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Introduction

One of the first theorems of representation theory is Maschke’s theorem: any
representation of a finite group over a field of characteristic zero is semi-simple.
This theorem is ubiquitous throughout mathematics. (We often use it without
realising it; for example, when we write a function of one variable as the sum of an
odd and an even function.) The next step is Weyl’s theorem: any finite-dimensional
representation of a compact Lie group is semi-simple1. It is likewise fundamental:
for the circle group Weyl’s theorem is closely tied to the theory of Fourier series.

Beyond the theorems of Maschke andWeyl lies the realm of where semi-simplicity
fails. Non semi-simple phenomena in representation theory were first encountered
when studying the modular (i.e. characteristic p) representations of finite groups.
This theory is the next step beyond the classical theory of the character table, and
is important in understanding the deeper structure of finite groups. A second ex-
ample (of fundamental importance throughout mathematics from number theory to
mathematical physics) occurs when studying the infinite-dimensional representation
theory of semi-simple Lie groups and their p-adic counterparts.

Throughout the history of representation theory, geometric methods have played
an important role. Over the last forty years, the theory of intersection cohomology
and perverse sheaves has provided powerful new tools. To any complex reductive
group is naturally associated several varieties (e.g. unipotent and nilpotent orbits
and their closures, the flag variety and its Schubert varieties, the affine Grass-
mannian and its Schubert varieties . . . ). In contrast to the group itself, these
varieties are often singular. The theory of perverse sheaves provides a collection
of constructible complexes of sheaves (intersection cohomology sheaves) on such
varieties, and the “IC data” associated to intersection cohomology sheaves (graded
dimensions of stalks, total cohomology, . . . ) appears throughout Lie theory.

The first example of the power of this theory is the Kazhdan-Lusztig conjecture
(a theorem of Beilinson-Bernstein and Brylinski-Kashiwara), which expresses the
character of a simple highest weight module over a complex semi-simple Lie algebra
in terms of IC data of Schubert varieties in the flag variety. This theorem is an
important first step towards understanding the irreducible representations of semi-
simple Lie groups. A second example is Lusztig’s theory of character sheaves,

1Weyl first proved his theorem via integration over the group to produce an invariant Hermitian
form. To do this he needed the theory of manifolds. One can view his proof as an early appearance

of geometric methods in representation theory.
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which provides a family of conjugation equivariant sheaves on the group which are
fundamental to the study of the characters of finite groups of Lie type.2

An important aspect of the IC data appearing in representation theory is that it is
computable. For example, a key step in the proof of the conjecture of Kazhdan and
Lusztig is their theorem that the IC data attached to Schubert varieties in the flag
variety is encoded in Kazhdan-Lusztig polynomials, which are given by an explicit
combinatorial algorithm involving only the Weyl group. Often this computability of
IC data is thanks to the Decomposition Theorem, which asserts the semi-simplicity
(with coefficients of characteristic zero) of a direct image sheaf, and implies that
one can compute IC data via a resolution of singularities.

One can view the appearance of the Decomposition Theorem throughout repre-
sentation theory as asserting some form of (perhaps well-hidden) semi-simplicity. A
trivial instance of this philosophy is that Maschke’s theorem is equivalent to the De-
composition Theorem for a finite morphism. A less trivial example is the tendency
of categories in highest weight representation theory to admit Koszul gradings; in-
deed, according to [BGS96], a Koszul ring is “as close to semisimple as a Z-graded
ring possibly can be”. Since the Kazhdan-Lusztig conjecture and its proof, many
character formulae have been discovered resembling the Kazhdan-Lusztig conjec-
ture (e.g. for affine Lie algebras, quantum groups at roots of unity, Hecke algebras
at roots of unity, . . . ) and these are often accompanied by a Koszul grading.

All of the above character formulae involve representations of objects defined
over C. On the other hand modular representation theory has been dominated
since 1979 by conjectures (the Lusztig conjecture [Lus80] on simple representa-
tions of reductive algebraic groups and the James conjecture [Jam90] on simple
representations of symmetric groups) which would imply that characteristic p rep-
resentations of algebraic groups and symmetric groups are controlled by related
objects over C (quantum groups and Hecke algebras at a pth root of unity) where
character formulae are given by Kazhdan-Lusztig like formulae.

The Decomposition Theorem fails in general with coefficients in a field of charac-
teristic p, as is already evident from the failure of Maschke’s theorem in character-
istic p. It was pointed out by Soergel [Soe00] (and extended by Fiebig [Fie11] and
Achar-Riche [AR16b]) that, after passage through deep equivalences, the Lusztig
conjecture is equivalent to the Decomposition Theorem holding for Bott-Samelson
resolutions of certain complex Schubert varieties, with coefficients in a field of char-
acteristic p. For a fixed morphism, the Decomposition Theorem can only fail in
finitely many characteristics, which implies that the Lusztig conjecture holds for
large primes3. More recently, it was discovered that there are many large charac-
teristics for which the Decomposition Theorem fails for Bott-Samelson resolutions
[Wil17d]. This led to exponentially large counter-examples to the expected bounds
in the Lusztig conjecture as well as counter-examples to the James conjecture.

Thus the picture for modular representations is much more complicated than we
thought. Recently it has proven useful (see [Soe00, JMW14a]) to accept the fail-
ure of the Decomposition Theorem in characteristic p and consider indecomposable

2The reader is referred to Lusztig’s contribution [Lus91] to these proceedings in 1990 for an
impressive list of applications of IC techniques in representation theory.

3The first proof of Lusztig’s conjecture for p " 0 was obtained as a consequence of works
by Kazhdan-Lusztig [KL93], Lusztig [Lus94], Kashiwara-Tanisaki [KT95] and Andersen-Jantzen-

Soergel [AJS94].
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summands of direct image sheaves as interesting objects in their own right. It was
pointed out by Juteau, Mautner and the author that, in examples in representa-
tion theory, these summands are often characterised by simple cohomology parity
vanishing conditions, and are called parity sheaves.

Most questions in representation theory whose answer involves (or is conjectured
to involve) Kazhdan-Lusztig polynomials are controlled by the Hecke category, a
categorification of the Hecke algebra of a Coxeter system. Thus it seems that
the Hecke category is a fundamental object in representation theory, like a group
ring or an enveloping algebra. The goal of this survey is to provide a motivated
introduction to the Hecke category in both its geometric (via parity sheaves) and
diagrammatic (generators and relations) incarnations.

When we consider the Hecke category in characteristic p it gives rise to an inter-
esting new Kazhdan-Lusztig-like basis of the Hecke algebra, called the p-canonical
basis. The failure of this basis to agree with the Kazhdan-Lusztig basis measures
the failure of the Decomposition Theorem in characteristic p. Conjecturally (and
provably in many cases), this basis leads to character formulae for simple modules
for algebraic groups and symmetric groups which are valid for all p. Its uniform
calculation for affine Weyl groups and large p seems to me to be one of the most
interesting problems in representation theory.4

If one sees the appearance of the Decomposition Theorem and Koszulity as some
form of semi-simplicity, then this semi-simplicity fails in many settings in modu-
lar representation theory. However it is tempting to see the appearance of parity
sheaves and the p-canonical basis as a deeper and better hidden layer of semi-
simplicity, beyond what we have previously encountered. Some evidence for this is
the fact that some form of Koszul duality still holds, although here IC sheaves are
replaced by parity sheaves and there are no Koszul rings.

0.1. Structure of the paper.

(1) In §1 we discuss the Decomposition Theorem, parity sheaves and the role
of intersection forms. We conclude with examples of parity sheaves and the
failure of the Decomposition Theorem with coefficients of characteristic p.

(2) In §2 we introduce the Hecke category. We explain two incarnations of this
category (via parity sheaves, and via diagrammatics) and discuss its spher-
ical and anti-spherical modules. We conclude by defining the p-canonical
basis, giving some examples, and discussing several open problems.

(3) In §3 we give a bird’s eye view of Koszul duality for the Hecke category in
its classical, monoidal and modular forms.

Although this work is motivated by representation theory, we only touch on appli-
cations in remarks. The reader is referred to [Wil17a] for a survey of applications
of this material to representation theory.

Acknowledgements. It is a pleasure to thank all my collaborators as well as
H. Andersen, A. Beilinson, R. Bezrukavnikov, M. A. de Cataldo, J. Chuang, M. Kho-
vanov, L. Migliorini, P. Polo, and R. Rouquier for all they have taught me, and much
besides. Thanks also to P. McNamara for permission to include some calculations
from work in progress (in Example 1.14).

4See [LW18] for a conjecture in a very special case, which gives some idea of (or at least a

lower bound on!) the complexity of this problem.
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1. The Decomposition Theorem and Parity Sheaves

The Decomposition Theorem is a beautiful theorem about algebraic maps. How-
ever its statement is technical and it takes some effort to understand its geometric
content. To motivate the Decomposition Theorem and the definition of parity
sheaves, we consider one of the paths that led to its discovery, namely Deligne’s
proof of the Weil conjectures [Del74]. We must necessarily be brief; for more back-
ground on the Decomposition Theorem see [BlBD82, dCM09, Wil17b].

1.1. Motivation: The Weil conjectures. Suppose thatX is a smooth projective
variety defined over a finite field Fq. On X one has the Frobenius endomorphism
Fr : X Ñ X and the deepest of the Weil conjectures (“purity”) implies that the
eigenvalues of Fr on the étale cohomology HipXq5 are of a very special form (“Weil
numbers of weight i”). By the Grothendieck-Lefschetz trace formula, we have

|XpFqmq| “
ÿ

i

p´1qi TrppFr˚qm : HipXq Ñ HipXqq

for all m ě 1, where XpFqmq denotes the (finite) set of Fqm-rational points of X.
In this way, the Weil conjectures have remarkable implications for the number of
Fqm-points of X.

How should we go about proving purity? We might relate the cohomology of X
to that of other varieties, slowly expanding the world where the Weil conjectures
hold. A first attempt along these lines might be to consider long exact sequences
associated to open or closed subvarieties of X. However this is problematic because
purity no longer holds if one drops the “smooth” or “proper” assumption.

For any map f : X Ñ Y of varieties we have a push-forward functor f˚ and its
derived functor Rf˚ between (derived) categories of sheaves on X and Y . (In this
paper we will never consider non-derived functors; we will write f˚ instead of Rf˚

from now on.) The cohomology of X (with its action of Frobenius) is computed by
p˚Qℓ,X , where Qℓ,X denotes the constant sheaf on X and p : X Ñ pt denotes the
projection to a point.

This reinterpretation of what cohomology “means” provides a more promising
approach to purity. For any map f : X Ñ Y we can use the commutative diagram

X
p

  @
@@

@@
@@

@

f

��
Y

g
// pt

and the isomorphism p˚Qℓ,X “ pg ˝ fq˚Qℓ,X “ g˚pf˚Qℓ,Xq to factor the calculation

of H˚pXq into two steps: we can first understand f˚Qℓ,X ; then understand the

direct image of this complex to a point. One can think of the complex f˚Qℓ,X as a
linearisation of the map f . For example, if f is proper and y is a (geometric) point
of Y then the stalk at y is

pf˚Qℓ,Xqy “ H˚pf´1pyqq.

5In this section only we will use HipXq to denote the étale cohomology group HipXFq
,Qℓq of

the extension of scalars of X to an algebraic closure Fq of Fq , where ℓ is a fixed prime number

coprime to q.
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It turns out that6 f˚Qℓ,X splits as a direct sum of simple pieces (this is the Decompo-
sition Theorem). Thus, each summand contributes a piece of the cohomology of X,
and one can try to understand them separately. This approach provides the skele-
ton of Deligne’s proof of the Weil conjectures: after some harmless modifications
to X, the theory of Lefschetz pencils provides a surjective morphism f : X Ñ P1,
and one has to show purity for the cohomology of each of the summands of f˚Qℓ,X

(sheaves on P1). Showing the purity of the cohomology of each summand is the
heart of the proof, which we don’t enter into here!

1.2. The Decomposition Theorem. We now change setting slightly: from now
on we consider complex algebraic varieties equipped with their classical (metric)
topology and sheaves of k-vector spaces on them, for some field of coefficients k.
For such a variety Y and a stratification

Y “
ğ

λPΛ

Yλ

of Y into finitely many locally-closed, smooth and connected subvarieties we denote
by Db

ΛpY ;kq the full subcategory of the derived category of complexes of sheaves of
k-vector spaces with Λ-constructible7 cohomology sheaves. We will always assume
that our stratification is such that Db

ΛpY ;kq is preserved under Verdier duality
(this is the case, for example, if our stratification is given by the orbits of a group).
We denote by Db

cpY ;kq the constructible derived category: it consists of those
complexes which are Λ-constructible for some Λ as above. Both Db

ΛpY ;kq and
Db

cpY ;kq are triangulated with shift functor r1s. For any morphism f : X Ñ Y we
have functors

Db
cpX;kq

f˚,f!
--
Db

cpY ;kq

f˚,f !

mm

satisfying a menagerie of relations (see e.g. [dCM09]).
Consider a proper morphism f : X Ñ Y of complex algebraic varieties with X

smooth. We consider the constant sheaf kX on X with values in k and its (derived)
direct image on Y :

f˚kX .

A fundamental problem (which we tried to motivate in the previous section) is to
understand how this complex of sheaves decomposes. The Decomposition Theorem
states that, if k is a field of characteristic zero, then f˚kX is semi-simple in the
sense of perverse sheaves. Roughly speaking, this means that much of the topology
of the fibres of f is “forced” by the nature of the singularities of Y . More precisely,
if we fix a stratification of Y as above for which f˚kX is constructible, then we have
an isomorphism:

(1.1) f˚kX –
à

H˚
λ,L bk IC

L
λ .

Here the (finite) sum is over certain pairs pλ,L q where L is an irreducible local

system on Yλ, H
˚
λ,L is a graded vector space, and ICL

λ denotes IC extension of

L . (The complex of sheaves ICL
λ is supported on Yλ and extends L rdimC Yλs in

a “minimal” way, taking into account singularities. For example, if Y λ is smooth

6after passage to Fq
7i.e. those sheaves whose restriction to each Yλ is a local system
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and L extends to a local system L on Y λ, then ICL
λ “ L rdimC Yλs.) If L “ k

is the trivial local system we sometimes write ICλ instead of ICk
λ.

Below we will often consider coefficient fields k of positive characteristic, where
in general (1.1) does not hold. We will say that the Decomposition Theorem holds
(resp. fails) with k-coefficients if an isomorphism of the form (1.1) holds (resp.
fails).

1.3. Parity Sheaves. Consider f : X Ñ Y , a proper map between complex al-
gebraic varieties, with X smooth. Motivated by the considerations that led to the
Decomposition Theorem we ask:

Question 1.1. Fix a field of coefficients k.
(1) What can one say about the indecomposable summands of f˚kX?
(2) What about the indecomposable summands of f˚L , for L a local system

of k-vector spaces on X?

(Recall f˚ means derived direct image.) If k is of characteristic zero, then (1) has
a beautiful answer: by the Decomposition Theorem, any indecomposable summand
is a shift of an IC extension of an irreducible local system. The same is true of (2) if
L is irreducible. (This is Kashiwara’s conjecture, proved by Mochizuki [Moc11].)

If the characteristic of k is positive this question seems difficult. However it has
a nice answer (in terms of “parity sheaves”) under restrictions on X, Y and f .

Remark 1.2. It seems unlikely that this question will have a good answer as phrased
in general. It is possible that it does have a good answer if one instead works in
an appropriate category of motives, perhaps with restrictions on allowable maps f
and local systems L .

Assume that Y admits a stratification Y “
Ů

λPΛ Yλ as above. For λ P Λ, let

jλ : Yλ ãÑ Y denote the inclusion. A complex F P Db
ΛpY ;kq is even if

(1.2) Hipj˚
λF q “ Hipj!λF q “ 0 for i odd, and all λ P Λ.

(Here Hi denotes the ith cohomology sheaf of a complex of sheaves.) A complex F
is odd if F r1s is even; a complex is parity if it can be written as a sum F0 ‘ F1

with F0 (resp. F1) even (resp. odd).

Example 1.3. The archetypal example of a parity complex is f˚kX rdimC Xs, where
f is proper and X is smooth as above, and f is in addition even: f˚kX rdimC Xs is
Λ-constructible and the cohomology of the fibres of f with k-coefficients vanishes
in odd degree. (Indeed, in this case, kX rdimC Xs is Verdier self-dual, hence so is
f˚kX rdimC Xs (by properness) and the conditions (1.2) follow from our assumptions
on the cohomology of the fibres of f .)

We make the following (strong) assumptions on each stratum:

Yλ is simply connected;(1.3)

HipYλ,kq “ 0 for i odd.(1.4)

Theorem 1.4. Suppose that F is indecomposable and parity:

(1) The support of F is irreducible, and hence is equal to Y λ for some λ P Λ.
(2) The restriction of F to Yλ is isomorphic to a constant sheaf, up to a shift.

Moreover, any two indecomposable parity complexes with equal support are isomor-
phic, up to a shift.
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(The proof of this theorem is not difficult, see [JMW14a, §2.2].) If F is an
indecomposable parity complex with support Yλ then there is a unique shift of F
making it Verdier self-dual. We denote it by E k

λ or Eλ and call it a parity sheaf.

Remark 1.5. The above theorem is a uniqueness statement. In general, there might
be no parity complex with support Y λ. A condition guaranteeing existence of a
parity sheaf with support Y λ is that Y λ admit an even resolution. In all settings
we consider below parity sheaves exist for all strata, and thus are classified in the
same way as IC sheaves.

Remark 1.6. In contrast to IC sheaves, parity sheaves are only defined up to non-
canonical isomorphism.

Below it will also be important to consider the equivariant setting. We briefly
outline the necessary changes. Suppose that a complex algebraic group G acts
on Y preserving strata. Let Db

G,ΛpX;kq denote the Λ-constructible equivariant

derived category [BL94]. We have the usual menagerie of functors associated to
G-equivariant maps f : X Ñ Y which commute with the “forget G-equivariance
functor” to Db

ΛpX;kq. In the equivariant setting the definition of even, odd and par-
ity objects remain unchanged. Also Theorem 1.4 holds, if we require “equivariantly
simply connected” in (1.3) and state (1.4) with equivariant cohomology.

1.4. Intersection Forms. In the previous section we saw that, for any proper
even map f : X Ñ Y , the derived direct image f˚kX decomposes into a direct sum
of shifts of parity sheaves. In applications it is important to know precisely what
form this decomposition takes. It turns out that this is encoded in the ranks of
certain intersection forms associated to the strata of Y , as we now explain.

For each stratum Yλ and point y P Yλ we can choose a normal slice N to the

stratum Yλ through y. If we set F :“ f´1pyq and rN :“ f´1pNq then we have a
commutative diagram with Cartesian squares:

F //

��

rN //

��

X

f

��
txu // N // Y

Set d :“ dimC
rN “ dimC N “ codimCpYλ Ă Xq. The inclusion F ãÑ rN equips the

integral homology of F with an intersection form (see [JMW14a, §3.1])

IF j
λ : Hd´jpF,Zq ˆ Hd`jpF,Zq Ñ H0p rN,Zq “ Z for j P Z.

Remark 1.7. Let us give an intuitive explanation for the intersection form: suppose
we wish to pair the classes of submanifolds of real dimension d ´ j and d ` j

respectively. We regard our manifolds as sitting in rN and move them until they

are transverse. Because pd ´ jq ` pd ` jq “ 2d (the real dimension of rN) they will
intersect in a finite number of signed points, which we then count to get the result.

Remark 1.8. The above intersection form depends only on the stratum Yλ (up to
non-unique isomorphism): given any two points y, y1 P Yλ and a (homotopy class
of) path from y to y1 we get an isometry between the two intersection forms.

Let us assume that our parity assumptions are in force, and that the homology
H˚pF,Zq is free for all λ. In this case, for any field k the intersection form over k
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is obtained via extension of scalars from IF j
λ . We denote this form by IF j

λ bZ k.
The relevance of these forms to the Decomposition Theorem is the following:

Theorem 1.9 ([JMW14a, Theorem 3.13]). The multiplicity of Eλrjs as a summand

of f˚kX rdimC Xs is equal to the rank of IF j
λ b k. Moreover, the Decomposition

Theorem holds if and only if IF j
λ bk and IF j

λ bQ have the same rank, for all λ P Λ
and j P Z.

1.5. Examples. Our goal in this section is to give some examples of intersection
cohomology sheaves and parity sheaves. Throughout, k denotes our field of coef-
ficients and p denotes its characteristic. (The strata in some of examples below
do not satisfy our parity conditions. In each example this can be remedied by
consideration equivariant sheaves for an appropriate group action.)

Example 1.10. (A nilpotent cone) Consider the singular 2-dimensional quadric
cone

X “ tpx, y, zq | x2 “ ´yzu Ă C3.

Then X is isomorphic to the cone of nilpotent matrices inside sl2pCq – C3. Let
0 denote the unique singular point of X and Xreg “ Xzt0u the smooth locus.
Consider the blow-up of X at 0:

f : rX Ñ X

This is a resolution of singularities which is isomorphic to the Springer resolution
under the above isomorphism of X with the nilpotent cone. It is an isomorphism
over Xreg and has fibre P1 over 0. In particular, the stalks of the direct image of
the shifted constant sheaf f˚k

ĂX
r2s are given by:

´2 ´1 0
Xreg k 0 0
t0u k 0 k

One has an isomorphism of rX with the total space of the line bundle Op´2q on P1.
Under such an isomorphism, the zero section corresponds to f´1p0q. In particular,

f´1p0q has self-intersection ´2 inside rX. It follows that:

f˚k
ĂX

r2s – kX r2s ‘ kt0u, if k is of characteristic ‰ 2,

f˚k
ĂX

r2s is indecomposable, if k is of characteristic 2.

If p “ 2, the complex f˚k
ĂX

r2s is an archetypal example of a parity sheaf. For
further discussion of this example, see [JMW12, §2.4].

Example 1.11. (The first singular Schubert variety) Let Gr42 denote the Grass-
mannian of 2-planes inside C4. Fix a two-dimensional subspace C2 Ă C4 and let
X Ă Gr42 denote the closed subvariety (a Schubert variety)

X “ tV P Gr42 | dimpV X C2q ě 1u.

It is of dimension 3, with unique singular point V “ C2 P Gr42. The space

rX “ tV P Gr42, L Ă C2 | dimL “ 1, L Ă V X C2u

is smooth, and the map f : rX Ñ X forgetting L is a resolution of singularities. This
morphism is “small” (i.e. the shifted direct image sheaf f˚k

ĂX
r3s coincides with the

intersection cohomology complex for any field k) and even. Thus in this example
the parity sheaf and intersection cohomology sheaf coincide in all characteristics.
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Example 1.12. (Contraction of the zero section) Suppose that Y is smooth of
dimension ą 0 and that Y Ă T˚Y may be contracted to a point (i.e. there exists
a map f : T˚Y Ñ X such that fpY q “ txu and f is an isomorphism on the com-
plement of Y ). In this case x is the unique singular point of X and the intersection
form at x is ´χpY q, where χpY q denotes the Euler characteristic of Y . If Y has
vanishing odd cohomology then f is even and f˚kT˚Y is parity. The Decomposition
Theorem holds if and only if p does not divide χpY q.

Example 1.13. (A non-perverse parity sheaf) For n ě 1 consider

X “ C2n{p˘1q “ SpecCrxixj | 1 ď i, j ď 2ns.

If rX denotes the total space of Op´2q on P2n´1 then we have a resolution

f : rX Ñ X.

It is an isomorphism over Xreg “ Xzt0u with fibre P2n´1 over 0. The intersection
form

IF j
0 : H2n´jpP2n´1,Zq ˆ H2n`jpP2n´1,Zq Ñ Z

is non-trivial only for j “ ´2n` 2,´2n` 4, . . . , 2n´ 2 in which case it is the 1ˆ 1
matrix p´2q. Thus f˚k

ĂX
is indecomposable if p “ 2. Otherwise we have

f˚k
ĂX

r2ns – kX r2ns ‘ k0r2n ´ 2s ‘ k0r2n ´ 4s ¨ ¨ ¨ ‘ k0r´2n ` 2s.

Because f is even, f˚k
ĂX

r2ns is parity. It is indecomposable (and hence is a parity
sheaf) if p “ 2. The interest of this example is that f˚k

ĂX
r2ns has many non-zero

perverse cohomology sheaves. (See [JMW12, §3.3] for more on this example.)

Example 1.14. (The generalised Kashiwara-Saito singularity) Fix d ě 2 and con-
sider the variety of linear maps

Cd A //

D
��

Cd

B
��

Cd

C
// Cd

satisfying

BA “ CD “ 0,

rank

ˆ

A
D

˙

ď 1,

rank
`

B C
˘

ď 1.

This is a singular variety of dimension 6d ´ 4. Let 0 “ p0, 0, 0, 0q denote its most
singular point. Consider

rX “

$

&

%

pA,B,C,D,H1, L2, L3, L4q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

H1 P Grdd´1, Li P Grd1,
A P HompCd{H1, L2q, B P HompCd{L2, L4q,
C P HompCd{L3, L4q, D P HompCd{H1, L3q

,

.

-

(where Grdi denotes the Grassmannian if i-planes in Cd). The natural map

f : rX Ñ X

is a resolution. We have F “ f´1p0q – pPd´1q4. The intersection form

H6d´4pF q ˆ H6d´4pF q Ñ Z

has elementary divisors p1, . . . , 1, dq. The Decomposition Theorem holds if and only
if p ∤ d.

The d “ 2 case yields an 8-dimensional singularity which Kashiwara and Saito
showed is smoothly equivalent to a singularity of a Schubert variety in the flag
variety of SL8 or a quiver variety of type A5. It tends to show up as a minimal
counterexample to optimistic hopes in representation theory [KS97, Lec03, Wil14,
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Wil15]. Polo observed (unpublished) that for any d the above singularities occur in
Schubert varieties for SL4d. This shows that the Decomposition Theorem can fail
for type A Schubert varieties for arbitrarily large p.

2. The Hecke category

In this section we introduce the Hecke category, a monoidal category whose
Grothendieck group is the Hecke algebra. If one thinks of the Hecke algebra as
providing Hecke operators which act on representations or function spaces, then
the Hecke category consists of an extra layer of “Hecke operators between Hecke
operators”.

2.1. The Hecke algebra. Let G denote a split reductive group over Fq, and let
T Ă B Ă G denote a maximal torus and Borel subgroup. For example, we could
take G “ GLn, B “ upper triangular matrices and T “ diagonal matrices. The
set of Fq-points, GpFqq, is a finite group (e.g. for G “ GLn, GpFqq is the group of
invertible n ˆ n-matrices with coefficients in Fq). Many important finite groups,
including “most” simple groups, are close relatives of groups of this form.

A basic object in the representation theory of the finite group GpFqq is the Hecke
algebra

HFq :“ FunBpFqqˆBpFqqpGpFqq,Cq

of complex valued functions on GpFqq, invariant under left and right multiplication
by BpFqq. This is an algebra under convolution:

pf ˚ f 1qpgq :“
1

|BpFqq|

ÿ

hPGpFqq

fpgh´1qf 1phq.

Remark 2.1. Instead we could replace GpFqq by GpKq and BpFqq by an Iwahori
subgroup of GpKq (for a local field K with finite residue field), and obtain the affine
Hecke algebra (important in the representation theory of p-adic groups).

Let W denote the Weyl group, S its simple reflections, ℓ : W Ñ Zě0 the length
function ofW with respect to S and ď the Bruhat order. The Bruhat decomposition

GpFqq “
ğ

wPW

BpFqq ¨ wBpFqq

shows that HFq
has a basis given by indicator functions tw of the subsets BpFqq ¨

wBpFqq, for w P W .
Iwahori [Iwa64] showed that HFq

may also be described as the unital algebra
generated by ts for s P S subject to the relations

t2s “ pq ´ 1qts ` q,

tstu . . .
loomoon

msu factors

“ tuts . . .
loomoon

msu factors

where u ‰ s in the second relation and msu denotes the order of su in W . These
relations depend on q in a uniform way and make sense for any Coxeter group.
Thus it makes sense to use these generators and relations to define a new algebra
H over Zrq˘1s (q is now a formal variable); thus H specialises to the Hecke algebra
defined above via q ÞÑ |Fq|.
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For technical reasons it is useful to adjoin a square root of q and regard H as
defined over Zrq˘1{2s. We then set v :“ q´1{2 and δs :“ vts, so that the defining
relations of H become

δ2s “ pv´1 ´ vqδs ` 1,

δsδu . . .
loomoon

msu factors

“ δuδs . . .
loomoon

msu factors

.

For any reduced expression w “ st . . . u (i.e. any expression for w using ℓpwq simple
reflections) we set δw :“ δsδt . . . δu. We obtain in this way a well-defined Zrv˘1s-
basis tδx | x P W u for H, the standard basis. (This basis specialises via q ÞÑ |Fq| to
the indicator functions tw considered above, up to a power of v.)

There is an involution d : H Ñ H defined via

v ÞÑ v´1 and δs ÞÑ δ´1
s “ δs ` pv ´ v´1q.

Kazhdan and Lusztig [KL79] (see [Soe97] for a simple proof) showed that for all
x P W there exists a unique element bx satisfying

dpbxq “ bx,(“self-duality”)

bx P δx `
ÿ

yăx

vZrvsδy(“degree bound”)

where ď is Bruhat order. For example bs “ δs ` v. The set tbx | x P W u is the
Kazhdan-Lusztig basis of H. The polynomials hy,x P Zrvs defined via bx “

ř

hy,xδy
are (normalisations of) Kazhdan-Lusztig polynomials.

2.2. The Hecke category: geometric incarnation. Grothendieck’s function-
sheaf correspondence (see e.g. [Lau87, §1]) tells us how we should categorify the
Hecke algebra HFq

. Namely, we should consider an appropriate category of B ˆ

B-equivariant sheaves on G, with the passage to HFq being given by the trace

of Frobenius at the rational points GpFqq.8 Below we will use the fact that the
multiplication action of B on G is free, and so instead we can consider B-invariant
functions (resp. B-equivariant sheaves) on G{B.

To avoid technical complications, and to ease subsequent discussion, we will
change setting slightly. Let us fix a generalised Cartan matrix C “ pcstqs,tPS and let
phZ, tαsusPS , tα_

s usPSq be a Kac-Moody root datum, so that hZ is a free and finitely
generated Z-module, αs P HomphZ,Zq are “roots” and α_

s P hZ are “coroots” such
that xα_

s , αty “ cst. To this data we may associate a Kac-Moody group G (a group
ind-scheme over C) together with a canonical Borel subgroup B and maximal torus
T. The reader is welcome to take G to be a complex reductive group, as per the
following remark. (For applications to representation theory the case of an affine
Kac-Moody group is important.)

Remark 2.2. If G is a complex reductive group and T Ă B Ă G is a maximal
torus and Borel subgroup, then we can consider the corresponding root datum
pX , R,X _, R_q (where X denotes the characters of T, R the roots etc.). If
tαsusPS Ă R denotes the simple roots determined by B then pX _, tαsu, tα_

s uq

is a Kac-Moody root datum. The corresponding Kac-Moody group (resp. Borel
subgroup and maximal torus) is canonically isomorphic to G (resp. B, T).

8As is always the case with Grothendieck’s function-sheaf correspondence, this actually cate-

gorifies the Hecke algebras of GpFqm q for “all m at once”.
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We denote by G{B the flag variety (a projective variety in the case of a reductive
group, and an ind-projective variety in general). As earlier, we denote by W the
Weyl group, ℓ the length function and ď the Bruhat order. We have the Bruhat
decomposition

G{B “
ğ

wPW

Xw where Xw :“ B ¨ wB{B.

The Xw are isomorphic to affine spaces, and are called Schubert cells. Their closures
Xw Ă G{B are projective (and usually singular), and are called Schubert varieties.

Fix a field k and consider Db
BpG{B;kq, the bounded equivariant derived cate-

gory with coefficients in k (see e.g. [BL94]).9 This a monoidal category under
convolution: given two complexes F ,G P Db

BpG{B;kq their convolution is

F ˚ G :“ mult˚pF bB G q,

where: G ˆB G{B denotes the quotient of G ˆ G{B by pgb, g1Bq „ pg, bg1Bq for all
g, g1 P G and b P B; mult : G ˆB G{B Ñ G{B is induced by the multiplication
on G; and F bB G P Db

BpG ˆB G{B;kq is obtained via descent from F b G P

Db
B3pG ˆ G{B;kq.10 (Note that mult is proper, and so mult˚ “ mult!.)

Remark 2.3. If G is a reductive group and we work over Fq instead of C, then
this definition categorifies convolution in the Hecke algebra, via the function-sheaf
correspondence.

For any s P S we can consider the parabolic subgroup

Ps :“ BsB “ BsB \ B Ă G.

We define the Hecke category (in its geometric incarnation) as follows

Hk
geom :“ xkPs{B | s P Sy˚,‘,r1s,Kar.

That is, we consider the full subcategory of Db
BpG{B;kq generated by kPs{B under

convolution (˚), direct sums (‘), homological shifts (r1s) and direct summands
(Kar, for “Karoubi”).

Remark 2.4. If we were to work over Fq, then kPs{B categorifies the indicator
function of PspFqq Ă GpFqq. The definition of the Hecke category is imitating
the fact that the Hecke algebra is generated by these indicator functions under
convolution (as is clear from Iwahori’s presentation).

Let rHk
geoms‘ denote the split Grothendieck group11 of Hk

geom. Because Hk
geom

is a monoidal category, rHk
geoms‘ is an algebra via rF s ¨ rG s “ rF ˚ G s. We view

rHk
geoms‘ as a Zrv˘1s-algebra via v ¨ rF s :“ rF r1ss. Recall the Kazhdan-Lusztig

basis element bs “ δs ` v for all s P S from earlier. The following theorem explains
the name “Hecke category” and is fundamental to all that follows:

Theorem 2.5. The assignment bs ÞÑ rkPs{Br1ss for all s P S yields an isomorphism

of Zrv˘1s-algebras:

H
„
Ñ rHk

geoms‘.

9By definition, any object of Db
B

pG{B; kq is supported on finitely many Schubert cells, and

hence has finite-dimensional support.
10The reader is referred to [Spr82, Nad05] for more detail on this construction.
11The split Grothendieck group rAs‘ of an additive category is the abelian group generated

by symbols rAs for all A P A, modulo the relations rAs “ rA1s ` rA2s whenever A – A1 ‘ A2.
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(This theorem is easily proved using the theory of parity sheaves, as will be
discussed in the next section.) The inverse to the isomorphism in the theorem is
given by the character map

ch : rHk
geoms‘

„
Ñ H F ÞÑ

ÿ

xPW

dimZpH˚pFxB{Bqqv´ℓpxqδx

where: FxB{B denotes the stalk of the constructible sheaf on G{B at the point
xB{B obtained from F by forgetting B-equivariance; H˚ denotes cohomology; and
dimZ H˚ :“

ř

pdimHiqv´i P Zrv˘1s denotes graded dimension.

2.3. Role of the Decomposition Theorem. The category Db
BpG{B;kq, and

hence also the Hecke category Hk
geom, is an example of a Krull-Schmidt category:

every object admits a decomposition into indecomposable objects; and an object is
indecomposable if and only if its endomorphism ring is local.

Recall that the objects of Hk
geom are the direct summands of finite direct sums

of shifts of objects of the form

Eps,t,...,uq :“ kPs{B ˚ kPt{B ˚ ¨ ¨ ¨ ˚ kPu{B P Db
BpG{Bq

for any word ps, t, . . . , uq in S. The Krull-Schmidt property implies that any inde-
composable object is isomorphic to a direct summand of a single Eps,t,...,uq. Thus in

order to understand the objects of Hk
geom it is enough to understand the summands

of Eps,t,...,uq, for any word as above.
For any such word ps, t, . . . , uq we can consider a Bott-Samelson space

BSps,t,...,uq :“ Ps ˆB Pt ˆB ¨ ¨ ¨ ˆB Pu{B

and the (projective) morphism m : BSps,t,...,uq Ñ G{B induced by multiplication.
A straightforward argument (using the proper base change theorem) shows that we
have a canonical isomorphism

Eps,t,...,uq “ m˚kBSps,t,...,uq .

The upshot: in order to understand the indecomposable objects in Hk
geom it is

enough to decompose the complexes m˚kBS , for all expressions ps, t, . . . , uq in S.

Remark 2.6. If ps, t, . . . , uq is a reduced expression for w P W , then the map m
provides a resolution of singularities of the Schubert variety Xw. These resolutions
are often called Bott-Samelson resolutions, which explains our notation.

If the characteristic of our field is zero then we can appeal to the Decomposition
Theorem to deduce that all indecomposable summands of m˚kBS are shifts of the
intersection cohomology complexes of Schubert varieties. Thus

(2.1) Hk
geom “ xICx | x P W y‘,r1s if k is of characteristic 0

where ICx denotes the (B-equivariant) intersection cohomology sheaf of the Schu-
bert variety Xx. It is also not difficult (see e.g. [Spr82]) to use (2.1) to deduce
that12

(2.2) chpICxq “ bx if k is of characteristic 0.

12Roughly speaking, the two conditions (“self-duality” + “degree bound”) characterising the
Kazhdan-Lusztig basis mirror the two conditions (“self-duality”+“stalk vanishing”) characterising

the IC sheaf.
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Thus, when the coefficients are of characteristic zero, the intersection cohomology
sheaves categorify the Kazhdan-Lusztig basis.

It is known that Bott-Samelson resolutions are even. In particular, m˚kBS is a
parity complex. Thus, for arbitrary k we can appeal to Theorem 1.4 to deduce that
all indecomposable summands of f˚kBS are shifts of parity sheaves. Thus

Hk
geom “ xEx | x P W y‘,r1s for k arbitrary

where Ex denotes the (B-equivariant) parity sheaf of the Schubert variety Xx.

Remark 2.7. Recall that for any map there are only finitely many characteristics
in which the Decomposition Theorem fails. Thus, for a fixed x there will be only
finitely many characteristics in which E k

x ‰ ICk
x.

2.4. The Hecke category: generators and relations. The above geometric
definition of the Hecke category is analogous to the original definition of the Hecke
algebra as an algebra of B-biinvariant functions. Now we discuss a description of
the Hecke category via generators and relations; this description is analogous to the
Iwahori presentation of the Hecke algebra.13 This description is due to Elias and
the author [EW16a], building on work of Elias-Khovanov [EK10] and Elias [Eli16].

Remark 2.8. In this section it will be important to keep in mind that monoidal cat-
egories are fundamentally two dimensional. While group presentations (and more
generally presentations of categories) occur “on a line”, presentations of monoidal
categories (and more generally 2-categories) occur “in the plane”. For background
on these ideas the reader is referred to e.g. [Str96] or [Lau10, §4].

Recall our generalised Cartan matrix C, Coxeter system pW,S) and Kac-Moody
root datum from earlier. Given s, t P S we denote by mst the order (possibly 8) of
st P W . We assume:

(2.3) C is simply laced, i.e. mst P t2, 3u for s ‰ t.

(We impose this assumption only to shorten the list of relations below. For the
general case the reader is referred to [EW16a].) Recall our “roots” and “coroots”

tαsusPS Ă h˚
Z and tα_

s usPS Ă hZ

such that xα_
s , αty “ cst for all s, t P S. The formula spvq “ v´xv, α_

s yαs defines an
action of W on h˚

Z. We also assume that our root datum satisfies that αs : hZ Ñ Z
and α_

s : h˚
Z Ñ Z are surjective, for all s P S. (This condition is called “Demazure

surjectivity” in [EW16a]. We can always find a Kac-Moody root datum satisfying
this constraint.)

We denote by R “ Sph˚
Zq the symmetric algebra of h˚

Z over Z. We view R as a
graded Z-algebra with deg h˚

Z “ 2; W acts on R via graded automorphisms. For
any s P S we define the Demazure operator Bs : R Ñ Rr´2s by

(2.4) Bspfq “
f ´ sf

αs
.

An S-graph is a finite, decorated graph, properly embedded in the planar strip
R ˆ r0, 1s, with edges coloured by S. The vertices of an S-graph are required to be

13The Iwahori presentation can be given on two lines. Unfortunately all current presentations

of the Hecke category need more than two pages!
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of the form:

, ,

$

’

’

’

’

’

&

’

’

’

’

’

%

if mst “ 2,

if mst “ 3.

The regions (i.e. connected components of the complement of our S-graph in R ˆ

r0, 1s) may be decorated by boxes containing homogeneous elements of R.

Example 2.9. An S-graph (with ms,t “ 3, ms,u “ 2, mt,u “ 3, the fi P R are
homogeneous polynomials):

f1

f2

The degree of an S-graph is the sum over the degrees of its vertices and boxes,
where each box has degree equal to the degree of the corresponding element of R,
and the vertices have degrees given by the following rule: univalent vertices have
degree 1, trivalent vertices have degree ´1 and 2mst-valent vertices have degree 0.
The boundary points of any S-graph on R ˆ t0u and on R ˆ t1u give14 two words
in S, called the bottom boundary and top boundary.

Example 2.10. The S-graph above has degree 0 ` deg f1 ` deg f2. Its bottom
boundary is ps, t, t, s, u, sq and its top boundary is pt, u, s, t, u, uq.

We are now ready to define a second incarnation of the Hecke category, which
we will denote Hdiag. By definition, Hdiag is monoidally generated by objects Bs,
for each s P S. Thus the objects of Hdiag are of the form

Bps,t,...,uq :“ BsBt . . . Bu

for some word ps, t, . . . , uq in S. (We denote the monoidal structure in Hdiag

by concatenation.) Thus 1 :“ BH is the monoidal unit. For any two words
ps, t, . . . , uq and ps1, t1, . . . , v1q in S, HomHdiag

pBps,t,...,uq, Bps1,t1,...,v1qq is defined to be

the free Z-module generated by isotopy classes15 of S-graphs with bottom bound-
ary ps, t, . . . , uq and top boundary ps1, t1, . . . , v1q, modulo the local relations below.
Composition (resp. monoidal product) of morphisms is induced by vertical (resp.
horizontal) concatenation of diagrams.

14we read left to right
15i.e. two S-graphs are regarded as the same if one may be obtained from the other by an

isotopy of R ˆ r0, 1s which preserves R ˆ t0u and R ˆ t1u
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The one colour relations are as follows (see (2.4) for the definition of Bs):

“ , “ ,

“ 0 , “ αs ,

f “ sf ` Bsf .

Remark 2.11. The first two relations above imply that Bs is a Frobenius object in
Hdiag, for all s P S.

There are two relations involving two colours. The first is a kind of“associativity”
(see [Eli16, (6.12)]):

“ if mst “ 2, “ if mst “ 3.

The second is Elias’ “Jones-Wenzl relation” (see [Eli16]):

“ if mst “ 2,

“ ` if mst “ 3.

Finally, for each finite standard parabolic subgroup of rank 3 there is a 3-colour
“Zamolodchikov relation”, which we don’t draw here (see [EW16a]). This concludes
the definition of Hdiag. (We remind the reader that if we drop the assumption that
C is simply laced there are more complicated relations, see [Eli16, EW16a].)

Remark 2.12. Another way of phrasing the above definition is that Hdiag is the
monoidal category with:

(1) generating objects Bs for all s P S;
(2) generating morphisms

f P Homp1,1q

for homogeneous f P R (recall 1 denotes the monoidal unit), as well as

P HompBs,1q, P Homp1, Bsq,

P HompBsBs, Bsq, P HompBs, BsBsq
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for all s P S and

P HompBsBt, BtBsq,
(if mst “ 2)

P HompBsBtBs, BtBsBtq,
(if mst “ 3)

for all pairs s, t P S,

subject to the above relations (and additional relations encoding isotopy invariance).

Remark 2.13. The above relations are complicated, and perhaps a more efficient
presentation is possible. The following is perhaps psychologically helpful. Recall
that a standard parabolic subgroup is a subgroup of W generated by a subset I Ă S,
and its rank is |I|. In Iwahori’s presentation one has:

generators Ø rank 1,

relations Ø ranks 1, 2.

In Hdiag one has:

generating objects Ø rank 1,

generating morphisms Ø ranks 1, 2,

relations Ø ranks 1, 2, 3.

(More precisely, it is only the finite standard parabolic subgroups which contribute
at each step.)

All relations defining Hdiag are homogeneous for the grading on S-graphs defined

above. Thus Hdiag is enriched in graded Z-modules. We denote by H‘,r1s

diag the

additive, graded envelope16 of Hdiag. Thus H‘,r1s

diag is an additive category equipped

with a “shift of grading” equivalence r1s, and an isomorphism of graded abelian
groups

HomHdiag
pB,B1q “

à

mPZ

HomH‘,r1s
diag

pB,B1rmsq.

For any field k, we define

Hk,Kar
diag :“ pH‘,r1s

diag bZ kqKar

where p´qKar denotes Karoubi envelope. In other words, Hk,Kar
diag is obtained as the

additive Karoubi envelope of the extension of scalars of Hdiag to k. As for Hgeom,

let us consider the split Grothendieck group rHk,Kar
diag s‘ of Hk,Kar

diag , which we view as

a Zrv˘1s-algebra in the same was as for Hk
geom earlier. The following is the analogue

of Theorem 2.5 in this setting:

Theorem 2.14 ([EW16a]). The map bs ÞÑ rBss for all s P S induces an isomor-
phism of Zrv˘1s-algebras:

H
„
Ñ rHk,Kar

diag s‘.

The proof is rather complicated diagrammatic algebra, and involves first pro-
ducing a basis of morphisms between the objects of Hdiag, in terms of light leaf
morphisms [Lib08]. The following theorem shows that Hdiag does indeed give a
“generators and relations description” of the Hecke category:

16Objects are formal sums F1rm1s ‘ F2rm2s ‘ ¨ ¨ ¨ ‘ Fnrmns where Fi are objects of Hdiag

and mi P Z; and morphisms are matrices, determined by the rule that HompF rms, F 1rm1sq is the

degree m1 ´ m part of HomHdiag
pF, F 1q.
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Theorem 2.15 ([RW15, Theorem 10.3.1]). We have an equivalence of graded
monoidal categories:

Hk,Kar
diag

„
Ñ Hk

geom.

Remark 2.16. Knowing a presentation of a group or algebra by generators and
relations opens the possibility of defining representations by specifying the action
of generators and verifying relations. Similarly, studying actions of monoidal cat-
egories is sometimes easier when one has a presentation. In principle, the above
presentation should allow a detailed study of categories acted on by the Hecke cate-
gory. For interesting recent classification results, see [MM16, MT16]. One drawback
of the theory in its current state is that the above relations (though explicit) can be
difficult to check in examples. The parallel theory of representations of categorified
quantum groups is much better developed (see e.g. [CR08, Bru16]).

Remark 2.17. An important historical antecedent to Theorems 2.14 and 2.15 is the
theory of Soergel bimodules. We have chosen not to discuss this topic, as there is
already a substantial literature on this subject. The above generators and relations
were first written down in the context of Soergel bimodules, and Soergel bimodules
are used in the proof of Theorem 2.15. We refer the interested reader to the surveys
[Ric17, Lib17] or the papers [Soe90a, Soe92, Soe07].

2.5. The spherical and anti-spherical module. In this section we introduce
the spherical and anti-spherical modules for the Hecke algebra, as well as their
categorifications. They are useful for (at least) two reasons: they are ubiquitous
in applications to representation theory; and they often provide smaller worlds in
which interesting phenomena become more tractable.

Throughout this section we fix a subset I Ă S and assume for simplicity that
the standard parabolic subgroup WI generated by I is finite. We denote by wI its
longest element. Let HI denote the parabolic subalgebra of H generated by δs for
s P I; it is canonically isomorphic to the Hecke algebra of WI . Consider the induced
modules

MI :“ H bHI
trivv and NI :“ H bHI

sgnv
where trivv (resp. sgnv) is the rank one HI -module with action given by δs ÞÑ v´1

(resp. δs ÞÑ ´v). These modules are the spherical and anti-spherical modules
respectively. If W I denotes the set of minimal length representatives for the cosets
W {WI then tδx b 1 | x P W Iu gives a (standard) basis for MI (resp. NI), which
we denote by tµx | x P W Iu (resp. tνx | x P W Iu). We denote the canonical bases
in MI (resp. NI) by tcx | x P W Iu (resp. tdx | x P W Iu) (see e.g. [Soe97]).

We now describe a categorification ofMI . To I is associated a standard parabolic
subgroup PI Ă G, and we may consider the partial flag variety G{PI (an ind-variety)
and its Bruhat decomposition

G{PI “
ğ

xPW I

Yx where Yx :“ B ¨ xPI{PI .

The closures Y x are Schubert varieties, and we denote by ICx,I (resp. Ex,I) the

intersection cohomology complex (resp. parity sheaf) supported on Y x.
Given any G-variety or ind-variety Z the monoidal category Db

BpG{B;kq acts on
Db

BpZ;kq. (The definition is analogous to the formula for convolution given earlier.)
In particular, Hk

geom acts on Db
BpG{PI ;kq. One can check that this action preserves

Mk
I :“ xEx,I | x P W Iy‘,r1s
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and thus Mk
I is a module over Hk

geom. We have:

Theorem 2.18. There is a unique isomorphism of H “ rHk
geoms‘-modules

MI
„
Ñ rMk

I s‘

sending µid ÞÑ rkPI{PI
s (we use the indentification H “ rHk

geoms‘ of Theorem 2.5).

The inverse to the isomorphism in the theorem is given by the character map

ch : rMk
I s‘

„
Ñ MI F ÞÑ

ÿ

xPW I

dimZpH˚pFxPI{PI
qqv´ℓpxqµx P MI .

(The notation is entirely analogous to the previous definition of ch in §2.2.)
We now turn to categorifying NI . The full additive subcategory

xEx | x R W Iy Ă Hk
geom

is a left ideal. In particular, if we consider the quotient of additive categories

N k
I :“ Hk

geom{xEx | x R W Iy

this is a left Hk-module. We denote the image of F P Hk
geom by F I . The objects

E x,I for x P W I are precisely the indecomposable objects of N k
I up to shift and

isomorphism. We have:

Theorem 2.19. There is a unique isomorphism of right H “ rHk
geoms‘-modules

NI
„
Ñ rN k

I s‘

sending νid ÞÑ rE id,I s (we use the identification H “ rHk
geoms‘ of Theorem 2.5).

The inverse ch : rN k
I s‘

„
Ñ N I is more complicated to describe.

Remark 2.20. It is also possible to give a geometric description of N k
I via Iwahori-

Whittaker sheaves [RW15, Chapter 11].

2.6. The p-canonical basis. Suppose that k is a field of characteristic p ě 0.
Consider the Hecke category Hk

geom with coefficients in k. Let us define
pbx :“ chpExq P H.

Because Ex is supported on Xx and its restriction to Xx is kXx
rℓpxqs, it follows

from the definition of the character map that

(2.5) pbx “ δx `
ÿ

yăx

phy,xδy

for certain phy,x P Zě0rv˘1s. Thus the set tpbx | x P W u is a basis for H, the
p-canonical basis. The base change coefficients phy,x are called p-Kazhdan-Lusztig
polynomials, although they are Laurent polynomials in general.

The p-canonical basis has the following properties (see [JW17, Proposition 4.2]):

dppbxq “ bx for all x P W ;(2.6)

if pbx “
ÿ

yďx

pay,xby then pay,x P Zě0rv˘1s and dppay,xq “ pay,x;(2.7)

if pbx
pby “

ÿ

zPW

pµz
x,y

pbz then pµz
x,y P Zě0rv˘1s and dppµz

x,yq “ pµz
x,y;(2.8)

for fixed x P W we have pbx “ 0bx “ bx for large p.(2.9)
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Remark 2.21. Recall that the Kazhdan-Lusztig basis is uniquely determined by
the “self-duality” and “degree bound” conditions (see §2.1). The p-canonical basis
satisfies self-duality (2.6), but there appears to be no analogue of the degree bound
condition in general (see Example 2.26 below).

Remark 2.22. There is an algorithm to calculate the p-canonical basis, involving
the generators and relations presentation of the Hecke category discussed earlier.
This algorithm is described in detail in [JW17, §3].

Remark 2.23. The Kazhdan-Lusztig basis only depends on the Weyl group (a fact
which is rather surprising from a geometric point of view). The p-canonical basis
depends on the root system. For example, the 2-canonical bases in types B3 and
C3 are quite different (see [JW17, §5.4]).

Remark 2.24. The above properties certainly do not characterise the p-canonical
basis. (For example, for affine Weyl groups the p-canonical bases are distinct for
every prime.) However in certain situations they do appear to constrain the situ-
ation quite rigidly. For example, the above conditions are enough to deduce that
pbx “ bx for all primes p, if G is of types An for n ă 7 (see [WB12]). See [Jen17]
for further combinatorial constraints on the p-canonical basis.

We can also define p-canonical bases in the spherical and anti-spherical module.
Let I Ă S be as in the previous section, and k and p be as above. For x P W I , set

pcx :“ chpEx,Iq “
ÿ

yPW I

pmy,xµy P MI ,

pdx :“ chpE x,Iq “
ÿ

yPW I

pny,xνy P NI .

We have pmy,x “ pny,x “ 0 unless y ď x and pmx,x “ pnx,x “ 1. Thus tpcxu (resp.
tpdxu) give p-canonical bases for MI (resp. NI). We leave it to the reader to write
down the analogues of (2.6), (2.7), (2.8) and (2.9) that they satisfy.

We define spherical and anti-spherical analogues of the“adjustment”polynomials
pay,x via:

pcx “
ÿ

yPW I

pasphy,xcy and pdx “
ÿ

yPW I

paasphy,x dy.

These polynomials give partial information on the p-canonical basis. For all x, y P

W I we have:
paywI ,xwI

“ pasphy,x and pay,x “ paasphy,x .(2.10)

We finish this section with a few examples of the p-canonical basis. These are
intended to complement the calculations in §1.5.

Example 2.25. Let G be of type B2 with Dynkin diagram:

s t

The Schubert variety Y st Ă G{Ps has an isolated singularity at Ps{Ps, and a neigh-
bourhood of this singularity is isomorphic to X from Example 1.10. From this one
may deduce that

2cst “ cst ` cid.

For a version of this calculation using diagrams see [JW17, §5.1].
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Example 2.26. Here we explain the implications of Example 1.13 for the p-
canonical basis. The singularity C2n{p˘1q occurs in the affine Grassmannian for
Sp2n, which is isomorphic to G{PI , where G is the affine Kac-Moody group of affine
type Cn with Dynkin diagram

s0 s1 s2 . . . sn´1 sn

and I “ ts1, . . . , snu denotes the subset of finite reflections. After some work
matching parameters, one may deduce that

2cwnwn´1s0 “ cwnwn´1s0 ` pv2n´2 ` v2n´4 ` ¨ ¨ ¨ ` v´2n`2q ¨ cid.

where wn (resp. wn´1) denotes the longest element in the standard parabolic
subgroup generated by ts1, . . . , snu (resp. ts2, . . . , snu).

Example 2.27. Let G “ SL8pCq with simple reflections:

s1 s2 s3 s4 s5 s6 s7

Let
w “ s1s3s2s4s3s5s4s3s2s1s6s7s6s5s4s3

and consider wI where I “ ts1, s3, s4, s5, s7u. The singularity of the Schubert
variety Xw at wI is isomorphic to the Kashiwara-Saito singularity from Example
1.14 (with d “ 2). It follows that

2bw “ bw ` bwI
.

This is one of the first examples for SLn with pbx ‰ bx.

2.7. Torsion explosion. In this section we assume that G – SLnpCq and so W “

Sn, the symmetric group. Here the p-canonical basis is completely known for n “

2, 3, . . . , 9 and difficult to calculate beyond that. The following theorem makes clear
some of the difficulties that await us in high rank:

Theorem 2.28 ([Wil17d]). Let γ be a word of length l in the generators
ˆ

1 1
0 1

˙

and

ˆ

1 0
1 1

˙

with product

γ “

ˆ

γ11 γ12
γ21 γ22

˙

.

For non-zero m P tγ11, γ12, γ21, γ22u and any prime p dividing m there exists y P

S3l`5 such that pby ‰ by.

The moral seems to be that arithmetical issues (“which primes divide entries of
this product of elementary matrices?”) are hidden in the question of determining
the p-canonical basis.17

We can get some qualitative information out of Theorem 2.28 as follows. Define

Πn :“ tp prime | pbx ‰ bx for some x P Snu.

17Another example of this phenomenon from [Wil17d]: for any prime number p dividing the lth

Fibonacci number there exists y P S3l`5 with pby ‰ by . Understanding the behaviour of primes
dividing Fibonacci numbers is a challenging open problem in number theory. It is conjectured,

but not known, that infinitely many Fibonacci numbers are prime.
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Because any Schubert variety in SLnpCq{B is also a Schubert variety in SLn`1pCq{B

we have inclusions Πn Ă Πn`1 for all n. By long calculations by Braden, Polo, Saito
and the author, we know the following about Πn for small n:

Πn “ H for n ď 7,

Πn “ t2u for n “ 8, 9,

t2, 3u Ă Π12.

The most interesting values here are 2 P Π8 (discovered by Braden in 2002, see
[WB12, Appendix]) and 3 P Π12 (discovered by Polo in 2012). More generally, Polo
shows that p P Π4p for any prime p, and hence Πn exhausts all prime numbers as
n Ñ 8 (see Example 1.14).

For applications to representation theory, it is important to know how large the
entries of Πn grow with n.18 Some number theory, combined with Theorem 2.28,
implies the following:

Corollary 2.29 ([Wil17d, Theorem A.1]). For n large, n ÞÑ maxΠn grows at least
exponentially in n. More generally, Πn contains many exponentially large prime
numbers.

Remark 2.30. Let us try to outline how Theorem 2.28 is proved. To γ and m
we associate a reduced expression x “ ps1, . . . , snq for some particular x P S3l`5.
(There is a precise but complicated combinatorial recipe as to how to do this,
which we won’t go into here. Let us mention however that the length of x grows
quadratically in l.) Associated to this reduced expression we have a Bott-Samelson
resolution

f : BSx Ñ Xx.

We calculate the intersection form at a point wIB{B (corresponding to the maximal
element of a standard parabolic subgroup) and discover the 1 ˆ 1-matrix pmq.
Thus for any p dividing m the Decomposition Theorem fails for f at the point
wIB{B, which is enough to deduce the theorem. The hard part in all of this is
finding the appropriate expression x and calculating the intersection form. The
intersection form calculation was first done in [Wil17d] using a formula in the nil
Hecke ring discovered with He [EW16b]. Later a purely geometric argument was
found [Wil17c].

Remark 2.31. Let us keep the notation of the previous remark. In general we do
not know whether pawA,x ‰ 0 for any p dividing m, only that there is some y with
wA ď y ď x and pawA,y ‰ 0. Thus, in the statement of Theorem 2.28 we don’t
know that pbx ‰ bx, although this seems likely.

Remark 2.32. By a classical theorem of Zelevinsky [Zel83], Schubert varieties in
Grassmannians admit small resolutions, and hence the p-canonical basis is equal to
the canonical basis in the spherical modules for one step flag varieties (we saw a hint
of this in Example 1.11). It is an interesting question (suggested by Joe Chuang) as
to how the p-canonical basis behaves in flag varieties with small numbers of steps
and at what point (i.e. at how many steps) the behaviour indicated in Theorem
2.28 begins.

18For example, the Lusztig conjecture would have implied that the entries of Πn are bounded

linearly in n, and the James conjecture would have implied a quadratic bound in n, see [Wil17d].
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Remark 2.33. Any Schubert variety in SLnpCq{B is isomorphic to a Schubert variety
in the flag varieties of types Bn, Cn and Dn. In particular, the above complexity
is present in the p-canonical bases for all classical finite types.

2.8. Open questions about the p-canonical basis. In this section we discuss
some interesting open problems about the p-canonical basis. We also try to outline
what is known and point out connections to problems in modular representation
theory.

In the following a Kac-Moody root datum is assumed to be fixed throughout.
Thus, when we write pbx, its dependence on the root datum is implicit. Throughout,
p denotes the characteristic of k, our field of coefficients.

Question 2.34. For x P W and p a prime, when is pbx “ bx?

Remark 2.35. This question is equivalent to asking whether ICk
x – E k

x .

A finer-grained version of this question is:

Question 2.36. For x, y P W and p a prime, when is phy,x “ hy,x?

Remark 2.37. If hy,x “ vℓpxq´ℓpyq then Question 2.36 has a satisfactory answer.

In this case yB{B is a rationally smooth point of the Schubert variety Xx and
phy,x “ hy,x if and only if Xx is also p-smooth at yB{B; moreover, this holds if and
only if a certain combinatorially defined integer (the numerator of the “equivariant
multiplicity”) is not divisible by p, see [JW14, Dye01]. (See [Fie10, FW14] for
related ideas.) It would be very interesting if one could extend such a criterion
beyond the rationally smooth case.

In applications the following variants of Question 2.34 and 2.36 (for particular
choices of Z) are more relevant:

Question 2.38. Fix Z Ă W . For which p does there exist x P Z with pbx ‰ bx?

Question 2.39. Fix Z Ă W I .

(1) For which p is pcx “ cx for all x P Z?
(2) For which p is pdx “ dx for all x P Z?

Remark 2.40. If G is finite-dimensional then pbx “ bx for all x P W if and only if a
part of Lusztig’s conjecture holds (see [Soe00]). The results of §2.7 give exponen-
tially large counter-examples fo the expected bounds in Lusztig’s character formula
[Lus80, Wil17d].

Remark 2.41. With G as in the previous remark, Xuhua He has suggested that we
might have pbx “ bx for all x, if p ą |W |. This seems like a reasonable hope, and
it would be wonderful to have a proof.

Remark 2.42. Suppose G is an affine Kac-Moody group and I Ă S denotes the
“finite” reflections (so that WI “ xIy is the finite Weyl group). Then there exists
a finite subset Z1 Ă W I for which Question 2.38(1) is equivalent to determining
in which characteristics Lusztig’s character formula holds, see [AR16b, §11.6] and
[Wil17a, §2.6]. Because Z1 is finite, pcx “ cx for all x P Z1 for p large, which
translates into the known fact that Lusztig’s conjecture holds in large characteristic.

Remark 2.43. Suppose that G and I are as in the previous remark. There exists
a subset Zppq Ă W I (depending on p) such that if pdx “ dx for all x P Zppq then
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Andersen’s conjecture on characters of tilting modules (see [And00, Proposition
4.6]) holds in characteristic p (this is a consequence of the character formula proved
in [PNAW17b]). Note that Andersen’s conjecture does not give a character formula
for the characters of all tilting modules and is not known even for large p.

The following questions are also interesting:

Question 2.44. For which x P W and p is pay,x P Z for all y P W?

Remark 2.45. This is equivalent to asking when E k
x is perverse.

Question 2.46. Fix ? P tsph, asphu. For which x P W I and p is pa?y,x P Z for all

y P W I?

Remark 2.47. Example 2.26 shows that in the affine case pay,x can be a polynomial
in v of arbitrarily high degree. An example of Libedinsky and the author [LW17]
shows that there exists x, y in the symmetric group S15, for which

2ay,x “ pv`v´1q.
Recently P. McNamara has proposed new candidate examples, which appear to
show that for any p, the degree of pay,x is unbounded in symmetric groups.

Remark 2.48. Suppose G and I are as in Remark 2.42. It follows from the the
results of [JMW16, JMW14b] that pay,x P Z if x is maximal in WIxWI . More
generally, it seems likely that pasphy,x P Z for all x, y P W I and large p (depending
only on the Dynkin diagram of G). This is true for trivial reasons in affine types
A1 and A2.

Remark 2.49. In contrast, recent conjectures of Lusztig and the author [LW18]

imply that, if G is of affine type ĂA2 then it is never the case (for any p ‰ 2) that
paasphy,x P Z for all y, x P W I . In fact, our conjecture implies that

max tdegppaasphy,x q | y, w P W Iu “ 8.

This contrast in behaviour between the p-canonical bases in the spherical and anti-
spherical modules is rather striking.

3. Koszul duality

In this section we discuss Koszul duality for the Hecke category. This is a remark-
able derived equivalence relating the Hecke categories of Langlands dual groups. It
resembles a Fourier transform. Its modular version involves parity sheaves, and is
closely related to certain formality questions. In this section we assume that the
reader has some background with perverse sheaves and highest weight categories.

3.1. Classical Koszul duality. Let C,G,B,T,W,k be as previously. We denote
by G_,B_,T_ the Kac-Moody group (resp. Borel subgroup, resp. maximal torus)
associated to the dual Kac-Moody root datum. We have a canonical identification
of W with the Weyl group of G_.

In this section we assume that G is a (finite-dimensional) complex reductive
group, i.e. that C is a Cartan matrix. We denote by w0 P W the longest element.
For any x P W let ix : Xx “ B ¨ xB{B ãÑ G{B denote the inclusion of the Schubert
cell and set

∆x :“ ix!kXx
rℓpxqs and ∇x :“ ix˚kXx

rℓpxqs.

Let Db
pBq

pG{B;kq denote the derived category, constructible with respect to B-
orbits and let PpBqpG{B;kq Ă Db

pBq
pG{B;kq denote the subcategory of perverse
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sheaves. The abelian categoryPpBqpG{B;kq is highest weight [BGS96, BBM04] with
standard (resp. costandard) objects t∆xuxPW (resp. t∇xuxPW ). For x P W , we
denote by Px,Ix and Tx the corresponding indecomposable projective, injective,
and tilting object. The corresponding objects in PpB_qpG_{B_;kq are denoted with
a check, e.g. IC_

x ,∆
_
x etc.

Let us assume that k “ Q. Motivic considerations, together with the Kazhdan-
Lusztig inversion formula (see [KL79])

(3.1)
ÿ

zPW

p´1qℓpxq`ℓpyqhy,xhyw0,zw0 “ δx,z,

led Beilinson and Ginzburg [BG86] to the following conjecture19:

(1) There exists a triangulated category Dmix
pBq

pG{B;Qq equipped with an action

of the integers F ÞÑ F xmy for m P Z (“Tate twist”) and a “forgetting the
mixed structure” functor

ϕ : Dmix
pBq pG{B;Qq Ñ Db

pBqpG{B;Qq,

such that

HompϕpF q, ϕpG qq “
à

nPZ

HompF ,G xnyq

for all F ,G P Dmix
pBq

pG{B;Qq. Furthermore, “canonical”objects (e.g. simple,

standard, projective etc. objects) admit lifts20 to Dmix
pBq

pG{B;Qq.

(2) There is an equivalence of triangulated categories

(3.2) κ : Dmix
pBq pG{B;Qq

„
Ñ Dmix

pB_qpG_{B_;Qq

such that κ ˝ x´1yr1s – x1y ˝ κ, and such that κ acts on standard, simple
and projective objects (for an appropriate choice of lift) as follows:

∆x ÞÑ ∇_
x´1w0

, ICx ÞÑ I _
x´1w0

, Px ÞÑ IC_
x´1w0

.

Remark 3.1. To understand why the extra grading (provided by the mixed struc-
ture) as well as the relation κ ˝ x´1yr1s – x1y ˝κ is necessary, one only needs to ask
oneself where the grading on extensions between simple modules should go under
this equivalence.

Remark 3.2. One can deduce from (3.1) and the Kazhdan-Lusztig conjecture that
the assignment ∆x ÞÑ ∇x´1w0

on mixed categories forces ICx ÞÑ Ix´1w0
and Px ÞÑ

ICx´1w0
on the level of Grothendieck groups.

This conjecture was proved by Beilinson, Ginzburg and Soergel in the seminal
paper [BGS96], where they interpreted κ in the framework of Koszul duality for
graded algebras. The authors give two constructions of the mixed derived category:
one involving mixed étale sheaves (here it is necessary to consider the flag variety for
the split group defined over a finite field), and one involving mixed Hodge modules.

Remark 3.3. Both constructions of the mixed derived category in [BGS96] involve
some non-geometric “cooking” to get the right result. Recently Soergel and Wendt
have used various flavours of mixed Tate motives to give a purely geometric con-
struction of these mixed derived categories [Soe90b].

19to simplify the exposition we have modified the statement of their original conjecture slightly

(they worked with Lie algebra representations and sought a contravariant equivalence).
20F P Db

pBq
pG{B;Qq admits a lift, if there exists ĂF P Dmix

pBq
pG{B;Qq such that F – ϕp ĂF q.
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After the fact, it is not difficult to see that the mixed derived category admits a
simple definition. Indeed, the results of [BGS96] imply that one has an equivalence

(3.3) σ : KbpSemispG{B;Qqq
„
Ñ Dmix

pBq pG{B;Qq.

Here SemispG{B;Qq denotes the full additive subcategory of Dmix
pBq

pG{B;Qq con-

sisting of direct sums of shifts of intersection cohomology complexes (“semi-simple
complexes”), and KbpSemispG{B;Qqq denotes its homotopy category. Note that
there are two shift functors on SemispG{B;Qq: one coming from its structure as a
homotopy category (which we denote r1s); and one induced from the shift functor
on SemispG{B;Qq (which we rename p1q). Under the equivalence σ, Tate twist x1y

corresponds to r1sp´1q.
Now, if HQ denotes the Hecke category we have an equivalence

Q bR HQ
diag

„
Ñ SemispG{B;Qq.

Moreover, the left hand side can be described by generators and relations. In
particular, Koszul duality can be formulated entirely algebraically as an equivalence

κ : KbpQ bR HQ
diagq

„
Ñ KbpQ bR H_,Q

diagq.

The existence of such an equivalence (valid more generally for any finite real re-
flection group, with Q replaced by R) has recently been established by Makisumi
[Mak17]. (The case of a dihedral group was worked out by Sauerwein [Sau18].)

3.2. Monoidal Koszul duality. The above results raise the following questions:

(1) How does Koszul duality interact with the monoidal structure?
(2) Can Koszul duality be generalised to the setting of Kac-Moody groups?

The first question was addressed by Beilinson and Ginzburg [BG99]. They noticed
that if one composes Koszul duality κ with the Radon transform and inversion, one
obtains a derived equivalence

(3.4) rκ : Dmix
pBq pG{B;Qq

„
Ñ Dmix

pB_qpB_zG_;Qq

with rκ ˝ x´1yr1s – x1y ˝ rκ as previously, however now

(3.5) ICx ÞÑ T _
x , ∆x ÞÑ ∆_

x , ∇x ÞÑ ∇_
x , Tx ÞÑ IC_

x .

The new equivalence rκ is visibly more symmetric than κ. It also has the advan-
tage that it does not involve the longest element w0, and hence makes sense for
Kac-Moody groups. Moreover, Beilinson and Ginzburg conjectured that rκ can be
promoted to a monoidal equivalence (suitably interpreted).

Remark 3.4. It has been a stumbling block for some time that (3.4) cannot be
upgraded to a monoidal equivalence in a straightforward way. This is already
evident for SL2: the “big” tilting sheaf Ts P Db

pBq
pP1;Qq does not admit a B-

equivariant structure.

Subsequently, Bezrukavnikov and Yun [BY13] established a monoidal equivalence

(3.6) rκ : pDmix
B pG{B;Qq, ˚q

„
Ñ p pDmixpB_

999 G_

99
9B_;Qq, ‹q

which induces the Koszul duality equivalence above after killing the deformations,

and is valid for any Kac-Moody group.21 Here pDmixpB_

999 G_

99
9B_;Qq denotes

21Actually, Bezrukavnikov and Yun use mixed ℓ-adic sheaves, and no non-geometric “cooking”

is necessary.
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a suitable (“free monodromic”) completion of the full subcategory of mixed U_-
constructible complexes on G_{U_ which have unipotent monodromy along the
fibres of the map G_{U_ Ñ G_{B_. The construction of this completion involves
considerable technical difficulties. The proof involves relating both sides to a suit-
able category of Soergel bimodules (and thus is by “generators and relations”).

3.3. Modular Koszul duality. We now discuss the question of how to generalise
(3.4) to coefficients k of positive characteristic. A first difficulty is how to make
sense of the mixed derived category. A naive attempt (carried out in [RSW14]) is to
consider a flag variety over a finite field together with the Frobenius endomorphism
and its weights, however here one runs into problems because one obtains gradings
by a finite cyclic group rather than Z. Achar and Riche took the surprising step of
simply defining

Dmix
pBq pG{B;kq :“ KbpParpG{B;kqq

where ParpG{B;kq denotes the additive category of B-constructible parity com-
plexes on G{B, and the shift r1s and twist p1q functors are defined as in the para-
graph following (3.3). (The discussion there shows that this definition is consistent
when k “ Q.) In doing so one obtains a triangulated category with most of the
favourable properties one expects from the mixed derived category. In this setting
Koszul duality takes the form:

Theorem 3.5. There is an equivalence of triangulated categories

κ : Dmix
pBq pG{B;kq

„
Ñ Dmix

pB_qpB_zG_;kq

which satisfies κ ˝ x´1yr1s – x1y ˝ κ and

κp∆wq – ∆_
w , κp∇wq – ∇_

w , κpEwq – T_
w , κpTwq – E _

w .

Remark 3.6. The important difference in the modular case is that tilting sheaves
correspond to parity sheaves (rather than IC sheaves).

Remark 3.7. For finite-dimensional G this theorem was proved in [AR16a] (in good
characteristic). For general G this theorem is proved in [PNAW17a, PNAW17b], as
a corollary of a monoidal modular Koszul duality equivalence, inspired by [BY13].

Remark 3.8. The appearance of the Langlands dual group was missing from the
original conjectures of Beilinson-Ginzburg [BG86] and only appeared in [BGS96].
However in the settings considered there (k “ Q), the Hecke categories associated to
dual groups are equivalent. This is no longer the case with modular coefficients, and
examples (e.g. B3 and C3 in characteristic 2) show that the analogue of Theorem
3.5 is false if one ignores the dual group.

Remark 3.9. A major motivation for [PNAW17a, PNAW17b] was a conjecture of
Riche and the author [RW15, §1.4] giving characters for tilting modules for re-
ductive algebraic groups in terms of p-Kazhdan-Lusztig polynomials. In fact, a
recent theorem of Achar and Riche [AR16b] (generalising a theorem of Arkhipov,
Bezrukavnikov and Ginzburg [ABG04]) combined with (a variant of) the above
Koszul duality theorem leads to a solution of this conjecture. We expect that mod-
ular Koszul duality will have other applications in modular representation theory.

Remark 3.10. One issue with the above definition of the mixed derived category
is the absence of a “forget the mixed structure” functor ϕ : Dmix

pBq
pG{B;kq Ñ
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Db
pBq

pG{B;kq in general. For finite-dimensional G its existence is established in

[AR16a]. Its existence for affine Weyl groups would imply an important conjecture
of Finkelberg and Mirković [FM99, AR16b].

References

[ABG04] Sergey Arkhipov, Roman Bezrukavnikov, and Victor Ginzburg. Quantum groups, the

loop Grassmannian, and the Springer resolution. J. Amer. Math. Soc., 17(3):595–678,

2004.
[AJS94] H. H. Andersen, J. C. Jantzen, and W. Soergel. Representations of quantum groups

at a pth root of unity and of semisimple groups in characteristic p: independence of
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