
Knots, three-manifolds and instantons

P. B. Kronheimer and T. S. Mrowka

Low-dimensional topology is the study of manifolds and cell complexes in dimen-
sions four and below. Input from geometry and analysis has been central to progress in
this field over the past four decades, and this article will focus on one aspect of these
developments in particular, namely the use of Yang-Mills theory, or gauge theory. These
techniques were pioneered by Simon Donaldson [7, 9] in his work on 4-manifolds, but
the past ten years have seen new applications of gauge theory, and new interactions with
more recent threads in the subject, particularly in 3-dimensional topology.

This is a field where many mathematical techniques have found applications, and
sometimes a theorem has two or more independent proofs, drawing on more than one
of these techniques. We will focus primarily on some questions and results where gauge
theory plays a special role.

1. Representations of fundamental groups

1.1. Knot groups and their representations. Knots have long fascinated math-
ematicians. In topology, they provide blueprints for the construction of manifolds of
dimension three and four. For this exposition, a knot is a smoothly embedded circle in
3-space, and a link is a disjoint union of knots. The simplest examples, the trefoil knot
and the Hopf link, are shown in Figure 1, alongside the trivial round circle, the “unknot”.

Knot theory is a subject with many aspects, but one place to start is with the knot
group, defined as the fundamental group of the complement of a knot K ⊂ R3. We will
write it as π(K). For the unknot, π(K) is easily identified as Z. One of the basic tools of
3-dimensional topology is Dehn’s Lemma, proved by Papakyriakopoulos in 1957, which
provides a converse:

Theorem 1.1 (Papakyriakopoulos, [38]). If the knot group π(K) is Z, then K is the
unknot.

Figure 1. The unknot, trefoil and Hopf link.
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It is a consequence of Alexander duality that the abelianization of π(K) is Z for any
knot. (This is the first homology of the complement.) So we may restate the result above
as saying that the unknot is characterized by having abelian fundamental group. In par-
ticular, if we are able to find a homomorphism π(K) → G with non-abelian image in
any target group G, then K must be genuinely knotted. We begin our account of more
modern results with the following theorem.

Theorem 1.2 (Kronheimer-Mrowka, [29]). If K is a non-trivial knot, then there exists
a homomorphism,

ρ : π(K) → SO(3),
with non-abelian image, from the knot group to the 3-dimensional rotation group.

There are two aspects to why this result is interesting. First, representations of the
knot group in particular types of target groups are a central part of the subject: the case
that G is dihedral leads to the “Fox colorings” [16], and the more general case of a two-
step solvable group is captured by the Alexander polynomial and related invariants. But
there are non-trivial knots with no Fox colorings and trivial Alexander polynomial. It
is known that π(K) is always a residually finite group, so there are always non-trivial
homomorphisms to finite groups; but it is perhaps surprising that the very smallest simple
Lie group is a target for all non-trivial knots.

Secondly, the theorem is of interest for the techniques that are involved in its proof,
some of which we will describe later. A rich collection of tools from gauge theory are
needed, and these are coupled with more classical tools from 3-dimensional topology,
namely the theory of incompressible surfaces and decomposition theory, organized in
Gabai’s theory of sutured manifolds [17].

1.2. Orbifolds from knots. The knot group π(K) has a distinguished conjugacy
class, namely the class of the meridional elements. A meridional elementm is one repre-
sented by a small loop running once around a circle linkingK . If we take a planar diagram
of a knot (a generic projection of K into R2), and take our basepoint for the fundamental
group to lie above the plane, then there is a distinguished meridional elementme for each
arc e of the diagram (a path running from one undercrossing to the next). The elements
me generate the knot group and satisfy a relation at each crossing, the Wirtinger relations
[16]. (See Figure 2.)

Theorem 1.2 can be refined to say that ρ can be chosen so that ρ(m) has order 2
in SO(3), for one (and hence all) meridional elements. This refinement can be helpfully
reinterpreted in terms of the fundamental group of an orbifold. Recall that an orbifold is a
space locally modeled on the quotient of a manifold by a finite group, and that its singular
set is the locus of points which have non-trivial stabilizer in the local models. Given a
knot or link K in a 3-manifold Y , one can equip Y with the structure of an orbifold whose
non-trivial stabilizers are all Z/2 and whose singular set is K . Let us write Orb(Y ,K)
for this orbifold. The orbifold fundamental group in this situation can be described as the
fundamental group of the complement of the singular set with relations

m2 = 1

imposed, for all meridional elements. Thus the refinement we seek can be stated:
Theorem 1.3 (Kronheimer-Mrowka, [29]). If K is a non-trivial knot in S3, and O =

Orb(S3,K) is the corresponding orbifold with Z/2 stabilizers, then there exists a homomor-
phism from the orbifold fundamental group,

ρ : π1(O) → SO(3),



KNOTS, THREE-MANIFOLDS AND INSTANTONS 3

me1

mf me2

(a)

A(e1)

A(f )

A(e2)

(b)

Figure 2. (a) The Wirtinger relation,mfme2 =me1mf holds in the fun-
damental group of the complement. (b) The corresponding points on
the sphere lie on a geodesic arc. The reflection about the green axis
interchanges the two blue points.

with non-abelian image.

Using theWirtinger presentation described above, this result can be given a concrete
interpretation. An element of order 2 in SO(3) is a 180◦ rotation about an axisA inR3, an
these are therefore parametrized by the points A of RP2. So if we are given a diagram of
K , then a representation ρ : π(K) → SO(3) which sends meridians to elements of order
2 can be described by giving a point A(e) in RP2 for each arc e , satisfying a collection of
constraints coming from the Wirtinger relations at the crossings. So the concrete version
of Theorem 1.3 is the following.

Theorem 1.4. Given any diagram of a non-trivial knot K , we can find a non-trivial
assignment e 7→ A(e),

{arcs of the diagram} → RP2,

so that the following condition holds: whenever e1, e2, f are arcs meeting at a crossing, with
f being the overcrossing arc (see Figure 2), the point A(e2) is the reflection of A(e1) in the
point A(f ).

The last condition in the theorem means that A(e1), A(f ), A(e2) are equally spaced
along a geodesic, see Figure 2. The case that all the A(e) are equal is the trivial case, and
corresponds to the abelian representation. Dihedral representations arise when the points
A(e) lie at the vertices of a regular polygon on RP1. A configuration corresponding to a
non-dihedral representation of the (5, 7)-torus knot is illustrated in Figure 3.

1.3. Three-manifolds and SO (3). Having considered a knot or link in R3 and an
associated orbifold, we consider next a closed 3-manifold Y and its fundamental group
π1(Y ). From the solution of the Poincaré conjecture [33], we know that π1(Y ) is non-
trivial ifY is not the 3-sphere. Motivated by the discussion of knot groups in the previous
section, one might ask:

Question 1.5. Let Y be a closed 3-manifold with non-trivial fundamental group. Does
there exist a non-trivial homomorphism ρ : π1(Y ) → SO(3)?
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(a) (5,7)-torus knot diagram (b) Axes of one representation

Figure 3. The green arcs in the diagram on the left contain all the
over-crossings. The blue arcs consist only of under-crossings. In the
right-hand picture, the green vertices are axes A(e) corresponding to
green arcs e in the knot diagram. The blue vertices correspond to blue
arcs.

It is not known whether the answer is yes in general. Stated this way, the interesting
case for this question is when Y is a homology 3-sphere, i.e. a 3-manifold with the same
(trivial) homology as S3. (If Y has non-trivial homology, then π1(Y ) has a cyclic group
as a quotient, and there will always be a representation in SO(3) with cyclic image.) For
homology 3-spheres, an affirmative answer to the question is known when Y has non-
zero Rohlin invariant [1], when Y is obtained by Dehn surgery on a knot in S3 [27, 29],
or when Y carries a taut foliation [28]. See also [3].

There is an interesting variant of this question, for 3-manifolds with non-trivial ho-
mology. A representation ρ : π1(Y ) → SO(3) defines a flat vector bundle on Y with fiber
R3, and such a vector bundle has a second Stiefel-Whiney classw2. Thus the representa-
tions ρ can be grouped by this class,

w2(ρ) ∈ H2(Y ;Z/2).

which is the obstruction to lifting ρ to the double cover SU(2) → SO(3). The following
result completely describes the classes which arise asw2(ρ).

Theorem 1.6. [29] Let Y be a closed, oriented 3-manifold and let ω ∈ H2(Y ;Z/2) be
given. Suppose that for every embedded 2-sphere S in Y , the pairing ω · [S] is zero mod 2.
Then there exists a homomorphism ρ : π1(Y ) → SO(3) withw2(ρ) = ω.

Remark 1.7. The restriction on ω is also necessary as well as sufficient, because a
flat vector bundle on a 2-sphere is trivial and must therefore have trivial Stiefel-Whitney
class on the sphere.

Remark 1.8. The condition onω · [S] is automatically satisfied if Y is irreducible, i.e. if
every 2-sphere in Y bounds a ball. To prove the theorem it is enough to consider only
irreducible 3-manifolds.

Remark 1.9. If ρ has cyclic image, thenw2(ρ) has a lift to a torsion class in the integer
homology, H2(Y ). The case that there is no such lift is the case thatw2(ρ) has non-trivial
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image in Hom(H2(Y ),Z/2), and in this case ρ must be non-cyclic. The case that ω has
non-trivial image in Hom(H2(Y ),Z/2) is the difficult case for the theorem.

An interesting special case of this theorem is the case that Y is the mapping torus of
a diffeomorphism, h : Σд → Σд , of a surface of genus д. The conjugacy classes of repre-
sentations π1(Σд) → SO(3) with non-zerow2 are parametrized by an orbifold M(Σд) of
dimension 6д − 6, and the diffeomorphism h gives rise to a map h∗ : M(Σд) → M(Σд)
by pull-back. It is then a consequence of the above theorem that the diffeomorphism h∗

has fixed points in M(Σд). In this form, the result was proved independently and with
different methods by Ivan Smith [42].

1.4. Spatial graphs. A spatial graph is a graph (tamely) embedded as a topological
space inR3. Wewill be interested here in finite, trivalent graphs (also called cubic graphs).
Thus we are generalizing classical knots and links by allowing vertices of valence 3. We
allow that the set of vertices may be empty, so knots and links are included as a special
case, regarded as vertexless graphs. There is a significant literature on spatial graphs: see
for example [4].

As with knots and links, wewrite π(K) for the fundamental group of the complement
of a spatial graph K ⊂ R3. For each edge e of K , there is corresponding distinguished
conjugacy class of meridional curvesme , obtained from the small circles linking e . Fol-
lowing the same lines as before, we wish to study representations of π(K) in SO(3), with
the constraint that the meridional elements map to elements of order 2. Representations
of this sort are parametrized by a topological space, the representation variety,

(1) R(K) = { ρ : π(K) → SO(3) | ρ(me ) has order 2 for all edges e}

As with knots and links, this representation variety for a spatial graph can be inter-
preted as a space of representations for the fundamental group of an orbifold. Given a
trivalent graphK in a 3-manifoldY , we may construct a 3-dimensional orbifold Orb(Y ,K)
whose underlying topological space is Y , whose singular set is K , and whose local sta-
bilizer groups are Z/2 at the interior points of edges of K . At vertices of K where three
edges meet, the local model for the orbifold is the quotient of the 3-ball by the Klein four-
group, V4. In this way, R(K) becomes the space of homomorphisms from the orbifold
fundamental group,

ρ : π1(Orb(S3,K)) → SO(3),

with the additional property that ρ is injective on each of the non-trivial local stabilizer
groups.

The Klein 4-group V4 is contained in SO(3) as the subgroup of diagonal matrices,
and representations ρ : π(K) → SO(3) with image in V4 play a special and already
subtle role. SinceV4 is abelian, a representation into the Klein four-group factors through
the abelianization of π(K), namely the homology H1(S

3 \ K)), so we are considering
homomorphisms

τ : H1(S
3 \ K) → V4

which map meridional elements to elements of order 2. If we write the elements ofV4 as
{1,A,B,C}, then τ assigns one of three “colors” {A,B,C} to each edge e , and this coloring
must satisfy the constraint that, at a vertex, the colors of the three incident edges are all
different (because the sum of the corresponding elements ofH1 is zero). Such a 3-coloring
of the edges of a trivalent graph is a called a Tait coloring. So we have:
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Proposition 1.10. For a trivalent spatial graphK , the representations ρ ∈ R(K)whose
image is contained in the Klein 4-groupV4 are in one-to-one correspondence with Tait color-
ings of K .

Notice in particular that this set depends only on the abstract graph K , independent
of the embedding. This is a reflection of the fact that the homology group H1(S

3 \ K) is
isomorphic to H1(K) by Lefschetz duality.

The question of whether a cubic graph admits a Tait coloring is difficult. Indeed Tait
[43] observed that the four color theorem [2, 40] could be reframed as a question about
the existence of Tait colorings as follows. A planar map determines a graph, giving the
borders of the countries. A map is called proper if no country has a border with itself,
in which case the graph of the borders is bridgeless; that is, no edge (or “bridge”) can
be removed making the graph disconnected. It is also elementary to see that it suffices
to verify the four color theorem for planar maps whose border graph is trivalent. Tait’s
observation is that the four-colorability of the regions of the map is equivalent to the
existence of a Tait coloring of the border graph. So the four color theorem is equivalent
to the statement that every bridgeless trivalent graph admits a Tait coloring.

While the methods of gauge theory at the time of writing have not given a proof the
four color theorem, one can prove some suggestive results. To state the main result we
observe that for spatial graphs there is a natural extension of being bridgeless. A spatial
bridge is an edge of a spatial graph K for which the meridional loop is contractible in the
complement of the graph. Equivalently, it is an edge e for which we can find a sphere S for
which K ∩S is a single point of e , with transverse intersection. Note that the existence of
such a spatial bridge implies thatR(K) is empty. The converse is the following non-trivial
theorem.

Theorem 1.11. [26] For any trivalent graph K ⊂ R3 without a spatial bridge, the
representation variety R(K) is non-empty.

We conclude this section with some remarks to put this result in context. There is an
action of SO(3) on R(K) by conjugacy. Representation with image V4 are characterized
by the fact their stabilizer is exactly V4 under this action. For a graph with at least one
vertex, the possible groups that can arise as stabilizers are V4, Z/2 and the trivial group.
One can show (see [26]) that, for planar graphs, if there is a representation with non-
trivial stabilizer then there is also one with V4 stabilizer, and hence a Tait coloring of K .
Theorem 1.11 is agnostic regarding the possible stabilizers of the representation that it
guarantees. There are planar graphs with only V4 representations, as well as many with
bothV4 representations and irreducible representations (the simplest being the 1-skeleton
of the dodecahedron.)

Bridgeless trivalent graphs with no Tait colorings are called snarks. The simplest one
is the Petersen graph, shown in a spatial embedding in Figure 4.

Trivially, the four color theorem says that there are no planar snarks. For any spatial
embedding of a snark,Theorem 1.11 guarantees the existence of a representation π(K) →
SO(3).

Theorem 1.11 also says that even a graph with a bridge, when embedded in a spatially
bridgeless manner, will have a nontrivial representation. An example is shown Figure 5.
On the left, the “handcuffs” are shown embedded in R3 with a spatial bridge, and the
representation variety R(K1) is empty. On the right, the same abstract graph is shown
with amore interesting embedding. The representation varietyR(K2) in this case consists
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Figure 4. The dodecahedral graph admits a Tait coloring, while the
Petersen graph, the simplest snark, has none.

Figure 5. The standard handcuffs and the tangled handcuffs.

of the SO(3) orbit of a single representation ρ whose image in SO(3) is the symmetry
group of a cube.

2. Background on instantons and four-manifolds

The theorems discussed above are proved by means of more general results based on
non-vanishing theorems for Floer’s instanton homology for 3-manifolds, first introduced
in [15]. Before introducing the instanton homology groups, we discuss their natural
historical precursor, the invariants of smooth 4-manifolds developed by SimonDonaldson
in the 1980’s [9].

2.1. Instanton moduli spaces. The story begins with the work of Donaldson and
his use of gauge theory in 4-dimensional topology. On an oriented Riemannian manifold
X of dimension 2n, the Hodge ∗-operator maps n-forms to n-forms,

∗ : Ωn(X ) → Ωn(X )

and satisfies ∗2 = (−1)n . When n is even, this gives rise to a decomposition into the ±1
eigenspaces, the self-dual and anti-self-dual n-forms,

Ωn(X ) = Ωn
+(X ) ⊕ Ωn

−(X ).

The case of dimension 4 and n = 2 plays a special role, because if E → X is a vector
bundle and A is a connection in E, then the curvature of the connection is a 2-form with
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values in the endomorphisms of E:

FA ∈ Ω2 (X ;End(E)
)
.

Only in dimension 4, therefore, we can decompose the curvature into its self-dual and
anti-self-dual parts, F+

A + F−A and we can consider the anti-self-dual Yang-Mills equations,

F+
A = 0.

The solutions are the anti-self-dual connections A, sometimes called instantons on X .
We shall first consider the case that the structure group G for the bundle is SU(N ),

so that E is a rank-N bundle with a hermitian metric and trivialized determinant. Our
connections A will be SU(N ) connections: they will respect the trivialization. The iso-
morphism classes of pairs (E,A) consisting of an SU(N ) bundle E with an anti-self-dual
connectionA are parametrized by a moduli space MN (X ) (which depends also on the Rie-
mannianmetric). WhenX is closed and connected, the bundles E themselves are classified
by a single integer k , the second Chern number, or instanton number,

k = c2(E)[X ].

We therefore have a decomposition

MN (X ) =
∪
k

MN ,k (X ).

Each MN ,k (X ) is finite-dimensional, and for generic choice of Riemannian metric it will
be a smooth manifold, except at reducible solutions: i.e. those where A preserves some
orthogonal decomposition of E. An index calculation yields a formula for the dimension
of MN ,k ,

(2) dimMN ,k = 4Nk − (N 2 − 1)(χ + σ)/2,

in which χ and σ are the signature an Euler number of X . The quantity (χ + σ)/2 is an
integer, which can also be written as

b2+ − b1 + 1

where bi is the rank of H i (X ) and b2+ is the dimension of a maximal positive-definite
subspace for the quadratic form on H2(X ;R) defined by the cup-square.

The space MN ,k (X ) will usually be non-compact, because there may be sequences
of solutions (En ,An) in which the point-wise norm of the curvature, |FAn |, diverges near
finitely many points in X , a “bubbling” phenomenon analyzed by Uhlenbeck in [47].

Having associated to each closed Riemannian 4-manifold an infinite sequence of new
spaces, one is led to ask whether the moduli spaces MN ,k (X ) are non-empty. Do the
anti-self-dual Yang-Mills equations have solutions? This question was answered in the
affirmative by Taubes [44, 45], who constructed solutions on general 4-manifoldsX using
a grafting technique to transfer standard solutions from flat R4. Taubes’ results tell us in
particular that M2,k (X ) is non-empty for all k ≥ k0, where the value of k0 depends only
on the topology of X . The resulting solutions have curvature concentrated near points in
X , the same situation that is allowed in Uhlenbeck’s work.

2.2. Donaldson’s polynomial invariants. Although they may be non-compact,
Donaldson showed that the moduli spaces MN ,k (X ) have sufficient compactness prop-
erties as a consequence of Uhlenbeck’s theorems that they may (under mild conditions)
be regarded as possessing a fundamental class [MN ,k (X )] in the homology of the ambient
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space in which they sit, namely the space BN ,k (X ) which parametrizes all isomorphism
classes of SU(N ) connections with instanton number k .

To elaborate on this, the space BN ,k (X ) (or more relevantly, the open subspace
B∗
N ,k (X ) of irreducible connections) has a well-understood topology, and the “fundamen-

tal class” [MN ,k (X )] gives rise to a rich collection of invariants, the Donaldson invariants
of X . For these to be defined, it is important that the moduli space be contained in the
irreducible part, B∗

N ,k (X ), and this will be true for N = 2 and for generic choice of Rie-
mannian metric, as long as b2+(X ) ≥ 1 and k > 0. (We discuss this point again in the next
subsection.) Furthermore, if b2+(X ) ≥ 2, then the fundamental class of the moduli space
in B∗

2,k (X ) is independent of the choice of metric, and so can be regarded as an invariant
of the underlying smooth 4-manifold X .

These invariants, defined originally using the N = 2 moduli spaces, are usually re-
ferred to as Donaldson’s polynomial invariants. In the N = 2 case, the rational coho-
mology of B∗

2,k contains a polynomial algebra [9]. More specifically, let us introduce the
symmetric algebra

A(X ) = Sym(Heven(X ;Q))

graded so that Hr (X ;Q) lies in A4−r (X ). Then there is an injection, for each k ,

µ : Ad (X ) → Hd (B2,k (X );Q).

The polynomial invariants defined by the moduli spaces M2,k (X ) are linear maps
qX ,k : Ad(k)(X ) → Q

where d(k) is the dimension of the moduli space (2). If we accept that M2,k (X ) carries a
fundamental class in homology, then we can regard the definition as:

qX ,k (z) =
⟨
µ(z), [M2,k (X )]

⟩
.

The definition can be generalized in various way, in particular by considering N > 2. We
can omit k from the notation by taking the sum,

(3) qX =
⊕
k

qX ,k : A(X ) → Q.

There is an understanding that qX is zero on Ad (X ) for integers d not of the form d(k).
The invariants qX of smooth 4-manifolds, together with some closely-related invari-

ants [8], were the first tools which were able to show that the the diffeomorphism type of
a simply-connected compact 4-manifold is not determined by its cohomology ring alone.

2.3. A generalization, U (N ) bundles. In the discussion above, the bundle E had
structure group SU(N ). We now consider U (N ) bundles with non-trivial determinant
instead. AU (N ) connectionA can be described locally as the sum of an SU(N ) connection
and aU (1) connection. More invariantly, and globally, A is determined by

• a PU(N ) connection Ao ; and
• a connection tr(A) in the determinant line bundle, the top exterior power ΛN E.

Whether there are anti-self-dual connections on the line bundle ΛN E is determined by
Hodge theory on X , and usually they will not exist if the line bundle is non-trivial. The
appropriate set-up is to ask only that Ao is anti-self-dual. More specifically, we fix a line
bundleW → X and the data we seek is:

• aU (N ) bundle E → X with c1(E) = c1(W );
• a chosen isomorphism ι : ΛN E → L;
• an anti-self-dual PU(N ) connection A′ in the associated PU(N ) bundle of E.
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The resulting moduli space of solutions (E, ι,A′) depends on the Riemannian mani-
foldX and the choice of the classw = c1(W ) inH2(X ;Z). The topology of E is detemined
byw and the the instanton number, defined now as an appropriately normalized Pontrya-
gin number of the associated PU(N ) bundle. With a standard normalization, the instanton
number k is not an integer but satisfies a congruence

k = −
(
N − 1

2N

)
w ·w (mod Z).

We write MN ,k (X )w for this moduli space of anti-self-dual connections with instanton
number k . It leads to polynomial invariants,

qwX ,k : Ad(k)(X ) → Q,

generalizing the qX ,k (defined using the N = 2moduli spaces) and we can combine these
again as

qwX =
⊕
k

qwX ,k : A(X ) → Q.

This extra generality is introduced not so much for its own sake, but because it serves
to avoid the difficulty that was mentioned in our discussion of the polynomial invariants
above. The difficulty is the possible presence of reducible connectionsA in E. We will say
that E orw is admissible if there is an integer homology class σ in H2(X ) such that

(4) (w · σ) is prime to N .

The relevance of admissibility is in the following result.

Proposition 2.1. If E is admissible and b2+(X ) > 0, then the moduli space of anti-self-
dual connections contains no reducible solutions, for a generic metric on X . The same is true
for a generic path of metrics if b2+(X ) > 1.

Remark 2.2. A prototype which captures part of this is the more elementary state-
ment, that if E is a U (N ) bundle on a closed, oriented 2-manifold and the degree of E is
prime to N , then the associated PU(N ) bundle E ′ admits no reducible flat connections. In
this way, reducible solutions can be avoided, and the invariants qwX can be generalized to
higher-rank bundles with admissiblew .Even for N = 2, introducing w

is helpful, and necessary too for
instanton homology. Remark 2.3. In the case N = 2, the group PU(2) is SO(3) and elements of the moduli

spaceM2,k (X )w give rise to anti-self-dual SO(3) connections with second Stiefel-Whitney
class w mod 2. There is a distinction between the two setups however. The automor-
phisms of the pair (E, ι) are the bundle automorphisms of E that have determinant 1 on
each fiber. If H1(X ;Z/2) is non-zero, then not every automorphism of the associated
PU(2) bundle E ′ lifts to a determinant-1 automorphism of E. The moduli space of anti-
self-dual SO(3) or PU(2) connections is the quotient ofM2,k (X )w by an action of the finite
group H1(X ;Z/2).

2.4. Non-vanishing for the polynomial invariants. While Taubes’ results in-
form us that MN ,k (X ) is non-empty for large enough k , one can now ask a different
question whose answer reflects the non-triviality of the moduli space in a different way:
one can ask whether the Donaldson invariants of X are non-zero; or equivalently, is the
fundamental class [MN ,k (X )] non-zero? Donaldson proved the following non-vanishing
theorem for the polynomial invariantsqX arising from the SU(2) instantonmoduli spaces.
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Theorem 2.4 (Donaldson, [9]). If X is the smooth 4-manifold underlying a simply-
connected complex projective algebraic surface, then the polynomial invariants qX ,k are
non-zero for all sufficiently large k . In particular, qX ,k (h

d/2) is non-zero, where h is the
hyperplane class and d = d(k) is the dimension of the moduli space.

This resultmoves us from the simple non-emptiness of amoduli space to non-triviality
in homology. Donaldson’s proof uses the fact that, for the Kähler metrics adapted to the
complex-algebraic structure, the moduli spaces of instantons can be identified with mod-
uli spaces of stable holomorphic bundles, which are quasi-projective varieties. The non-
vanishing eventually derives from the positivity of intersections in complex geometry.

The theorem generalizes to U (2) bundles and the corresponding invariants qwX ,k for
non-zero w . The authors believe that, using later results and constructions from [19],
[36] and [25], the restriction to N = 2 can be dropped, and that the hypothesis that X is
simply-connected is also unnecessary.

2.5. Non-vanishing for symplectic 4-manifolds. Thenon-vanishing theorem for
algebraic surfaces was proved when Donaldson’s invariants were first introduced in [9].
A class of 4-manifolds that is in many ways closely related are the symplectic 4-manifolds,
i.e. those which carry a closed 2-form ω for which ω ∧ω is a volume form. Although the
original proof of Theorem 2.4 does not extend to the symplectic case, the more general
theorem does hold:

Theorem 2.5. The non-vanishing statement of Theorem 2.4 continues to hold for the
larger class of symplectic 4-manifolds, with the role of the hyperplane class h now played by
the de Rham class [ω] of the symplectic form.

Part of the history of this result is as follows. A non-vanishing theorem was proved
by Taubes [46] for the Seiberg-Witten invariants of symplectic 4-manifolds, and the above
theorem should then follow fromWitten’s conjecture [49] relating the Donaldson invari-
ants to the Seiberg-Witten invariants. A weakened version of Witten’s conjecture has
been proved by Feehan and Leness [14], building on ideas of Pydstrigach and Tyurin, and
this work can be used to deduce Theorem 2.5 for a large class of symplectic 4-manifolds.
The general version of Theorem 2.5 was later proved more cleanly, and without use of
the Seiberg-Witten invariants: an argument was outlined in [29] and a variant is given
in [41]. These later proofs make use of another theorem of Donaldson, on the existence
of Lefschetz pencils for symplectic 4-manifolds [10].

3. Instanton homology for 3-manifolds

3.1. Formalities, and non-vanishing. The instanton homology groups of an ori-
ented 3-manifold Y arise naturally when one seeks to understand the Donaldson invari-
ants of a 4-manifold X which is decomposed as a union of two manifolds with common
boundary Y :

(5)
X = X+ ∪Y X−

∂X+ = Y

∂X− = −Y .
(We use −Y to denote Y equipped with the opposite orientation.) There are several vari-
ants of Floer’s construction depending on, among other choices, the gauge group and
the coefficient ring, and some variants are applicable only to certain 3-manifolds (such as
homology spheres) or only allow certain bundles.



12 P. B. KRONHEIMER AND T. S. MROWKA

Floer’s first construction worked only for homology 3-spheres and structure group
SU(2). To each oriented connected homology 3-sphere Y it gave a finitely-generated
abelian group I(Y ). The simplest property of this invariant is that the instanton homolo-
gies of Y and −Y are related as the homology and cohomology of a complex, so that in
particular there is a perfect pairing
(6) I(Y ) ⊗ I(−Y ) → Z.

If we work with rational coefficients, as we often will, then these are dual vector spaces.
When a connected, oriented 4-manifold X is decomposed as in (5) where Y is a ho-

mology sphere and b2+(X±) > 0 then the Donaldson invariant qX (3) can be expressed in
terms of the relative invariants of the two pieces X±. These relative invariants take the
form of linear maps

qX+
: A(X+) → I(Y )

qX− : A(X−) → I(−Y )
and the Donaldson invariant of the closed manifold X is expressed using the pairing (6)
as
(7) qX (z) =

⟨
qX+

(z+),qX−(z−)
⟩
,

where z = i+(z+)ii (z−) and i± : A(X±) → A(X ) arise from the inclusion maps. This
pairing formula has a straightforward corollary:

Proposition 3.1. If qX , 0 for some 4-manifold X , and a homology 3-sphere Y can be
placed into X in such a way that X is decomposed into two pieces, each with b2+ > 0, then it
must be that I(Y ) ⊗ Q is non-zero.

Remark 3.2. Unlike ordinary homology, the instanton homology groups are not Z-
graded. The version I(Y ) discussed here has a cyclic grading by Z/8. Some versions we
will encounter later have not grading at all, as they arise as the homology ker(d)/im(d)
for a differential d on an ungraded abelian group rather than a chain complex.

3.2. Sketch of the construction. The basic idea for instanton Floer homology [15]
can be motivated by thinking of solutions to the anti-self-duality equations on a closed 4-
manifoldX , decomposed as above, but with a Riemannianmetric containing long cylinder
[−L,L] × Y . By means of a gauge transformation on this cylinder we can assume that
a connection A in E → [−L,L] × Y is pulled back from path of connections B(t), for
t ∈ [−L,L], in E → Y . The anti-self-duality equation for A becomes the equation

(8) ∂B

∂t
+ ∗FB .

In particular, translationally invariant solutions to the ASD equation (i.e. solutions with
∂B
∂t = 0) are flat connections B on Y , so that FB = 0. A key observarion in [15] is that the
above equation for a path B(t) is formally the downward gradient flow for a functional –
the Chern-Simons functional – on a space of connections on the 3-manifold. To see this,
consider for simplicity a trivial bundle on a 3-manifold Y . We write a connection B as
sum of the connection Γ coming from a trivialization and a 1-form with values in the Lie
algebra su(N ):

B = Γ + b, where b ∈ Ω1(Y ) ⊗ su(N ).

In this form, the Chern-Simons function is given by

CS(B) = −1

2

∫
Y
tr(b ∧ db +

1

3
b ∧ b ∧ b).
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The first variation of CS is given by
d

dt
CS(B + tβ)|t=0 = −

∫
Y
tr(β ∧ (db +

1

2
b ∧ b))

= −
∫
Y
tr(β ∧ FB),

so the stationary points are flat connections, FB = 0. If Y is given a Riemannian metric,
then the standard inner product on su(N )-valued one forms can be written

⟨α , β⟩ = −
∫
Y
tr(α ∧ ∗β).

With respect to this inner product, the gradient of CS at the connection B is ∗FB , which
verifies that the equation (8) is indeed the downward gradient flow.

Floer’s construction applies the ideas of Morse theory to the Chern-Simons func-
tional. In the case of a finite-dimensional compact manifold B carrying a Morse function
f , the ordinary homology of B can be computed as the Morse homology of f . This is the
homology of a complex whose generators correspond to critical points of f and whose
boundary map records intersection numbers between ascending a descending subman-
ifolds. After a generic perturbation, these intersection numbers can be interpreted as
counting gradient flow lines between critical points of adjacent index.

When this framework from finite dimensions is applied to the Chern-Simons func-
tional on the space of gauge-equivalence classes of connections on Y , the relation with
ordinary homology is lost. The “instanton homology” which results is something new.
It is the homology of a complex whose generators are critical points of the (perturbed)
Chern-Simons functional and whose boundary map counts gradient flow lines. In line
with the discussion above, the critical points are flat SU(N ) connections on Y (corre-
sponding to representations of π1(Y ) in SU(N )) and the boundary map counts solutions
of the anti-self-duality equations on the cylinder.

Floer’s original construction ignores the trivial connection, and the assumption that
Y is a homology sphere is used in a crucial manner to prove that I(Y ) is independent of
the choice of metric on Y and the perturbation. This restriction on Y also means that the
non-trivial representations of π1(Y ) in SU(2) are all irreducible. It follows then from the
construction of I(Y ) as a Morse homology that if there are no irreducible representations,
i.e. no critical points for CS used in the construction of I(Y ), then I(Y ) is trivial. So
Proposition 3.1 has the following straightforward corollary:

Corollary 3.3. If qX , 0 for some 4-manifold X , and a homology 3-sphere Y can be
placed into X in such a way that X is decomposed into two pieces, each with b2+ > 0, then
there is a non-trivial homomorphism ρ : π1(Y ) → SU(2).

In particular (from the case that Y is S3), if a 4-manifold admits a connected sum
decompositionX = X1#X2 where b2+(Xi ) > 0, then qX = 0, which is an earlier vanishing
theorem due to Donaldson.

As a tool to prove existence of non-trivial homomorphisms, the Corollary is useful,
but it is not a completely general tool. For example, it is not known which homology
3-spheres can be embedded in complex algebraic surfaces or in symplectic 4-manifolds.
(See Theorem 2.4 and Theorem 2.5.)

In a positive direction, it is shown [11, 13, 28] that 3-manifolds carrying a taut foli-
ation can always be embedded in a symplectic 4-manifold. The argument combines deep
and difficult work of Eliashberg-Thurston [12] and Giroux [20]. One can deduce:
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Corollary 3.4. If the homology 3-sphere Y admits a taut foliation, then there is a
non-trivial homomorphism ρ : π1(Y ) → SU(2).

As indicated earlier (Question 1.5), the general case of a 3-manifold with non-zero
fundamental group remains open.

3.3. Using U (N ) bundles. The instanton homology we have just described is the
first version which Floer defined. Rather than work with homology spheres where the
unique reducible connection can be excluded, Floer observed that there is an alternative
setup for 3-manifolds with b1(Y ) , 0where reducible flat connections can be avoided en-
tirely. One works with 3-manifolds that carry an SO(3) bundle whose the second Stiefel-
Whitney classω ∈ H2(Y ;Z/2) has non-zero evaluation on some integral homology class.
Almost the same, as we did for Donaldson’s invariants in section 3.3, we may fix a line
bundleW → Y and work with triples (E, ι,A′), where E a U (2) bundle, ι is an isomor-
phism Λ2E → W , and A′ is a connection in the associated bundle PU(2). We define
admissibility forW – or equivalently for its first Chern class w = c1(W ) – just as in the
4-dimensional situation, equation (4). In the admissible case there are no reducible flat
connections A′. (See Remark 2.2.)

We arrive at instanton homology groups Iw (Y ), labeled by admissible classes w . A
pairing formula similar to equation 7 holds in this context. Suppose again thatX is decom-
posed along Y as in (5), and suppose now that v is a class in H2(X ;Z) whose restriction,
w , to Y is also admissible. Then we have relative invariants,

q
v+

X+
: A(X+) → Iw (Y )

qv−
X−

: A(X−) → Iw (−Y )
and a pairing formula,
(9) qvX (z) =

⟨
q
v+

X+
,qv−

X−

⟩
,

where z = i+(z+)i−(z−) as before.
Along the same lines as Proposition 3.1, we now have:

Proposition 3.5. Let Y be given, and let w be an admissible class on Y . Suppose that
Y can be embedded as a separating hypersurface in X in such a way that the classw extends
to a class v ∈ H2(X ;Z), and suppose that the Donaldson invariant qvX is non-zero. Then the
instanton homology group Iw (Y ) ⊗ Q is non-zero.

As in the case of a homology 3-sphere (see Corollary 3.4), one can deduce that if Y
admits a taut foliation, then Iw (Y ) is non-zero for any admissible w , and there exists a
representation ρ : π1(Y ) → SO(3) with w2(ρ) = w mod 2. Unlike the case of homology
3-spheres however, irreducible 3-manifolds with non-zero Betti number all carry taut
foliations, by a deep existence result due to Gabai [17]. So we have:

Corollary 3.6. If Y is irreducible with b1 , 0 and w is any admissible class, then
Iw (Y ) ⊗ Q is non-zero.

In this way we arrive at an existence result for representations that is sufficiently
general to deduce the necessary and sufficient condition, Theorem 1.6.

4. Sutured manifolds

In [29], the authors found a much more efficient proof of Corollary 3.6 and Theo-
rem 1.6. The original arguments outlined above used the existence of a taut foliation,
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(a) (b) (c)

Figure 6. An example of sutured manifold decomposition: a sutured
solid torus is decomposed along an embedded disk. The new sutured
manifold (center) is isomorphic to a standard sutured ball (right). Red
and green indicate R+ and R−, while blue curves are sutures.

which had been proved by Gabai [17] using his theory of sutured manifolds. The later
argument in [29] uses Gabai’s sutured manifold theory more directly. This strategy is
inspired in part by the construction of sutured Heegaard Floer homology by Juhasz [22]
and its precursors in the work of Ni and Ghiggini [35, 18]. On the gauge theory side, the
non-vanishing theorem for Donaldson invariants and the difficult proof of the relation
between Donaldson and Seiberg-Witten invariants is replaced by work of Munoz [34] in
computing of the instanton homology groups of S1 × Σд . We will explain how some of
this works, beginning with Gabai’s work.

4.1. Sutured manifold decompositions. An important idea in 3-manifold topol-
ogy going back to Haken andWaldhausen [21, 48] and further developed by Gabai is that
of surface decomposition: cutting a 3-manifold along a surface may result in a simpler
3-manifold. In order to organize a sequence of surface decompositions of manifolds with
boundary, Gabai defined a notion of sutured manifold. This is an oriented 3-manifold with
boundary, Y , together with a decomposition of its boundary into two parts,

∂Y = R+ ∪ R−,

intersecting along a union of simple closed curves γ ⊂ ∂Y . These simple closed curves
are the sutures. The simplest example is a 3-ball, with its boundary divided into upper
and lower hemispheres, meeting at the equator (Figure 6c). We can always orient γ by
first orienting R+ as the boundary of Y and then orienting γ as the boundary of R+.

A decomposing surface S for a sutured manifold (Y ,γ ) is an oriented embedded sur-
face S ⊂ Y with ∂S ⊂ ∂Y . It is required that S and ∂Y meet transversally, so that ∂S
a union of simply closed curves in ∂Y ; and each of these is required to either meet the
sutures γ transversally, or to coincide with a component of γ as an oriented 1-manifold.
If a component of ∂S is disjoint from γ , then it is required that this circle does not bound
a disk in R± nor a disk in S . Given such a decomposing surface, one obtains a new sutured
manifold Y ′ by cutting Y open along S and smoothing the corners. The new decomposi-
tion of ∂Y ′ as R′

+ ∪ R′
− is defined by setting

R′
+ = R+ ∪ S+ R′

− = R− ∪ S−

where S+ is the copy of S in ∂Y ′ picked out by the oriented normal to S ⊂ Y . The process
of forming (Y ′,γ ′) from (Y ,γ ) in this way is called a sutured manifold decomposition. (See
Figure 6.)
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The following is a slightly special case of one of Gabai’s central results about sutured
manifolds.

Theorem 4.1 ([17]). Let Y be a closed irreducible 3-manifold, regarded as a sutured
manifold without boundary. Suppose that the Betti number b1(Y ) is non-zero. Then we can
find a sequence of sutured manifolds, starting with Y , each obtained from the previous one
by sutured manifold decomposition, and ending with a disjoint union of 3-balls with one
equatorial suture each:

(10) (Y ,�) = (Y 0,γ 0) ⇝ (Y 1,γ 1) ⇝ · · · ⇝ (Y k ,γ k ) =
m⨿
1

(B3, equator).

Furthermore, for the first decomposition in the sequence, the decomposing surface S ⊂ Y
can be chosen to be any connected genus-minimizing surface: a surface that achieves the
minimum genus among all oriented surfaces in the same homology class. Conversely, the
genus-minimizing property for the first cut is a necessary condition for the existence of such
a decomposition ending with standard 3-balls.

This result provides a broad framework for proving existence results for structures
on an irreducible 3-manifold Y , by starting with existence (of whatever structure) on the
trivial (Y k ,γ k ), and working back up to Y . In Gabai’s work this framework is used to
prove the existence of taut foliations, and in our context it can be used to prove that the
instanton homology Iw (Y ) is non-zero (Corollary 3.6). What needs to be done is:

(1) extend the definition of instanton homology Iw (Y ) to the case of sutured man-
ifolds;

(2) show that the rank of the instanton homology of sutured manifolds is monotone
decreasing in any sequence of decompositions such as (10);

(3) show that the instanton homology has non-zero rank for the disjoint union of
sutured balls.

Once one has item (1) of the above three, the remaining pieces fall into place quite
easily. The non-trivial ingredient needed for the definition in (1) is what we turn to next.

4.2. Munoz’ computation of Iw (S1 ×Σ) and its consequences. In [34] Munoz
gave a description of the instanton homology Iw (S1 × Σ), where Σ is a surface of genus
д ≥ 1 andw is the 2-dimensional cohomology class Poincaré dual to S1 × {point}.

In general, ordinary homology classes h in a 3-manifold Y give rise to operators ĥ on
Iw (Y ). This can be seen as arising naturally from the formalism of Donaldson’s invariants,
as follows. We working with coefficients in a field and consider (roughly speaking) the
relative Donaldson invariants of the 4-manifold Z = [−1, 1] × Y as defining a linear map

A(Z) → Iw (∂Z) ⊗ Q,

or equivalently
A(Y ) → Iw (−Y ) ⊗ Iw (Y ) ⊗ Q.

The algebra A(Y ) contains H∗(Y ) as a linear subspace, and Iw (−Y ) is dual to Iw (Y ), so
we obtain the operators we seek:

ĥ : Iw (Y ) ⊗ Q → Iw (Y ) ⊗ Q, h ∈ H∗(Y ).

If we have two homology classes h1 and h2 then the corresponding operators commute
in the graded sense.
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Munoz’ work can be used to determine the spectrum, and indeed joint spectrum, of
the operators coming from H∗(S1 × Σ). Let s ∈ H2(S

1 × Σ) be the homology class of
(point) × Σ and y ∈ H0(S

1 × Σ) be the homology class of a point.

Theorem 4.2. Then the simultaneous eigenvalues of the action of ŝ and ŷ on Iw (S1 ×
Σд) ⊗ C are the pairs of complex numbers

(
im(2k), (−1)m2

)
for all the integers k in the

range 0 ≤ k ≤ д − 1 and allm = 0, 1, 2, 3. Here i denotes
√
−1.

Furthermore the generalized eigenspace corresponding to (2д− 2, 2) is one-dimensional
hence simple.

As a corollary of this one can deduce an result for a general 3-manifold Y . If we have
a 2-dimensional homology class s represented by a connected surface S in Y , with genus
д > 1, and a point y thought of as a 0-dimensional homology class, then the following
holds.

Theorem 4.3. For any admissible class w ∈ H2(Y ) with w · s = 1, the simultaneous
eigenvalues of the action of ŝ and ŷ on Iw (Y ) ⊗ C are contained in the pairs that arise in
the case of the product manifold S1 × S . That is, they are pairs of complex numbers(

im(2k), (−1)m2
)

where k is in the range 0 ≤ k ≤ д − 1.

We return now to a sutured manifold (Y ,γ ), which we shall suppose satisfies the
condition that Juhasz [22] calls balanced, namely we require that χ(R+) = χ(R−), that
no component of Y is a closed 3-manifold, and that every component of ∂Y contains a
suture. The first of these conditions holds automatically for the sutured manifolds (Y i ,γ i )
in Theorem 4.1, and one can arrange that the other two mild conditions hold from Y 2

onwards. For such balanced sutured manifold one can form (not uniquely) a closure Ȳ as
follows.

Choose an oriented connected surface T whose boundary admits an orientation-
reversing diffeomorphism ∂T → γ . Extend this diffeomorphism to a diffeomorphism
φ of [−1, 1]×∂T with a tubular neighborhood (in ∂Y ) of γ . Then form the new 3-manifold
with boundary

Ỹ = Y ∪φ [−1, 1] × ∂T .
Note that our assumptions imply that the boundary of Ỹ has two connected components
R̄± formed from R± and ±1 × T . The balanced assumption implies that R̄+ R̄− have the
same Euler characteristic, and since these are connected these surfaces are diffeomorphic.
Choosing a diffeomorphismψ we construct an closed, connected 3-manifold

Ȳ = Ỹ |ψ
where the two boundary components are glued together using ψ . The original sutured
manifold Y can be obtained from the closed manifold Ȳ by a sequence of two sutured
manifold decompositions, decomposing first along R̄ and then along the annuli [−1, 1] ×
∂T .

Formed in this way, the closure Ȳ contains a distinguished non-separating connected
surface R̄ carrying a homology class r ∈ H2(Ȳ ). Letw be an admissible class withw ·r = 1,
and consider the application of Theorem 4.3 to the operators

r̂ , ŷ : Iw (Ȳ ) ⊗ C → Iw (Ȳ ) ⊗ C.

According to the theorem, the integers that arise in the spectrum of r̂ are bounded above
by 2д − 2. We make the following defintion:
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Definition 4.4. The sutured instanton homology of the sutured manifold (Y ,γ ), writ-
ten SHI(Y ,γ ) is defined to be the simultaneous eigenspace for the pair (2д − 2, 2) for the
operators (r̂ , ŷ) on Iw (Ȳ ) ⊗ Q for any closure Ȳ .

In showing that this definition is good (i.e. is independent of the choice of closure)
an important role is played by last clause ofTheorem 4.2. Note in particular that it tells us
that the dimension of SHI(Y ,γ ) is 1 in the case that the sutured manifold is (B3, equator)
or a union of such, for in this case we can take the closure to be S1 × R̄.

Returning to the three-step plan (1)–(3) from the end of section 4.1, we see that what
remains for a proof of the non-vanishing theorem, Corollary 3.6, is item (2) there. That
is, one must show that if (Y ,γ ) is decomposed along S to obtain (Y ′,γ ′), then SHI(Y ′,γ ′)
has rank no larger than the rank of SHI(Y ,γ ). The idea of the proof here is to construct a
particular closure Ȳ forY so that S becomes a closed surface S̄ , and consider the operators ŝ
that it gives rise to on SHI(Y ,γ ). One then seeks to identify SHI(Y ′,γ ′)with an eigenspace
of the operator ŝ , thus exhibiting it as a subspace of SHI(Y ,γ ).

Note that in nearly all cases, this line of proof gives a considerable strengthening of
the non-vanishing theorem, Corollary 3.6. As a very simple example:

Corollary 4.5. Let Y be an irreducible 3-manifold containing a non-separating con-
nected surface S of genus at least 2 which is genus-minimizing in its homology class s . Then
Iw (Y ) has rank at least 4, for every admissiblew withw · s = 1.

Proof. Consider the operators (ŝ, ŷ) again. The proof of non-vanishing shows that
the simultaneous eigenspace for the pair (2д − 2, 2) for ŝ is non-zero. For formal reasons,
the eigenspaces of the pair (ir (2д−2), (−1)r2) are all of the same dimension, and if 2д−2
is non-zero then these four pairs are distinct. □

4.3. Sutured manifolds and knots. As Juhasz observed in [22], one can use the
sutured manifold formalism to define an instanton homology for knots. For simplicity,
let us consider a classical knot K in S3, and let Y be the “knot complement”: the manifold
with torus boundary obtained by removing from S3 an open tubular neighborhood of K .
Let γ be the union of two disjoint meridional curves on ∂Y , with opposite orientations.
In this way we associate a sutured manifold (Y ,γ ) to K ⊂ S3, and the sutured instan-
ton homology of (Y ,γ ) is an invariant, which we can call the knot instanton homology
KHI(K).

To understand this knot invariant better, one can describe an explicit closure Ȳ in
this case, using an annulus for the auxiliary surface T . To describe this closure, consider
the 3-torus T 3 as S1 × T 2, and let λ ⊂ T 3 be the circle S1 × {point}. Remove an open
neighborhood of λ and glue the resulting torus boundary to the boundary of knot com-
plementY . The gluing should be chosen so that the longitudinal curves in ∂Y are glued to
the meridional curves of λ and vice versa. In this closed 3-manifold Ȳ , the distinguished
surface R̄ ⊂ Ȳ is a standard torus disjoint fromY . Note if we are given a Seifert surface for
K (an oriented surface with boundary a longitude of K ), then we obtain a closed surface
S ⊂ Ȳ as the union of the Seifert surface and the punctured torus T 2 \ {point}.

Following [22], one can show that the invariantKHI can be used to detect the unknot:

Proposition 4.6. For a classical knot K , the dimension of KHI(K) is greater than or
equal to 1, with equality if and only if K is the unknot.

Proof. Unwrapping the definitionswe see thatKHI(K) is the simultaneous eigenspace
for the eigenvalues (0, 2) of the operators (r̂ , ŷ). Since r̂ has genus 1, this is simply the
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eigenspace of ŷ for the eigenvalue 2. In the case of the unknot, Ȳ is a 3-torus, the instanton
homology Iw (Ȳ ) has rank 2, and the+2 and −2 eigenspaces of ŷ are both 1-dimensional.
For a non-trivial knot, the dimensions are larger, by the argument of Corollary 4.5, for
there is a genus-minimizing surface S ⊂ Y of genus at least 2, obtained from a Seifert
surface for K as described above. □

Since instanton homology is defined ultimately in terms of flat connections, one can
use the above proposition to deduce that, ifK is a non-trivial knot, then the SU(2) or SO(3)
representations of the knot group π(K) is strictly larger than the case of the unknot. In
this way, one can derive Theorem 1.2 from the first section.

Remark 4.7. In the Heegaard Floer homology setting, Juhasz’s construction recovers
the simplest version of the Heegaard knot homology of Ozsváth-Szabó and Rasmussen
[37, 39]. On the basis of the few existing calculations in the instanton case, one can
conjecture that the rank of SHI(K) is equal to the rank of the Heegaard knot homology
group.

Remark 4.8. The generalized eigenspaces of the operator defined by S give a direct
sum decomposition of KHI(K). There is also a Z/2 grading, so it makes sense to compute
the Euler characteristic of the summands. In this way one recovers the coefficients of the
Alexander polynomial, just as one does in the case of the Heegaard knot homology.

Remark 4.9. There is work of Daemi and Xie [6] on generalizing the sutured instan-
ton homology SHI by using the gauge groups SU(N ). The essential step is in establishing
an appropriate replacement for the results of Munoz.

5. Instanton homology for knots, links and spatial graphs

We have explained above that Theorem 1.6, which asserts the existence of a non-
abelian representation of the fundamental group of a 3-manifold in SO(3), can be seen
as a corollary of a non-vanishing theorem for the instanton Floer homology group Iw (Y )
(Corollary 3.6). The non-vanishing theorem can be proved using sutured manifold de-
compositions, as outlined in section 4; and from these results about sutured manifolds,
we deduced results about representations of π(K) for knots and links such as Proposi-
tion 4.6 via the knot homology group KHI(K).

There is a more direct approach to defining an instanton homology group for knots,
which we will outline next. Although the invariant defined by this approach turns out to
be isomorphic to KHI(K), the alternative approach plays dividends in its extra flexibility.

5.1. Instanton homology for orbifolds. Our strategy is to define an instanton
Floer homology group for a certain class or orbifolds, and the class we have in mind are
closed, oriented 3-dimensional orbifoldsO whose singular set is a knot or link and whose
non-trivial local stabilizers are all Z/2. Thus our class includes the orbifolds that appear
in the statement Theorem 1.3 in the introduction. The material here is drawn from [30].

There is no particular difficulty in studying bundles, connections and the anti-self-
duality equations on orbifolds. To avoid reducible connections we need to work again
withU (2) bundles with fixed determinant, as in subsection 3.3. At points of the singular
set, where the stabilizer is Z/2, the local model will be the quotient of a smooth U (2)
bundle over the ball, and we ask that the action on the fiber of the bundle be by the
element

τ =

(
1 0
0 −1

)
.
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The first Chern class of such an orbifold bundle E is a class dual to a relative 1-cycle w
(thought of geometrically as a 1-manifold in the smooth part ofO with possible endpoints
on the singular part).

As long asw is admissible one can define an instanton homology group Iw (O)much
as before. The critical points of the Chern-Simons functional are flat PU(2) connections
on the complement of the singular set whose monodromy around the meridional links
has order 2 and whose Stiefel-Whitney class isw mod 2.

Recall that, for a classical link K in S3, we write Orb(S3,K) for the orbifold whose
singular set is K . A first Chern classw on Orb(S3,K) will be admissible if it is dual to an
arc joining two components of K , because such aw evaluates to 1 on an oriented surface
separating the components. To achieve admissibility in general, we adopt the following
device. Given classical knot or linkK , we form a new link by taking the union ofK with a
small meridional loop L, linking K at chosen point x ∈ K . We takew to be the admissible
class dual to an arc joining the new loop L to K . We may then define:

(11) I ♮(K) = Iw (K ∪ L).

If K has more than one component, then the choice of the point x may be material, but
we still omit x from the notation.

To understand the definition a little, observe that when K is an unknot, the union
K ∪ L is a Hopf link. It is not hard to verify in this case that there is exactly one critical
point of the Chern-Simons functional on the corresponding orbifold with the correct de-
terminantw . This flat connection corresponds to the Klein 4-group representation of the
fundamental group of the complement, π(K ∪ L) = Z ⊕ Z. This unique critical point is
the generator for I ♮(K). Having just one generator, I ♮(K) is infinite cyclic.

Although the definition is different, the same techniques of cut-and-paste topology
that are used in the construction of sutured instanton Floer homology can be used to
show that the two approaches yield the same result, for knots:

Proposition 5.1. For a knotK , the homology groups KHI(K) and I ♮(K) are isomorphic.

As a trivial corollary, the orbifold version also detects knottedness:

Corollary 5.2. For a knot K in S3, the rank of I ♮(K) is at least 1, with equality if and
only K is the unknot.

5.2. Khovanov homology. An advantage of the orbifold approach to the definition
of I ♮(K) is that it allows a straightforward approach to functoriality. A cobordism between
classical links K0 and K1 is an embedded surface Σ in [0, 1] × S3, meeting the boundary
transversely inK0 andK1 at the two ends. Without any requirement of orientability, such
a cobordism gives rise to a homomorphism I ♮(K0) → I ♮(K1).

This functoriality is the starting point in making an unexpected connection between
this instanton homology and a knot homology group from a quite different stable, namely
the Khovanov homology groups introduced in [23]. The Khovanov homology Kh(K) for
a classical knot or link is a “categorification” of the Jones polynomial. It has a definition
which is entirely algebraic, and eventually elementary, but Kh(K) and its generalizations
have turned out to have deep connections with geometry, in several directions. In our
particular context, we have the following result:

Theorem 5.3. ([30]) For a classical knot or linkK , there is a spectral sequence whose E2
page is the (reduced variant of) the Khovanov homology ofK and which abuts to the orbifold
instanton homology, I ♮(K).
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Like I ♮(K), the reduced Khovanov homology has rank 1 if K is the unknot. From
Corollary 5.2 we and the existence of the spectral sequence, we therefore obtain:

Corollary 5.4. For a knot K in S3, the rank of the reduced Khovanov homology is at
least 1, with equality if and only K is the unknot.

It is an open question whether the Jones polynomial itself is an unknot-detector.
Although many geometric techniques can be used to characterize the unknot algorithmi-
cally (starting with Haken’s work in [21]), the above corollary stands somewhat apart,
because of the origins of Khovanov homology in quantum algebra and representation
theory.

An interesting avenue to pursue is to replace U (2) in the orbifold setup with U (N )
and to explore the relationship to generalizations such as Khovanov-Rozansky homology
[24]. See [5, 50].

5.3. Instanton homology for spatial graphs. We return to the material of sec-
tion 1.4, to consider a trivalent spatial graph K ⊂ S3. As we did for knots and links, we
can apply instanton Floer homology to the associated orbifoldO = Orb(S3,K). Allowing
trivalent vertices in K leads to new issues, related in particular to the possibility of the
Uhlenbeck bubbling phenomenon occurring at orbifold points corresponding to vertices
of K . In order to have a well-defined instanton homology, it turns out to be necessary to
use a ring of coefficients of characteristic 2.

Following this line, the authors defined in [26] an invariant of trivalent spatial graphs
K which takes the form of a Z/2 vector space J ♯(K). This variant of instanton homology
arises from a Chern-Simons functional whose set of critical points can be identified with
the space of SO(3) representationsR(K) considered at (1). (In particular, this is essentially
an SO(3) gauge theory, not the type ofU (2) gauge theory used in the definition of Iw (Y )
before.)

Once again, by reducing the question to one about the instanton homology of a su-
tured manifold (essentially the complement ofK ) one can prove a non-vanishing theorem
for graphs that are spatially bridgeless in the sense of section 1.4:

Theorem 5.5. If K ⊂ R3 is a spatially bridgeless trivalent graph, then the instanton
homology group J ♯(K) is non-zero.

An immediate corollary is that the space of representations R(K) is non-empty,
which is the statement of Theorem 1.11 in the introduction.

As mentioned in section 1.4, the space of SO(3) representations R(K) contains the
set of representations, π(K) → V4, into the Klein 4-group, which are in one-to-one corre-
spondence with Tait colorings of K . It is difficult to compute J ♯(K), but an examination
of the simplest examples prompts this question.

Question 5.6. For a spatial trivalent graph K that is planar (that is, embedded in a
plane R2 in R3), is it the case that the dimension of J ♯(K) is equal to the number of Tait
colorings?

It is known that, if the answer is no, then a minimal counterexample can have no
bigons, triangles or squares [26]. Various equivalent forms of the question are given in
[31] and [32]. It is also known [32] that the number of Tait colorings is a lower bound for
the dimension of J ♯(K). Because of the connection between Tait coloring the edges and
four-coloring the regions of a planar trivalent graph (see section 1.4 again), an affirmative
answer to the question would provide a new proof that every planar map can be four-
colored.
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