,
h31ho(1) 0

h3oho(1) h11h21h0( )+h10h%2h§0
h3oh31 30 ho(1)*ds(h3)
h3oh31ho(1) ho(1)*d3(ho(1))
h3oh30ho(1) hi1ho(1)?

h31h3oho(1)

hllhzlho( )
0

h3oh31h30ho (1) ho(1)*ds(ho(1)h3,)

Then we can get the structure of E4-page:

generators: {hio, hi1, h12, h11ho(1), hQO, h1oh§O,

ho(1)?, hizh3g, hiho(1), ha1, h3o}
relations: {hig - h11, hi1 - hia, hio - hi1ho(1), hio - h11ho(1),

i1 - hioh3g, hat - hizh3g, hitho(1) - hioh3y,
hi1tho(1) - high3y, h2y - hig + h3o - ho(1)?,
hiz - ho(1)? 4 hig - h31ho(1), hia - h31ho(1) + hig - hay,
(ho(1)?)® 4 hag - hgys hiy + hig - haa, his, hag - i,
hat - ho(1)? + hiy - hazhig, hiy - haiho(1),
hiy - hiah3g + huy - gy, hay - B3 ho(1) + BTy - haohsy,
hitho(1) - ho(1)%, haiho(1) - hy
and relations which can be seen by the expressions}

Notice that hy ; € B, b2, € E22 =027 4i=2 anq (1) € E296, cach generator in E5'"
has the property that u — s is a multiple of 4. Hence for r > 2, d,. is nontrwlal only when r + 1 is
a multiple of 4. So let us turn to Er-page.

Consider all possible differentials on generators of E7-page, the only possibly nontrivial one is
d7(h3,) = hi2h3;, which is proposition 3.9, while differentials on other generators must be trivial
because of degree reasons.

Then we can get the structure of Eg-page:

generators: {hio, hi1, hia, hi1ho(1), h3g, hioh3g, ho(1)?,
h12h§07 h§1h0(1)7 h%lﬂ hllhgm h11h§0h0(1)7 hgo}
the list of relations will be given in next section where we will discuss the extension problems.

All these generators can not support higher differentials because of degree reasons, so the
FEg-page is the F.-page.
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4 Extensions in the May Spectral Sequence

Although we get the structure of E.-page of May spectral sequence, we only obtain the
structure of associated graded object instead of the object it converges to, in other words, ES$:!% =
F,H*!/F,_1H*!. Then the extension problem comes out that even if an element is 0 in E%5H",
there may be the case that it is nonzero in H*! but with a lower filtration degree.

To distinguish the elements in May SS and Adams SS, x; ; will be used to represent the element
in Eg’i"’j of Adams SS to which an generator of May E.,-page converges.

Table 4.1: Names of elements in Adams SS and May SS

Adams SS May SS

Zo1 hio

T11 hi1

z31 hi2

83 hi1ho(1)
T3y h3o

Z123 hioh3,
T144 ho(1)?
T153 hi2h3,
T174 h31ho(1)
204 h3,

T255 hi1hd,
327 hi1higho(1)
Z488 hi,

Then consider generators of all relations in F..-page of May SS, where the extension problems
may live in.

Table 4.2: Extension problems in May SS

relations (t —s,s,u) extensions  proof

T01T11 (1,2,2) 0 degree reasons
T3 w31 + T3 (3,3,3) 0 degree reasons
T11T31 (4,2,2) 0 degree reasons
To17%; (6,3,3) 0 degree reasons
L0183 (8,4,8) 0 degree reasons
3, (9,3,3) 0 degree reasons
72,783 (10,5,9) 0 degree reasons
31783 (11,4,8) 0 degree reasons
T11T123 (13,4,12) 0 degree reasons
T3, 7144 + 31784 (14,6,14) 0 degree reasons
T01T153 + T31%123 (15,4,12) 0 degree reasons
T11T144 + To1T312T123 (15,5,13) 0 degree reasons
T11T153 (16,4,12) 0 degree reasons
35 (16,6,14) 0 degree reasons

(to be continued)



(continued)

relations (t—s,s,u) extensions  proof

To12174 + T31T144 (17,5,13) 0 degree reasons
T11T174 + T3 7123 (18,5,13) 0 degree reasons
T01T204 + T31T174 (20,5,13) 0 degree reasons
83123 (207 6, 18) $§1$144 proposition 4.1
T11T204 + 317153 (21,5,13) 0 degree reasons
83144 (22,7,19) 0 degree reasons
T31T204 (23,5,13) 0 degree reasons
T83T153 (23,6,18) 0 degree reasons
T01T255 (25,6,22) 0 degree reasons
TR3T174 (25,7,19) 0 degree reasons
312842153 + L01L123L144 (26, 8, 24) 0 degree reasons
T2, To55 + 1317395 (27,7,23) 0 degree reasons
312255 (28,6,22) 0 degree reasons
T83L204 (28,7,19) 0 degree reasons
T84T204 + Tiyy (28,8,24) 0 degree reasons
21232174 + £144%153 (29, 7, 23) 0 degree reasons
T31L123T153 (30,7,23) 0 degree reasons
T123T204 + T153T174 (32,7,23) 0 degree reasons
L1327 (32,8,28) 3121442153 Pproposition 4.5
T31T353 (33,7,23) 0 degree reasons
T11T327 + Tg3Tas5 (33,8,28) 0 degree reasons
T144T204 + 237, (34,8,24) 0 degree reasons
T11283%255 (34,9,29) T01T144T204 Proposition 4.8
T31T153L174 (35,8, 24) 0 degree reasons
T31T397 (35,8,28) 0 degree reasons
21232255 (37 8 32) 21742204 proposition 4.11
T84T e53 + T393T144 (38,10,34) 0 degree reasons
T144T255 + T93T153 (39,9, 33) 0 degree reasons
T31T395 (39,10,34) 0 degree reasons
T153%255 (40,8, 32) T304 proposition 4.14
T83T397 (40,10, 34) 0 degree reasons
1742255 + 131231‘%53 (42 9 33) 0 degree reasons
T123%327 (44,10,38) 0 proposition 4.15
T204T255 + T35 (45,9,33) 0 degree reasons
T144%327 (46,11,39) 0 proposition 4.17
1532327 (47 10, 38) 0 proposition 4.18
T8 Tags + Thog (48,12,44)  x847304 proposition 4.19
T174%327 (49,11,39) 0 proposition 4.20
T2, Tygs + T355 (50,10,42) 23537204 proposition 4.21
T204L327 (52,11,39) 0 proposition 4.22
2112832488 + T255%327 (57 12 48) 0 proposition 4.23
235, (64,14,54) 0 proposition 4.24
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The extension problems are mainly proved by shuffling Massey products and analyzing the
product structure.

PI‘OpOSitiOl’l 4.1. 83123 — 1‘3133144
— 2
Lemma 4.2. Irg3 — <$11,ZC01,.’E31>

Proof. Since E21’3 = E22’9 = 0, (x11,701,23;) is strictly defined with zero indeterminacy, while
(h11, h10, h35) is defined in May Ej4-page, and there are no crossing differentials. It has a defining
system:

b hio h2,

0 ho(1)

So g3, the element to which hy1ho(1) converges, must belong to the Massey product (11, zo1,73;),
which has exactly one element. O

Lemma 4.3. 2144 = (123, %11, Z01)

Proof. As proved in proposition 3.15, (x11,Zo1,211) = To1231. Hence we have

L112144 = T01L31T123 = $123<I11,I01,I11> = <I1237$11,I01>111
Then the lemma, follows form the fact that the multiplication of x1; on E;l’ls is an injection. O
Similarly, there are
Lemma 4.4. T174 — <.’17153,.1‘11,$01>

Proof. x11%174 = 01231%153 = T153(T11, o1, T11) = (T153, T11, To1)T11

Then the lemma, follows form the fact that the multiplication of x1; on E;m

is an injection. O
Proof of proposition 4.1.

2 2 2
Tg3T123 = T123(T11, To1,231) = (T123, T11, Lo1)T5; = T3, T144

PI‘OpOSitiOIl 4.5. L1327 — T31L144X153
Lemma 4.6. T327 = <l‘83,$204,3§31>

Proof. Since E§’35 = E;l’% = 0, (ws3, T204,T31) is strictly defined with zero indeterminacy, while
(h11ho(1), h3y, h12) is defined in May Egs-page, and there are no crossing differentials. It has a
defining system:

hi1ho(1) h3, hi2

So 2327, the element to which hy1h3,ho(1) converges, must belong to the Massey product (xs3, T204, T31),
which has exactly one element. O

Lemma 4.7. z144%153 = (o1, T3, T204)
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Proof. Since E§,12 = 26’35 = 0, {xo1, Ts3, T204) 18 strictly defined with zero indeterminacy, while
(h10, h11ho(1), h3;) is defined in May Ej4-page, and there are no crossing differentials. It has a
defining system:

hio  hitho(1) hy

0 h3,h3oho(1)

So 21447153, the element to which high3,h3,ho(1) = hiah3yho(1)? converges, must belong to the
Massey product (xo1,xss, T204), which has exactly one element. O

Proof of proposition 4.5.

L1327 = To1(T83, T204, T31) = (To1, L83, T204)T31 = T31L1442153

PI‘OpOSitiOIl 4.8. T11X83X255 — X01X144T204
Lemma 4.9. To55 — <£L’11,l‘31, CE204>

Proof. Since E§’7 = E§’28 =0, (x11, 231, T204) Is strictly defined with zero indeterminacy, while
(h11, h12,h3,) is defined in May Egs-page, and there are no crossing differentials. It has a defining

system:
hir  hio h3,

0 h3,

So Ta55, the element to which hy1h3, converges, must belong to the Massey product (11, 31, Z204),
which has exactly one element. O

Lemma 4.10. T01X144 = <$11$337.’L‘11,$31>

Proof. Since E§’15 = E21’7 =0, (z11283, T11,231) is strictly defined with zero indeterminacy, while
(h21ho(1), h11, h12) is defined in May Ej-page, and there are no crossing differentials. It has a
defining system:

h31ho(1) hi1 hio

h%oho(l) 0

So g12144, the element to which hiah3yho(1) = hipho(1)? converges, must belong to the Massey
product (x112s3, z11,231), which has exactly one element. O

Proof of proposition 4.8.

T11283%255 = L11283(T11, T31, T204) = (T11283, T11, L31)T204 = L01L144%204

Proposition 4.11. x123%255 = 1742204

Lemma 4.12. z174 = (123, T11,31)

20



Proof. Since ES’17 = E22’7 =0, (123, %11, To1231) has zero indeterminacy. Thus
T01T174 = T31T144 = <$123,$11,$01>$31 = <$123,$11,$01$31> = <$123,$11,$31>3€01
Then the lemma, follows form the fact that the multiplication of xg; on E;*’Ql is an injection. O
Similarly, there are
Lemma 4.13. x204 = (153, %11, T31)

. 3,20 2,7 . .
Proof. Since E5™" = E5'' =0, {x153, 11, Z01231) has zero indeterminacy. Thus

To1T204 = T317174 = (153, T11, T01)T31 = (T153, T11, T01T31) = (T153, T11, T31)T01
e 4,24 . S
Then the lemma follows form the fact that the multiplication of zg; on E5“" is an injection. O

Proof of proposition 4.11.

L123T255 = T123 <$11; Z31, $204> = <l‘123, Z11, $31>$204 = T1747204

) _ 2
Proposition 4.14. 1537255 = 59,4

Proof.
2
T153%255 = T153(T11, T31, T204) = (153, T11,T31)T204 = L0y

Proposition 4.15. x1532327 =0
2
Lemma 4.16. T123 — <$01,J311,1‘31,1‘31>

Proof. Since E3" = E3™ = 0, the lower threefold products of (xo1, 11, 31,22, ) are 0, hence it is
strictly defined. Since E21’7 = ES’M = 0, it has zero indeterminacy. (hig, k11, h12, h3s) is defined in
May FE4-page, and there are no crossing differentials. It has a defining system:

hio  hi1 hi2 h%z
0 0 h%l
0 N3

So x123, the element to which hloh§0 converges, must belong to the Massey product (xo1, 211,231, x§1>,
which has exactly one element. O

Proof of proposition 4.15.
2 2
T123%327 = (Zo1, T11, %31, T31) 2327 C (To1,T11,T31, T3,2327) = (To1,T11,Z31,0)

Since By = Ey"" = 0, the lower threefold products of the right-hand-side are 0, hence it is
strictly defined. Since E21 7= ES’53 = 0, it has zero indeterminacy. However, there is a defining
system {a; ;} with a; 4+ = 0, hence the only element it contains is 0, thus z1232327 = 0. O
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Proposition 4.17. x1442307 =0

Proof.
T144Z327 = (To1, T11, T123) 327 C (To1, T11, T123%327) = (To1,211,0) =0

The last equality holds since E21 3 = E;O’% =0. 0
Proposition 4.18. z1537327 =0

Proof.
T153T327 = T153(Ts3, T204, T31) = (153, Ts3, T204)T31

9,53
where <£L’153,$83,£E204> S E2 =0. O
Proposition 4.19. x} 1og = 2

position 4.19. x5,T488 + X193 = T84T50y

Proof. Notice that x1y37255 = T35371747204 # 0, while 23, 2488255 = 0, hence x{;w4gs + i3 # 0.
The only possibility is that 23,7488 + 2793 = T84730,4- O

Proposition 4.20. x1742307 =0

Proof.
T174%327 = (To1, T11, T153) 327 C (To1, T11, T153%327) = (To1,211,0) =0

The last equality holds since E21 3 = E;O’E’g =0. 0
Proposition 4.21. 22,2488 + ¥355 = 23537204

Proof. Notice that 324887393 = 0, while 2352253 = 22,23, # 0, hence 23,7488 + 2355 # 0. The
only possibility is that ¥3, 2488 + ¥355 = 2%537204. O

Proposition 4.22. x5042327 =0

Proof.
T204%327 = (31, %11, T153) 327 C (X31, T11, T153%327) = (T31,211,0) =0

The last equality holds since E21 0 = E;O’Sg =0. O
Proposition 4.23. 2112837488 + T255T327 = 0

_ 2 _
Proof. If x11283%488+%255%327 7 0, then x112837488+T 2557327 = T174%504. However, £11283Tas88T204 =
Tos5%327T204 = 0, while 3317435%04 = (0, which prevent this from happening. O

Proposition 4.24. 2%,, =0

Proof.
T397 = 327 (83, T204, T31) = (T327283, T204, T31) = (0, T204, T31) = 0

The last equality holds since E213’74 = ES’ZS =0. 0
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5 Differentials in the Adams Spectral Sequence

After accomplishment of the computation of extension problems in May spectral sequence, we
now get the full structure of the Adams Fs-page as an algebra. Actually, it is a free Fo[zss, 24ss]-
module (see table A.1 for its basis) and a finitely-generated algebra. Now we will determine the
differentials.

The diffrentials of other generators as an algebra are 0 because of degree reasons except
T11,2123, 153, L255;, L488-

Proposition 5.1. z11 is a permanent cycle.

Proof. Suppose that 217 supports a nontrivial differential, say d,.(x11) = xSfl, then 0 = d,-(zo1211)

x4, which leads to a contradiction. O

Proposition 5.2. da(z255) =0

Proof. Suppose that z955 supports a nontrivial dg, then da(wa55) = Tg12%95. However, xo1 2255 = 0
while 23,2255 # 0, which leads to a contradiction. O

To achieve other differentials, we may refer to Atiyah-Hirzebruch spectral sequence (AHSS).

Theorem 5.3 (AHSS)([AH61]). For a spectrum E and a CW spectrum X, there is a spectral
sequence with E;q = H,(X; E,(pt)) converging strongly to E.(X). O

Let E be the sphere spectrum, then Eg’q = H,(X; 7qu) where 72 is the stable homotopy of
spheres. It is actually induced by the exact couple

7. (X" e (X™)

~
~
~
~
~
~

ﬂ*(Xn/Xnil)

It can be seen that the construction of the differentials in AHSS exactly coincides with the con-
struction of Toda brackets. For example, let X be a CW spectrum with three cells in the dimension
0, n+ 1, n +m + 2 whose attaching maps can be detected by o € 72 and 3 € 72 respectively.
Let z[n] denote the element in 7,,;(S™) for an n-cell and 2 € 7;. Consider the differentials of
ylm +n + 2] € m(XmAnt2 ) xmintly — 7 (§m+n+2) " Since the attaching map is detected by 3,

dms1(Ym+n+2]) =By[n+1]. If By =0¢€ 72, dmsni2(y[m +n+2]) is constructed by

Y~ Cone(a) S = S0 Cone(a)
AN L
Sm+n id Sm+n Csm+n Esm+n
G v
v
St—2 Cst—2 Zst—Z id Zst—Z

where F' is the homotopy between af and 0, and G is the homotopy between gy and 0. Hence
dintnt2(YIm +n+2]) = (a, 8,7)[0].
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Actually, there is an analogy of AHSS called algebraic Atiyah-Hirzebruch spectral sequence
(AAHSS) defined for CW spectrum X with short exact sequences

0— H*(X"/X" ) —» H*(X") - H* (X" ') =0
The spectral sequence is then induced by the exact couple
Ext(X"1h) Ext(X™)

~
~
~
~
~
~

Brt(X"/X"1)

where Ext(X"™) = Exto(H*(X™),F3). The differentials in this spectral sequence, similarly, coincide
with Massey products. A trick due to Mahowald is the Mahowald square as below:

cellwise

@ Ext(S™) % P . (S™)

AAHSS“ “AHSS

Ext(X #(X
X)) —damsss %)

Mahowald Square

Then we can finish the computations of dy in Adams SS.
PI‘OpOSitiOl’l 5.4. d2($123) = T31T84

Proof. Notice that tmf is a CW spectrum with H*(tmf) = A ®4(2) F2, by minimal cell structure
theorem, the 13-skeleton of tmf is homotopy equivalent to a CW spectrum with three cells on
dimension 0, 8, 12. Consider the action of Steenrod algebra on H™*, their attaching maps can
be detected by Sq® and Sq* respectively. Thus the attaching maps are (odd times of) o and v.
Consider tha differentials of 8[12]. d4(8[12]) = 8v[8] = 0, then turn to dja:

di2(8[12]) = (8,v, >[] (ind = 873, + 07§ = 0)
C (2,4v,0)[0] (ind = 275} 4+ o = ind{Phy})
= (<2 n°,0) + (2,m,v)v*)[0] (ind = ind{Phy} + 0)
= ((2,m,n%0) + (2,1,°))[0] (ind = ind{Pha} + ind{Phs})
= (2,1, n€)[0] [Tod62](ind = ind{Phy})
= {Ph2}[0]

The last equality is deduced by using May’s convergence theorem and Moss’s convergence theorem
on (hig, h11,h31ho(1)) = h12h3, in May E,-page. Thus x31284 can not survive, the only possibility
is that d2(1‘123) = T31T84- O

PI‘OpOSitiOIl 5.5. d2($153) = 2017144
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Proof.
To1d2(7153) = do(w017153) = do(T317123) = T3, T84 = T3 144

Then the proposition follows from the fact that the multiplication of xy; on E;l 18 s an injection. [
Proposition 5.6. da(74s8) = 73537174

Proof. By information of Adams Ej-page, ds(2%,7488) = da(23530204 + 2355) # 0. However, if
da(w488) = 0, then x4g5 survives to Es-page by degree reasons, then dy(z?;2488) = 0, which leads
to a contradiction. Hence the only possibility is that da(z4s8) = x%53m174.

Note that the argument is not circular since we only need to use the information of F4 in the
range t — s < 48, the inference process of which is independent of do(z4ss). O

So far we have computed all the differentials in Adams FEs-page.

Table 5.1: Adams Fy-page generators and their differentials

generators differentials

o1 0

T11 0

I31 0

83 0

T84 0

T123 31784
%144 0

T153 To1T144
T174 0

%204 0

T255 0

T327 0

T488 CC%53$174

After listing all elements in Adams Fs-page and computing their differentials, we can list all
the elements in Adams Fs-page and find its generators as an algebra:
generators: {Zo1, T11, T31, Ts3, Ts4, T T123, T1ad, T174,
204, Tia3, T255, T123%153, Tisz, L1537T174,
327, 1’01!1”?23, T017488, L11T488, T31L488,
L83, T T123Ta88; T327La88; L0113 88, Tigs )

On the premise that differentials of all generators with lower t — s degree have been computed,
differentials of other generators are 0 because of degree reasons except T171, T393, T353, T11T4ss,

2
L488-
To compute d3(z174), we will first refer to the following theorem which gives a description of
mmdJ.

Theorem 5.7 ([Ada66] and [Qui71]). J : 7, (SO) — 7} is a monomorphism for k =0 or 1 mod 8
and J(ma;-1(S0)) is a cyclic group whose 2-component is Zs/(8k). If we denote by xy, the generator
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in dimension 4k — 1, then nxa, and n’xa, are generators of imJ in dimensions 8k and 8k + 1,
respectively. O

PI‘OpOSitiOl’l 5.8. d3($174) = I83T84

Proof. By the previous theorem, 775 has a Z/32 summand for im.J, whose generator pi5 € {h3h4}
must support an n-extension. By the commutativity of 72, notice that ¢ has an odd degree, 202
must be zero, hence hoh3 must be killed. The only possibility is that da(hs) = hoh3. Both hohy
and h2hy can not survive in Adams SS because of the order on im.J, thus they must support
nontrivial ds. Therefore dy detects an element x € 77, with 2k = 0. By Toda brackets shuffling,
"’k = (2,1n,2)k = 2(n,2,K) € m, hence n’x = 0 and 7p;5 is detected by Pcy. The image of p;5
under the Hurewicz map m,(S°) — 7. (tmf) is 0, hence w3784 can not survive. The only possibility
is that d3(1‘174) = I83T84- ]

Proposition 5.9. d3(2%4;) = 2117847144

Proof. Consider h}[Sq®Sq'] in AAHSS, das(h§[Sq®Sq®]) = (hd, hs, ha)[0], where (hd,hs, hs) =
h3,hs in May Eg-page and converges to Phy = hag by May’s convergence theorem. This differential
passes to dg4(16[S¢%Sq'%]) = vk[0] in AHSS by cellwise Adams SS according to Mahowald square.
Then da4(64[S¢®Sq'%]) = 4vk[0] in AHSS. However, there exists an extension that 4vi can be
detected by hy Pdy [MT67], hence {hqPdy}[0] is killed in AHSS and z11284%144 is killed in Adams
SS. The only possibility is that d3(2%53) = 2112847 144- O

We will introduce another method used frequently to determine Adams differentials that uses
Steenrod operations in Adams SS.

Theorem 5.10 ([BMMSS86]). Let Y be an Ho, ring spectrum, © € E' in the Adams SS for Y.
Then ‘ ‘
d.S¢x = STV, x+ T

For A with filtration degree s, By with filtration degree s + r1 and Bs with filtration degree s + 73,

drlA = By, if’l"l < T9;

ds A = Bl—i—Bg < dTA =B -|—B27 Zf?’l =T =T9,
drzA = By, if’l’l > ro.
0, v>k+1or2r—2<wv<k;

T, = < azd,z, v==k+1,
aSq¢ vz, v==k or (v <k and v < 10).

where k = s —j, v =wva(t — j) = 8p + 2% if the exponent of 2 in the prime factorization of t —j + 1
is 4p + q with 0 < q¢ < 3; a = as(t — j) € w5, which is the map of degree 2 if v =1; and @ is the
element in Adams Eoo-page for SO detecting a. O

Notice that Sq*z = 22 for z € E**, we can compute d,(x?) using the information d,(z).

Another proof of proposition 5.9.

de(2153) = di(SqPz123) = Sq*(daz123)+To = Sq* (x31784)+ T
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Then in the previous theorem, &k = 0, v = 1, and a is the map of degree 2, hence Ty = xg1231T84%123 =
£11T84%144- On the other hand, by Cartan formula,

Sq4($31$84) = Sq'2315¢% x84 + Sq w319 w584

where Sq%z3; € B8 = 0 and S¢®xgy € E7?* = 0. Therefore Sq*(x31284) = 0, and 211 284T144 =
d (Cﬂ%zs) = d3($%23)~ O

Proposition 5.11. d3(2%;3) = 2117847204

Proof.
Tsads(2753) = ds (8427 53) = d3(2793%144) = T11734204

Hence ds(2255) # 0, the only possibility is that d3(z%53) = #11784%204- O
PI‘OpOSitiOl’l 5.12. d3<$11.’17438> = $84$§04

Proof. The candidates for d3(x1124s8) are {0, T4 488, Tio3, TeaT30, ). Notice that zo1dz(z117488) =
d3(zo17117488) = 0, w7488 and xy; are excluded. If dz(z117488) = 0, 2117488 survives to Ej-
page, and hence dy(z% ,7488) = 0, which leads to a contradiction. The only possibility is that
ds(z117488) = 84230, O

Proposition 5.13. d3(23s5) = 71537504
Proof. Again, we refer to Bruner’s method.
di(23s5) = du(Sq®xa88) = Sq° (dawags)+To = Sq° (x3557174)+ T
k=0, v =1, hence Ty = 0123537174748 = 0. On the other hand, by Cartan formula,
Sq®(a3532174) = (S¢°2153)S¢P w174 = 15556 T174

By [Mil72], S¢3¢p = m in Adams SS for S°. By naturality of squaring operations, S¢*r174 =
T153L204- Hence l‘?53$204 = $153$%04 = d* (xisg) = d3(m288)- D

So far we have computed all the differentials in Adams E3-page.

Table 5.2: Adams F3-page generators and their differentials

generators  differentials

Zo1

T11

T31

g3

T84
$31$123
T144
T174 T83Tg4
204 0

x%gg L11T84T144
(to be continued)

SO oo o oo
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(continued)
generators differentials

Z255 0
1237153 0

xi53 T11T84%204
T153T174 0

Z327 0
xle?Qg O
T017488 0

T11 %488 T84T304
317488 0
T83T488 0

T3 21032488 0
T3277488 0
T012%932488 0

‘TZSS 3315395%04

After computing differentials in Adams Es-page (see table A.2), we can list all the elements in
Adams FEj-page and find its generators as an algebra:

generators: {xo1, T11, 31, T83, Ts4, 56(3)1961237 T144; %204,
350130%23, T255, L123T153, L144L174, T153T174,
T327, TO1TT03, T174T204, T144T153, To1T4ss,
$153$%74, 90%5355204, T317488, 53153%%04,
T837488, 55811'12355488’ 5'30195%2356488, T3277488,
950155‘;’23%887 3701553887 951133421887 $31$42188ﬂ 958355?1887
‘T84$3887 l’gﬁuiﬂissa I144I288’ x01x¥23z12188’
T123T153%5gg, T144T174% g8, T153T174% 188, T327T g8,
x01x?23x42188a $17456204xissa 5514455%53%2188, xolxissa
-T1531'%74x121887 95%195288: xSlessa $83$2887
x%1x123x?1887 xle%%xiss? x327$i$8» x01$?23x2887 $?188}

In Adams Fy-page, differentials of other generators are 0 because of degree reasons except the
ones computed in the following propositions.

PI‘OpOSitiOl’l 5.14. d4(x174m204) = $§41‘204

Proof. By [MT67], ds(eog) = Pd3 in Adams SS for S, hence by naturality, ds(217427204) = 347204

O
Proposition 5.15. dy(21447174) = 22,7144
Proof.
2204d4(T1447174) = da(T1247174T204) = T34 1247204
thus d4($1441‘174) # O7 the Only pOSSlblhty is that d4(CC144.T174) = .1%458144. O
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Proposition 5.16. dy(21447%53) = 22,71237153

Proof.
2 2 2 2
214404 (T1440753) = da(2744%753) = da(X123T1530144%174) = Ty T123%144T153

thus d4($1441‘%53) 7é O7 the only pOSSibﬂity is that d4 ($14433%53) = $§4$1231‘153. O
Proposition 5.17. dy(2012488) = T8473937153

Proof.
/ _ _ _ .2 .3
I144d4(93011’488) = d4(I01$1441?488) = d4(I174I20417255) = Tg4T153

where the second equality holds since da(2153%488) = T012144T488+T174T204%255. Hence dy(xo12488) 7#
0, the only possibility is that dy(z017488) = T84T 7937 153- O

e . 2 _ 2
Proposition 5.18. dy(x1532774) = 254(T153T174 + Z327)

Proof. The candidates for d4($153x%74) are spanned by m§4x153x174, x§4x327, and x51x4gg. Notice

that xo1ds(21532%74) = da(To171532374) = 0, the remaining candidates are 0 and 22,(z1537174 +
. ) 2 _ _ 2

1‘327). HOWQVGI", it can not be zero since $144d4($153]}174) = d4 ($144$174$153J?174) = Tg4%144%1532174-

O

o . 2 .
PI‘OpOSlthIl 5.19. d4(1‘153$204) = T84%123X144T153
Proof.
2 2 2
T84d4(T753%204) = da(T84TT532204) = da(T1232153%144T174) = T34T1231447153
2 . ey . 2 _
thus dy(2755%204) # 0, the only possibility is that dy(z755%204) = T842123%144%153. O
o . 2 _
Proposition 5.20. d4(x1532504) = T84T144T153%174
Proof.
2 2 2
I84d4(1153ﬂ@204) = d4(568493153£13204) = d4(517144$1741171535€174) = Tgql144T153T174
thus dy(z1537304) # 0, the only possibility is that dy(21537304) = T8471447153174- O
. 2 \_ .2 2
Proposition 5.21. dy(2144%174%5gg) = T54T144% 58
Proof.
2 2 2 2 3 2
2144d4 (2144817407 gg) = da(TT442174%5gg) = da (14401742144 %5g5) = T34 T204 %18
thus d4($1441‘1745€i88) 75 0, the only pOSSibﬂity is that d4(171441‘17413288) = LE§4ZE144ZE‘2188. O
" 2 2 2
Proposition 5.22. dy(21742204%5s5) = T54T204T5gs
Proof.
2 2 2 2 2 2
L1444 (2174020405 gg) = da(T144%174%204%5gg) = da(T 17422042 144%5g8) = T4T774% 588

thus dy(71747204735) # 0, the only possibility is that dy (17472047 3gs) = 72472047 355- O
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Proposition 5.23. dy(214473537%5) = T2,712371537 g5
Proof.
2144 (275301007 058) = da (014477 5301042%85) = T34 T12371442153T g
thus dy(21447%5373g5) # 0, the only possibility is that dy(21447%537%gs) = 724012371537 %85 O
Proposition 5.24. dy(x0123gs) = 8473937153778

P7 OOf.
X144 d4 (ﬂf() .’1:3 ) - d4 (ﬂ: 44T I?’ ) - d4 (.’17 T488L144 172 ) - .]784.173 .’1:2
488 488 488 153488

thus dy(wo17igg) # 0, the only possibility is that dy(zo173gs) = 784739371537 7gs- O
Proposition 5.25. dy(2153737,23gs) = 724 (T1537174 + T327)77ss

Proof. The candidates for dy(z153777,7355) are spanned by 22, 71537174% 355, T24327T 355, and 27, Tigs.
Since 1014 (T15323747358) = da(T01715373,,735) = 0, the remaining candidates are 0 and 22, (71537174 +
T327)T3gg. However, it can not be zero since

2 2 2 2 2 2
144da (215327740 75s) = da(T1532T74%144T7gg) = T34 L144%153T174% 1gg

O
sis 2 .3\ _ 2
PI‘OpOSlthIl 5.26. d4(l‘111‘488) = T84%123%144%153T4g8
Proof.
2 .3 2 .3 2 2 2 2
284d4(27174gs) = da(T8477174sg) = da(T84725570gs) + da(T84T753T 204 1sg)
2 2 2
= d4($255$84$483)d4($144$174$123$153$483)
2 2 2 2
=0+ Lgq2123144L153L488 = L84L123L144L153L 488
2 3 o1 1e . 2 3 _ 2
thus dy(z7,2555) # 0, the only possibility is that dy(z1;23gs) = T842123T144T153%ss- O

So far we have computed all the differentials in Adams E4-page.

Table 5.3: Adams F,-page generators and their differentials

generators differentials

Zo1

T11

31

T3

Tgq

T8 123
T144
T204
2017703
T255
T1237153
(to be continued)
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(continued)

generators differentials
L144%174 $§430144
T153T174 0

327 0

330135?23 0

L174204 $§4$204
$144$%53 $§4S€123$153
L017488 538490%23%153
T153T574 23, (1532174 + T327)
T153T204 T84T123%144T153
T31T488 0

$15317%o4 L84X144T153L174
83488 0

T3 T1237a88 0

T012793Tass 0

3277488 0

T012393Tags 0

x01x?188 O

LE11£E488 0

xgll'isg 0

.Z‘ggxigg 0

x84xi88 0

x%ﬂlzgziss 0

1447488 0

xle%23$42LSS 0

T123T153%5gg O

1314433174%2188 -T§4$144x42188
T153T174%3gg O

L327T488 0

xle?zsxigs 0

T174T204T5gg  Ta4T204%]gg
3314495%533342188 J’384$12?>9U15333z2188
xolxzss x84x%23$153$42188
T1537774 055 T34 (T153T174 + T307)T3ss
x%ﬁ%gg 1U84$123$144$153$42;88
xgll'isg 0

.Z‘ggngg 0

$81$123’I§188 0

xle%%‘TiSS 0

L327T488 0

950195?2395288 0

1’388 0
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After computing differentials in Adams F4-page (see table A.3), we can list all the elements in
Adams Es-page and find its generators as an algebra:

. 3
generators: {5U01, T11, 31, L83, T84, Lp1T123, L144, T204,
2 3
T01%723> %255, T123T153, L153T174, T327; L01T723,
2 2
T(17488; T31T488, T83T488; L01T84T488 + T123%144% 753,
3 2 3
Ln1L123L488, L01L123L488; L327L488; L01L123T488;
2 2 2 2 2
LTO1T4885 L11T488s T31T 488, T83Ly88) L84LYRYs
3 2 2 2 .2 2
T12123T488, L144T488; T01L7123L488, L123L153T 488
2 2 3 .2 2.3
T153L174T 488> L327T488; L01L1237T488; L1L488>
3 3 3 2 .2
T31T4g8, T83T488, L01T84L 488 + L1237144T153%48s)
3 3 2 .3 3 3 .3 4
T(1123T g8, T01T123T4ss, T327T4sss T01T723T4ss: Tiss )

Notice that for a permanent cycle x with xy = 0, there is zd,.(y) = 0. By letting © = z;,
Ty, or TgaTigs (when analyzing d.(z117%gg)), and by degree reasons, all generators in Es-page
cannot support higher differentials, hence the Es-page is the E.-page (see table A.4). E.-page
is a free Fylz.c]-module, and there is no relations involving z%... Therefore, there is an element

488 ’ 488 )

x[192,32] € mo2(tmf) to which xjgg converges, such that Vy € m.(tmf) nontrivial, 2[192,32]y is
also nontrivial.
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6 Extensions in the Adams Spectral Sequence

The only problem remained in the computation of 7. (tmf) is the extension problem in the
Adams SS.

To distinguish the elements in Adams SS and the homotopy ring, we will use z[i, j] or y[i, j] to
represent the element in 7;(¢mf) with Adams filtration degree j to which an generator of Adams
FE-page converges. Explicitly,

Table 6.1: Names of elements in homotopy and Adams SS

homotopy Adams SS

2 Zo1

y[1,1] T11

y[37 ].] 31

y[8,3] 83

l‘[& 4] Trgq

.73[12, 6] $81I123
y[14, 4] T144

y[20,4] T204

x[24,7] 2012793
y[25, 5] T255

y[27, 6] 21237153
$[32, 7] T327

y[32,7] T327 + T153T174
.’E[36, 10] $011‘z1)’23
l‘[48, 10] -r(2)137488
y[51,9] 317488
z[56, 11] T837488
1{56, 13} 93311’84%488 + 123%14473 53
x 60, 14 Lp12123T488
l‘[72, 15] .%'01.%‘%2337488
Z‘[SO, 15] T327L488
.73[84, 18] $01I:1323.73488
I[96, 17] x01xé2188
y[97,17] XL11%4g8
y[99,17] T3177gg
y[104, 19] x83x42188
.Z‘[104, 20} x84x42188
x[108,22]  x 71237%s
y[llO, 20] 1447488
2[120,23]  xo123937 78
y[123, 22] $123$153$?188
.73[128, 23} .233271‘288
?J[[128a 23]} ($3273+ 13215333174)%2188
z|132,26]  x01%723%7ss
z[144,26] 23 xigq

—

to be continued)
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(continued)
homotopy Adams SS
y[147,25]  @3127g

z[152,27]  xg3wieq

37[152, 29} .T01.%‘84$?188 + 1‘1233?144.%‘%531}42188
z[156,30] 2371237558

x[168,31]  x01779375gs

I[176, 31} x327$;188

2[180,34]  wo1239373s

w[192,32] @i

As shown in [DFHH14], there is a ring homomorphism ¢ : m.(tmf) — MF,, where MF, =
Zlcy, ce, A]/(c3 — c2 — 1728A) is the ring of classical modular forms. The cokernel of the map can
be described explicitly as

7] — n = 24k;
gc (8 k}Q
coker(¢) @ Zy = { (Z/2)! n =4 (mod 8);
0, otherwise.

which are generated by A* and A%cYcs respectively.

Consider the elements with nontrivial image under this homomorphism. In dimension 8, there
must be a generator of the homotopy ring with image c4. Notice that ¢? is in the image, while
me(tmf) is generated by x[8,4]2, x[8,4] must have nontrivial image. Meanwhile, y[8,3] can be
chosen to be the image of € € mg(S?) under the Hurwicz homomorphism, then 2¢ = 0, and 2y[8, 3]
is trivial. Then y[8, 3] has the trivial image under ¢.

Similarly, 2[12,6] and x[24,7] have image 2¢g and 8A respectively. In dimension 32, there
should be a generator of the homotopy ring with image c4A. Both 22[32, 7] and 2(x[32, 7] +y[32, 7])
are not zero, then we can change y[32,7] to be the representative of xza7 + x1532174 such that
2y[32,7] = 0, and hence y[32,7] cannot have nontrivial image under ¢. (Actually, we will show
that the y[32,7] chosen by this is in the image of Hurwicz homomorphism.) Therefore, the image
of #[32,7] is e4A, and 8z[32,7] has image 8csA, hence supports an extension. All elements with
higher filtration degree has nontrivial image, and the only one with image 8c4A is z[8,4]x[24, 7].
Then we get the extension 8z[32,7] = z[8,4]x[24, 7].

It can be similarly checked that all z[i, j]’s have nontrivial image, and all y[i, j]’s have triv-
ial image. All extensions only involving x[i, j]’s can be derived similarly since all candidates for
extensions have nontrivial image.

It needs to be note that x[56,13] = 22[56, 11] and x[152, 29] = 22152, 27]. Therefore, they are
not generators of the homotopy ring.

Then we only need to deal with extension problems involving y[i, j]’s. All relations in Adams
FE-page should be considered, which are listed as follows:
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Proposition 6.1. y[3,1]% = y[1,1]y[8, 3]

Proof. By [Tod62], € +no = (v,n,v) in sphere spectrum; by [Ada60], v? = (n,v,n), hence y[8, 3] =
(913, 11, y[1, 1] yf3, 1) and {3, 112 = (y[1, 1], (3, 1, y[1, 1))

y[la 1]y[87 3] = y[la 1]<y[3’ 1]7 y[17 1]a y[?’v 1}> = <y[17 1]1 y[37 1]7 y[17 1]>y[37 1] = y[?’a 1]3

Proposition 6.2. y[8,3]y[14, 4] = z[8, 4]y[14, 4]

Proof. In sphere spectrum, kv® = 4kv. Hence n((e+no)k+n?k) = 0. Then (e+n0)k = n*F in sphere
spectrum by degree reasons, and therefore, y[8, 3|y[14, 4] = y[1, 1]?y[20, 4] = =8, 4]y[14, 4]. O

Proposition 6.3. y[3,1]y[25,5] = y[8,3]y[20,4] = y[1, 1]y[27,6] = y[14, 4]

Proof. By the proposition above, y[14, 4]y[20, 4](y[8, 3]+x[8,4]) = 0. However, z[8, 4]y[14, 4]y[20, 4] #
0. Then y[8, 3]y[20, 4] is nontrivial, and hence equals to z[8,4]y[20,4] = y[14,4]?, since other candi-
dates are x[8, 4]-stable.

Note that hi1hdy = (h3,, hi2, h11) in May Es-page, y[25,5] € (y[20,4],y[3,1],y[1,1]), whose
indeterminacy is annihilated by y[3,1]. Then

9[25a 5]3/[3’ 1] = <y[205 4]7 y[37 1]a y[1’ 1}>y[3’ 1] = y[20’ 4] <y[3’ 1}7 y[la 1]a y[3> 1]> = y[207 4]9[87 3]

Note that highiahay, = (h31, hia, hioh12) in May Es-page, y[27,6] = (y[20,4],y[3,1], 2y[3,1]).
On the other hand, in an FE..-spectrum, (y,z,y) N (z,y,2y) # 0 for odd-dimensional classes y
([Tod62]). Therefore,

y[8,3] = (y[3, 1], y[1, 1], y[3,1]) = (y[1, 1], y[3,1], 2y[3,1]) = (y[1, 1], 2y[3,1],y[3,1])
and we have
9[277 6]9[1’ 1] = <y[207 4]a y[3’ 1}7 2y[3’ 1}>y[1’ 1] = y[20, 4] <y[3’ 1}7 2y[3, 1]7 y[l, 1]> = y[207 4]3/[8’ 3]
O

Proposition 6.4. y[3,1]y[32,7] = y[1, 1]y[14,4]y[20, 4] = z[8, 4]y[27, 6];
2?/[207 4]2 = y[8, 3]y[327 7} = :L‘[S, 4]3/[327 7] = y[17 1}?/[147 4]?4[257 5]

Proof. As shown in [BMT70], {g} can be represented by (1, x%,2,n) in the sphere spectrum. Con-
sider v = (y[1,1],y[14,4]2,2,y[1,1]), which is strictly defined and has zero indeterminacy. Note
that

2y = 2(y[1,1],y[14,4]%, 2, y[1,1]) = (2,y[1,1],y[14,4]*,2)y[1, 1] C y[1, mz1(tmf) = 0
Then ~ is either y[32,7] or 0. Besides,

y[3, 1]y = (wl1, 1], y[14,4)%, 2,y[1, 1])y[3, 1] = y[1, 1] (y[14,4]*, 2, y[1, 1], y[3,1]) = y[1, 1]y[14,4]y[20, 4]
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where the last equality holds since y[20,4] = (y[14,4],2,y[1,1],y[3, 1]) according to [MT63]. By
[Tod62], if o € 7 such that (1 — (—=1)¥)a = 0, there is an element a* € ma;.; such that a*j3 €
{a, B,a) for any (3. Note that (2,y[1,1],2) = y[1,1]?,

y[87 3]7 = <y[3a 1]a y[1> 1]a y[?’a 1]>’Y = <y[37 1]’ y[lv 1]7 y[37 1]7> = <y[37 1]7 y[la 1]7 y[L 1]9[14; 4]>y[207 4]
= (y[3, 1), y[1, 1], (2,y[14,4],2))y[20,4] = (y[3, 1], y[1,1],2, y[14, 4])2y[20, 4] = 2y[20, 4]
If 2y[20, 4]% = 0, then y[1, 1]y[20,4]* = (2, y[20,4]2,2), and hence
(8, 4]y[14, 4]y[20, 4] = y[1,1]%y[20, 4]* = y[1,1](2,y[20, 4]*,2) = 2(y[1, 1], 2,y[20,4]?)
which is impossible by degree reasons. Then 2y[20,4]? # 0. The only possibility is that 2y[20,4]? =
x[8,4]y[32, 7] since it has trivial image under ¢. And v # 0, hence v = y[32,7].
Finally, note that in Adams Fs3-page, £11%144 = (X84, 31, Z01231), and therefore y[1, 1]y[14,4] =

(x[8,4],y[3,1],2y[3,1]). Then

y[l, 1]y[147 4]y[257 5] = <x[87 4]a y[?’v 1}7 2y[37 1}>y[257 5] = ‘r[& 4] <y[37 l]v 2y[3v 1}7 y[257 5}>

where

yl1, (3, 1], 29(3, 1], y[25, 5]) = (y[1, 1], y[3, 1], 2y[3, 1])y[25, 5] = y[8, 3]y[25, 5]
Hence (y[3, 1], 2y[3, 1], y[25, 5]) can be linearly generated by y[32, 7] and 2x[8,4]*. y[1, 1]y[14, 4]y[25, 5]
must be z[8,4]y[32, 7] then, since it is not x[8, 4]-stable. O

Proposition 6.5. y[1,1]y[51,9] = y[25, 5]y[27, 6]; 2y[3, 1]y[51,9] = y[14, 4]y[20, 4]

Proof. Consider (y[20, 4], y[27, 6], y[3,1]) € 751 (¢mf), which has indeterminacy generated by 4y[51, 9].
Note that
(y[20,4],y[27,6], y[3, 1])y[1, 1] = y[20,4){y[27, 6], y[3, 1], y[1, 1])

where
(y[27,6], y[3, 1], y[1, 1])y[3, 1] = y[27,6){y[3, 1], y[1, 1], y[3,1]) = y[8, 3]y[27,6] # O
Hence there is a nontrivial y[1, 1]-extension. Note that
(y[20,4], y[27, 6], y[3, 1])2y[3, 1] = y[20, 4)(y[27, 6], y[3, 1], 2y(3, 1])
where
([27,6], (3, 1], 29[3, 1y (1. 1] = y[27, 6)(y[3, 1], 29(3, 1], y[1,1]) = yl8, 3Jy[27,6] # 0
Hence there is a nontrivial 2-extension. O
Proposition 6.6. y[3,1]y[97,17] = y[1,1]y[99, 17] = y[20, 4]°

Proof. In Adams FEj-page, (z355,T204,731) = T3173gs, then y[99,17] € (y[25,5]%,y[20,4],y[3,1]),
which has indeterminacy generated by 2y[99,17]. Therefore,

y[]-v 1}y[99, 17] = <y[257 5]37 y[203 4]7 y[37 1]>y[17 1] = y[257 5]3<y[207 4}’ y[3, 1]7 y[L 1]> = y[25’ 5]4
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In Adams E4-page, (Ta55, To04T355, T11) = T1127gs, then y[97,17] € (y[25, 5], y[20, 4]y[25, 5], y[1, 1]),
which has indeterminacy y[1, 1]mes(tm f). Therefore,

y[3,1]y[97,17] = (y[25,5], y[20, 4]y[25, 51, y[1, 1])y[3,1] = (25, 5](y[20, 4]y[25,5]?,y[1,1], y[3,1])

Note that (h§;, k11, h12) = hi,hS, in May Egs-page, (23,4, 711, 231) = 2355 in Adams Fa-page, and
hence 2955 € (23532304, 11, ¥31), which has indeterminacy generated by z312%95748s. Therefore,
<y[207 4}y[257 5]27 y[l, 1]a y[37 1]) = y[257 5}33 and y[?’, 1]y[977 17} = y[257 5]4 O

Proposition 6.7. y[20,4]x[80,15] =0

PT’OOf. In Adams Eg—page T327X488 — <.’17327, 204, $123.’L‘153>, then .T[SO, 15] S (x[32, 7], y[QO, 4], y[27, 6])
Therefore,

y[20,4]2[80, 15] € (2[32, 7], y[20, 4], y[27, 6])y[20, 4] = x[32, 7](y[20, 4], y[27, 6], (20, 4])

Then y[20,4]z[80, 15] is divided by x[32,7], and hence cannot be y[20,4]°. Thus it must be 0 by
the reason of im(g). O

Proposition 6.8. 2y[104,19] =0

Proof. Since wg3x3gs = (83,7355, T204) in Adams Es-page, y[104,19] can be chosen to be the
element in (y[8, 3],y[25,5],y[20,4]). Then 2y[104,19] = (2,y[8, 3], y[25, 5]%)y[20, 4] is divided by
y[20, 4], which must be zero because of im(¢). O

Proposition 6.9. y[3,1]y[51,9]? = y[25, 5]2[80, 15] + y[20, 4]*y[25, 5] + =8, 4]y[97, 17]

Proof. Note that y[3,1]y[51,9])? is annihilated by z[8,4] and y[20, 4], the only possible nontrivial
candidate for it is y[25, 5]2[80, 15] + y[20, 4]*y[25, 5] + x[8, 4]y[97,17]. Then

y[3,1]y[51,9)* = y[3,1]y[99,17] € (y[25,5]% (20, 4], y[3,1]°) = (y[25,5]°, y[20,4], y[1,1]y[8, 3])

Since (13-, To04, T11783) = T1178377gs in Adams Ey-page, y[3,1]y[51,9]? is nontrivial, then the
proposition is derived. O

Proposition 6.10. 2y[110,20] = y[14, 4]x[96, 17] = y[20, 4]3y[25, 5]
Proof. Suppose 2y[110,20] = 0, then y[1, 1]y[110,20] = (2, y[110, 20], 2), and hence
y[1, 1]y[14, 4]y[110, 20] = (2, y[110, 20], 2)y[14, 4] = 2(y[110, 20], 2, y[14, 4])
which is impossible by degree reasons. Therefore 2y[110, 20] = y[20,4]3y[25, 5]2. Also note that
y[14, 4]2[96, 17] = (y[20, 4]y[25, 5}2, y[25, 5], 2)y[14, 4] = y[20, 4]y[25, 5]2<y[25, 5],2,y[14, 4])
where
2(y[25, 5], 2,y[14,4]) = (2,y[25, 5], 2)y[14,4] = y[1, 1]y[25, 5]y[14, 4] = 2y[20, 4]2
Hence y[14,4]2[96, 17] = y[20, 4]3y[25, 5]%. O
Proposition 6.11. y[1, 1]y[20,4]y[97, 17] = y[14, 4]y[104, 19] = y[14, 4)z[104, 20]
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Proof.
y[1, 1]y[20,4]y[97, 17] = (y[25, 5], y[20, 4]y[25, 5]%, y[1, 1]*y[20, 4])
— (y[25,5], y[20, 4]y[25, 5%, 2[8, 4Jy[14, 4]) = y[14,4][104, 20]
by the Massey products in Adams E4-page. Note that y[1, 1]y[110,20] = (y[104, 19], y[3, 1], 2y[3, 1])
[

by the Massey product hi1ho(1)? = (h11ho(1), h12, hioh12) in May E4-page, if y[14,4]y[104,19] = 0,
then

y(1, 1]y[14, 4)y[110,20] = y[14, 4](y[104,19], y[3, 1], 2y(3, 1]) = (y[14, 4], y[104, 19], y[3, 1])2y(3, 1]
while y[1, 1]y[14, 4]y[110, 20] cannot be divided by 2 by degree reasons. O
Proposition 6.12. y[1,1]y[123, 22] = y[20, 4]x[104, 20]

Proof. By the Massey product in Adams Ej-page, y[123,22] € (y[25,5]3,y[20,4],y[27,6]), which
has indeterminacy generated by 2y[123, 22]. Therefore,

y[1,1]y[123,22] = y[1,1)(y[25,5]%, y[20, 4], y[27, 6])
= (y[1,1],y[25,5]%, y[20, 4])y[27, 6] = y[97, 17]y[27, 6] = y[20, 4]2[104, 20]
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Appendix A Tables and Charts

Table A.1: Basis of Adams Fs-page as an Fa[2g4, £488)-module

elements (t—s,s) elements (t—s,8) elements (t—s,8)

1'81 (0, n) To1L174 (].7, 5) 327 (32, 7)

11 (1,1) 312153 (18,4) 012327 (32,8)

x (2,2) T11%174 (18,5) 31327 (32,9)

31 (3,1) 2017204 (20,5) 117327 (33,8)

T0o1T31 (3, 2) 1‘%117204 (20, 6) 13%11327 (34, 9)

73 (3,3) T11T204 (21,5) T T30s (36,9 +n)

m%l (6,2) xglx%% (24,6 +n) $%23$153 (39,9)

83 (8,3) 255 (25,5) T123%144T153  (41,10)

L1183 (97 4) 112255 (26, 6) $123l‘%53 (42, 9)

$81$123 (12, 3+ ’I’L) 21232144 (26, 7) 13144$%53 (44, 10)

Z144 (14,4) T123T153 (27,6) T144%153T174  (46,11)

T01L144 (14, 5) 1’31%%23 (27, 7) (E1231'144.’E%53 (56, 13)

$(2)133144 (14, 6) L144X153 (29, 7) 3?14437?53 (59, 13)

zo1r153  (15,4) To1T144%153  (29,8) T144%3552174  (61,14)

1‘%11‘144 (15, 5) T144X174 (31, 8) .73144$%53£13174 (76, 17)
Tis3®17a%50s (0 <d,5 < 3)

Table A.2: Basis of Adams E3-page as an Fa[r3g5]-module

Tg4-stable Tg4-unstable

elements (t—s,s) elements (t—s,s)

i (0,n) T31 (3,1)

T11 (1, ].) 0131 (3, 2)

m%l (2,2) x:fl (3,3)

83 (8,3) 3 (6,2)

11783 (9,4) 017174 (17,5)

l’gfrgxlgg (12, 6 + n) 201204 (20, 5)

T144 (14, 4) LL'(2)1£U204 (20, 6)

11144 (15, 5) $31$%23 (27, 7)

T174 (17,4) To17317488  (51,10)

T11L174 (18, 5) I%1I488 (51, 11)

I204 (20, 4) x§1x488 (54, 10)

112204 (21, 5) .%'(2)11}204{,6488 (68, 14)

T T3eg (24,6 +n) | 2353250, (65 + 20n, 13 + 4n)
Toss (25,5) B (70 + 20n, 14 + 4n)
T11T255 (26, 6) .%1531‘3623 (75 + 2071, 15+ 477,)
T123T153 (27,6) xhtt (80 + 200, 16 + 4n)
%53 (30,6)

(to be continued)

56



(continued)

rg4-stable rga-unstable

elements elements (t—s,s)

\
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327
L153L174
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23, 307
T11X327

x%m
mgfrlxif%
L174%204
x%23x153
$%04
L1237144%153
$123x%53
T1447753
33:1)’53
L1442153L174
zii ! ass
T112488
9615333%74
93%11'488
x%53x204
L312488

33:{'74
T15321747204
J3%7417204
T153%204
T83L488
T123%144% 753
T112837488
J’3[174915304
1’304

2 1230488
L01L144T488
L01L31L123L488
T01T1747488
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33153%%74
T0172047488
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(to be continued)
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(continued)

rg4-stable rga-unstable

elements (t—s,8) elements (t—s,s)
37311'%23-%488 (75, 15)

T3277488 (80,15)

0123277488 (80,16)

2} w3072 488 (80,17)

1173277488 (81,16)

.’1?%1.’1?32733483 (82, 17)

BT T (84,18 4+ n)

Table A.3: Basis of Adams E,-page as an Fa[z}gg]-module

Tga-Stable Tg4-unstable

elements (t—s,8) elements (t—s,s)
T (0,n) z31 (3,1)
-'L'%l (1,1) .’E§1$31 (3,2)
T11 (2,2) T11 (3,3)
03 (12,6 +n) r3; (6,2)
T144 (14, 4) g3 (8, 3)
T204 (20,4) 211783 (9,4)
AR (24,7+n) T11%144 (15,5)
T255 (25,5) T01T174 (17,5)
117255 (26,6) 017204 (20,5)
T123%153 (27,6) 5'3(2)133204 (20,6)
L144T174 (31, 8) 2112204 (21’ 5)
I327 (32, 7) 1'311'%23 (27, 7)
21537174 (32,7) T11T327 (33,8)
To1X327 (32, 8) .’1?%04 (40, 8)
Z‘%1$327 (32, 9) Lp1L31T488 (51, 10)
x%m (34,8) 93:1))11”488 (51,11)
nglx:{’zg (36,10 +n) 731 Tas8 (54, 10)
T174X204 (37, 8) l‘%74$204 (54, 12)
1‘%2358153 (39, 9) 1‘1741’304 + T11X83T488 (57, 12)
12321447153 (41,10) 2304 (60, 12)
2'144.%%53 (44, ].0) T1L174488 (65, 13)
353 (45,9) T 537204 (65,13)
T144T153%174 (46,11) T3, 7204 %488 (68,14)
nglmgg (48,9+n) 22,130, (70,14)
x%1$488 (50, 10) x‘2104 (80, 16)
53204 (50,10) 353304 (85,17)
T31T488 (51,9) Ti537304 (90, 18)
T3, (51,12) 31 %588 (99,17)
2153L174%204 (52,11) T01%31T 588 (99,18)

(to be continued)
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(continued)

Tga-stable

Tg4-unstable

elements

elements

5315333%04
837488
I123$144IE%53
T11783L488
03 2193488
T012L144L488
3615396:{’74
L0122047488
L1537 742204
xgrlx%%l’%s
L31L723L488
T327T488
T01T3272488
T3 T327T 488
T112327488
1’%1553271'488
o 2 3os Tass
nglx?lsa;
L1188
x%1$42188
x84$42188
3381+3%23$42188
L144%488
:pgflx%%xigs
T11%255T 388
T123%153% 88
$84$204$?188
I144$174=’17288
L327L488
T1532174% 388
T01%327T 588
x(2)1$32733z2188
x%mxiss
xglﬂﬁzsxiss
T1742204% 788
$%23$153$42188
$123$144$15339?;sg
9514433%53%88
T144%1537174T488
1’3#50288
9615395%74%2188
L11T488

95:1)’19342188

J’3304

x?’,leSS
L83T488
$11$831'42188
93:1))531’%04
L153L204
T112144% 588
T012174 %588
9501%20458288
55(2)15”2045”42188
T11%204 %388
953193%233342188
5'3113384372043312188
1’11I327I388
$%53$304

o1 x31x288
m?ﬁiss
L31T488
93%74352043342188
T174T304 g8 + T11T83T]gs
T012174 %8s
9531952041‘288

(to be continued)
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(continued)

rg4-stable rga-unstable
elements (t—s,58) elements (t—s,s)
T31T4gs (147, 25)
74T (147,28)
T153T174T204%5gg  (148,27)
T847753% s (149,29)
x83x§188 (152 27)
.1‘123.1‘1441‘%53.7342188 (152 29)
J,‘Hxsgxiss (153 28)
1‘84I%53$204$288 (154 30)
20321937 g8 (156,30 +n)
T017144T488 (158 29)
1‘84ZL‘153$§0413288 (159 31)
X153%7747488 (162 31)
1’01%204%%88 (164 29)
{,1315356%74;62041:?188 (165 31)
o1 wTa3Thss (168,31 4 n)
31771237488 (171,31)
T327T 488 (176 31)
.1‘011‘327.73288 (176 32)
l‘%1$327$288 (176 33)
1‘11I327$288 (177 32)
1’%11'3271‘488 (178 33)
o1 @y rdss (180,34 4 n)

Table A.4: Basis of Adams E..-page as an Fa[r}gs]-module

Tg4-stable Tg4-unstable

elements (t—s,s) elements (t—s,8)
1‘81 (07 TL) Z31 (3’ 1)
T11 (1,1) T01%31 (3,2)
x%l (2,2) m?l (3,3)
ng'?’xlgg (12,6 +n) 3, (6,2)
ot wlas (24,7 +n) T3 (8,3)
Ta55 (25,5) 11783 (9,4)
T117255 (26,6) T144 (14,4)
L3271 (32,7) T11144 (15,5)
T017T327 (32,8) 017174 (17,5)
L1327 (32, 9) T204 (20, 4)
o7 o (36,10 +n) | zo17204 (20,5)
.’1,‘01+2.T488 (48, 10 + n) .’1?(2)1.’172()4 (20, 6)
l‘§55 (507 10) 11204 (21, 5)
T83T 488 (56, 11) Tg4144 (22, 8)
T01T84Tass + T1232144T 755 (56,13) 71237153 (27,6)

(to be continued)
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(continued)

Tga-stable Tg4-unstable
elements (t—s,58) elements (t—s,s)
11283488 (57 12) $31$%23 (27, 7)
1’8;3$123$488 (60 14 + TL) I84T204 (28, 8)
w2588 (72,15 +n) | @327 + 1532174 (32,7)
T3277488 (80,15) T117T327 (33,8)
T01L327L488 (80 16) l’%74 (34, 8)
2312327488 (80,17) 8471237153 (35,10)
T11X327L488 (81 16) 33%2331‘153 (39, 9)
T3, T327T 488 (82,17) 2304 (40,8)
$8f1$?23x4gg (84 18 + TL) £E84($327 + x153x174) (40, 11)
$6Lf_1$12188 (96 17+ Tl) 212321442153 (41, 10)
211028 (97,17) Ts3422, (42,12)
ot w3ss (98,18) w53 (45,9)
x84x42188 (104 20) L144X153T174 (46, 11)
l‘gr:ﬁ.flggll?zgs (108 22 + n) I31T488 (51, 9)
LR T (120,23 +n) | 01231 %488 (51, 10)
1‘111‘255.23?188 (122 22) x§’1$488 (51, 11)
1‘327I288 (128 23) L153L174T204 (52, 11)
1’011’3271‘388 (128 24) 1L’84£L’?53 (53, 13)
T3, 7327738 (128,25) T3, T4ss (54, 10)
m84$255x12188 (129 25) 3?%7431‘204 (54, 12)
I‘grlﬂ'}?le‘iSS (132 26 + Tl) IL’174$§04 + 2117837488 (57, 12)
l‘gl Thgs (144 26 + n) 31284488 (59, 13)
T83Tihgs (152,27) T304 (60,12)
T01T84Thgg + T123T144T5 532755 (152,29) T84T 1531740204 (60, 15)
$11x83x§188 (153 28) T1L174488 (65, 13)
{L‘84(,C%55CL'42188 (154 30) 1‘?53.%204 (65, 13)
0P 210370 es (156,30 +n) | z153757, (66,15)
AR O (168,31 +n) | 22, 204%4ss (68, 14)
3270488 (176,31) 21537504 (70,14)
1‘011‘327%288 (176 32) 1‘1531’%04 + 5173113%2333488 (75, 15)
812307753 (176,33) 304 (80,16)
x%1x327x§88 (177,32) T334 (85,17)
L112327T488 (178,33) 1530204 (90,18)
LU O (180,34 4+ n) | w3122 (99,17)
1'011'311'42188 (99, 18)
t)23ss (99,19)
230, (100, 20)
3% ]gs (102,18)
T83T 88 (1047 19)
x11$83$42188 (1057 20)
532304 (105,21)
1447488 (1107 20)

(to be continued)
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(continued)

Tga-stable Tg4-unstable
elements (t—s,58) elements (t—s,s)
TT53%504 (110,22)
T11T144% g5 (111,21)
T01T174T 58 (113,21)
T01T204T 755 (116,21)
017204258 (116,22)
T11T204T]gg (117,21)
T84T 144T5gg (118,24)
T123T153T 38 (123,22)
x31$%23$£88 (123,23)
T84T204% g8 (124,24)
T11084204T 358 (125,25)
(2327 + T153T174)T1gg (128,23)
T11T327T5gs (129, 24)
%7488 (130, 24)
¥532304 (130, 26)
T84T123T 153 388 (131,26)
$%23$153$42188 (135, 25)
T84 ($327 + 3315333‘174)33[2188 (136, 27)
T123T144%153% 588 (137,26)
558455%745”388 (138,28)
T144%1530174T4gg (142, 27)
T31T5gg (147,25)
T01231Tgg (147, 26)
a1 7iss (147, 27)
T1532174T204% 758 (148, 27)
T84T 530788 (149, 29)
T317488 (150, 26)
T374T204T35g (150, 28)
T84T144T 1538174 T g8 (150, 31)
T174T304 05 + T11 78374y (153, 28)
T31T84%ygg (155,29)
T84T 1531740204 T 158 (156, 31)
T01T174T s (161,29)
$153m?74l‘42188 (162, 31)
T3 To0aTigs (164, 30)
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