
p-ADIC GEOMETRY

PETER SCHOLZE

Abstract. We discuss recent developments in p-adic geometry, ranging from
foundational results such as the degeneration of the Hodge-to-de Rham spectral
sequence for “compact p-adic manifolds” over new period maps on moduli
spaces of abelian varieties to applications to the local and global Langlands
conjectures, and the construction of “universal” p-adic cohomology theories.
We finish with some speculations on how a theory that combines all primes p,
including the archimedean prime, might look like.

1. Introduction

In this survey paper, we want to give an introduction to the world of ideas which
the author has explored in the past few years, and indicate some possible future
directions. The two general themes that dominate this work are the cohomology of
algebraic varieties, and the local and global Langlands correspondences. These two
topics are classically intertwined ever since the cohomology of the moduli space of
elliptic curves and more general Shimura varieties has been used for the construction
of Langlands correspondences. Most of our work so far is over p-adic fields, where
we have established analogues of the basic results of Hodge theory for “compact
p-adic manifolds”, have constructed a “universal” p-adic cohomology theory, and
have made progress towards establishing the local Langlands correspondence for
a general p-adic reductive group by using a theory of p-adic shtukas, and we will
recall these results below.

However, here we wish to relay another, deeper, relation between the cohomology
of algebraic varieties and the structures underlying the Langlands corresondence, a
relation that pertains not to the cohomology of specific algebraic varieties, but to
the very notion of what “the” cohomology of an algebraic variety is. Classically,
the study of the latter is the paradigm of “motives” envisioned by Grothendieck;
however, that vision has still only been partially realized, by Voevodsky, [Voe00],
and others. Basically, Grothendieck’s idea was to find the “universal” cohomology
as the universal solution to a few basic axioms; in order to see that this has the
desired properties, one however needs to know the existence of “enough” algebraic
cycles as encoded in the standard conjectures, and more generally the Hodge and
Tate conjectures. However, little progress has been made on these questions. We
propose to approach the subject from the other side and construct an explicit co-
homology theory that practically behaves like a universal cohomology theory (so
that, for example, it specializes to all other known cohomology theories); whether
or not it is universal in the technical sense of being the universal solution to certain
axioms will then be a secondary question.

This deeper relation builds on the realization of Drinfeld, [Dri80], that in the
function field case, at the heart of the Langlands correspondence lie moduli spaces of
shtukas. Anderson, [And86], Goss, [Gos96], and others have since studied the notion
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of t-motives, which is a special kind of shtuka, and is a remarkable function field
analogue of motives, however without any relation to the cohomology of algebraic
varieties. What we are proposing here is that, despite extreme difficulties in making
sense of this, there should exist a theory of shtukas in the number field case, and
that the cohomology of an algebraic variety, i.e. a motive, should be an example of
such a shtuka.

This picture has been essentially fully realized in the p-adic case. In the first
sections of this survey, we will explain these results in the p-adic case; towards the
end, we will then speculate on how the full picture over SpecZ should look like,
and give some evidence that this is a reasonable picture.
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2. p-adic Hodge theory

Let us fix a complete algebraically closed extension C of Qp. The analogue of a
compact complex manifold in this setting is a proper smooth rigid-analytic variety
X over C.1 Basic examples include the analytification of proper smooth algebraic
varieties over C, or the generic fibres of proper smooth formal schemes over the
ring of integers OC of C. More exotic examples with no direct relation to algebraic
varieties are given by the Hopf surfaces

X = ((A2
C)

rig \ {(0, 0)})/qZ ,

where q ∈ C is an element with 0 < |q| < 1 acting via diagonal multiplication
on A2. Recall that their complex analogues are non-Kähler, as follows from the
asymmetry in Hodge numbers, H0(X,Ω1

X) = 0 while H1(X,OX) = C. On the
other hand, some other non-Kähler manifolds such as the Iwasawa manifolds do
not have a p-adic analogue.

The basic cohomological invariants of a compact complex manifold also exist in
this setting. The analogue of singular cohomology is étale cohomology Hi

ét(X,Zℓ),
which is defined for any prime ℓ, including ℓ = p. If ℓ ̸= p, it follows for example
from work of Huber, [Hub96, Proposition 0.5.3], that this is a finitely generated
Zℓ-module. For ℓ = p, this is also true by [Sch13a, Theorem 1.1], but the argument
is significantly harder.

Moreover, one has de Rham cohomology groups Hi
dR(X/C) and Hodge coho-

mology groups Hi(X,Ωj
X), exactly as for compact complex manifolds. These are

1Rigid-analytic varieties were first defined by Tate, [Tat71], and alternative and more gen-
eral foundations have been proposed by various authors, including Raynaud, [Ray74], Berkovich,
[Ber93], Fujiwara-Kato, [FK06], and Huber, [Hub96]. We have found Huber’s setup to be the most
natural, and consequently we will often implicitly regard all schemes, formal schemes and rigid
spaces that appear in the following as adic spaces in the sense of Huber; his category naturally
contains all of these categories as full subcategories.
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finite-dimensional by a theorem of Kiehl, [Kie67]. By the definition of Hi
dR(X/C)

as the hypercohomology of the de Rham complex, one finds an E1-spectral sequence
Eij

1 = Hj(X,Ωi
X)⇒ Hi+j

dR (X/C)

called the Hodge-to-de Rham spectral sequence. In complex geometry, a basic
consequence of Hodge theory is that this spectral sequence degenerates at E1 if X
admits a Kähler metric. This assumption is not necessary in p-adic geometry:

Theorem 2.1 ([Sch13a, Corollary 1.8], [BMS16, Theorem 13.12]). For any proper
smooth rigid-analytic space X over C, the Hodge-to-de Rham spectral sequence

Eij
1 = Hj(X,Ωi

X)⇒ Hi+j
dR (X/C)

degenerates at E1. Moreover, for all i ≥ 0,
i∑

j=0

dimC Hi−j(X,Ωj
X) = dimC Hi

dR(X/C) = dimQp
Hi

ét(X,Qp) .

Fortunately, the Hodge-to-de Rham spectral sequence does degenerate for the
Hopf surface – and the examples of nondegeneration such as the Iwasawa manifolds
do not have p-adic analogues.

Over the complex numbers, the analogue of the equality dimC Hi
dR(X/C) =

dimQp
Hi

ét(X,Qp) follows from the comparison isomorphism between singular and
de Rham cohomology. In the p-adic case, the situation is slightly more complicated,
and the comparison isomorphism only exists after extending scalars to Fontaine’s
field of p-adic periods BdR. If X is only defined over C, it is nontrivial to formulate
the correct statement, as there is no natural map C → BdR along which one can
extend scalars; the correct statement is Theorem 6.3 below.

There is however a different way to obtain the desired equality of dimensions.
This relies on the Hodge-Tate spectral sequence, a form of which is implicit in
Faltings’s proof of the Hodge-Tate decomposition, [Fal88].

Theorem 2.2 ([Sch13b, Theorem 3.20], [BMS16, Theorem 13.12]). For any proper
smooth rigid-analytic space X over C, there is a Hodge-Tate spectral sequence

Eij
2 = Hi(X,Ωj

X)(−j)⇒ Hi+j
ét (X,Zp)⊗Zp

C

that degenerates at E2.

Here, (−j) denotes a Tate twist, which becomes important when one wants
to make everything Galois-equivariant. Note that the Hodge cohomology groups
appear in the other order than in the Hodge-to-de Rham spectral sequence.

Remark 2.3. If X is the base change of a proper smooth rigid space defined over a
discretely valued field K ⊂ C, then everything in sight carries a Galois action, and
it follows from the results of Tate, [Tat67], that there is a unique Galois-equivariant
splitting of the abutment filtration, leading to a Galois-equivariant isomorphism

Hi
ét(X,Qp)⊗Qp

C ∼=
i⊕

j=0

Hi−j(X,Ωj
X)(−j) ,

answering a question of Tate, [Tat67, Section 4.1, Remark]. However, this isomor-
phism does not exist in families. This is analogous to the Hodge decomposition
over the complex numbers that does not vary holomorphically in families.
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An interesting question is whether Hodge symmetry could still hold under some
condition on X. Such an analogue of the Kähler condition has recently been pro-
posed by Li, [Li17]. In joint work with Hansen, [HL17], they state the following
conjecture that they prove in the case i+ j = 1.

Conjecture 2.4. Let X be a proper smooth rigid-analytic variety that admits a
formal model X whose special fibre is projective. Then for all i, j ≥ 0, one has
dimC Hi(X,Ωj

X) = dimC Hj(X,Ωi
X).

The condition is indeed analogous to the Kähler condition; in Arakelov theory,
the analogue of a metric is a formal model, and the positivity condition on the
Kähler metric finds a reasonable analogue in the condition that the special fibre is
projective.

Note that in particular it follows from the results of Hansen-Li that for any
proper formal model X of the Hopf surface (which exist by Raynaud’s theory of
formal models), the special fibre is a non-projective (singular) proper surface.

From the Hodge-to-de Rham and the Hodge-Tate spectral sequence, one obtains
abutments filtrations that we call the Hodge-de Rham filtration and the Hodge-
Tate filtration. Their variation in families defines interesting period maps as we
will recall in the next sections.

3. Period maps from de Rham cohomology

First, we recall the more classical case of the period maps arising from the
variation of the Hodge filtration on de Rham cohomology. For simplicity, we will
discuss the moduli space M/Z of elliptic curves. If E is a an elliptic curve over
the complex numbers, then H0(E,Ω1

E) = (LieE)∗ is the dual of the Lie algebra,
H1(E,OE) = LieE∗ is the Lie algebra of the dual elliptic curve E∗ (which, for
elliptic curves, is canonically isomorphic to E itself), and the Hodge-de Rham
filtration is a short exact sequence

0→ (LieE)∗ → H1
dR(E/C)→ LieE∗ → 0 ,

where H1
dR(E/C) ∼= H1

sing(E,Z)⊗Z C. The classical period map takes the form

M̃
wwooo

ooo **UUUU
UUUU

UU

M(C) H± = P1(C) \ P1(R)

where M̃ → M(C) is the GL2(Z)-torsor parametrizing trivializations of the first
singular cohomology of the elliptic curve. Given an elliptic curve E/C with such a
trivialization H1(E,Z) ∼= Z2, the Hodge filtration (LieE)∗ ⊂ H1

sing(E,Z)⊗ZC ∼= C2

defines a point of P1(C) \ P1(R) as

H1
sing(E,Z)⊗Z C ∼= H1

dR(E/C) ∼= (LieE)∗ ⊕ (LieE)∗ .

If now E is an elliptic curve over the algebraically closed p-adic field C, then we
still have the identifications H0(E,Ω1

E) = (LieE)∗, H1(E,OE) = LieE∗ and the
Hodge-de Rham filtration

0→ (LieE)∗ → H1
dR(E/C)→ LieE∗ → 0 .
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To construct period maps, we need to fix a point x ∈ M(Fp). Let Q̆p be the
completion of the maximal unramified extension of Qp, and consider the rigid space

M̆ =Mrig

Q̆p
.

Let Ux ⊂ M̆ be the tube of x, i.e. the open subspace of all points specializing
to x. This is isomorphic to an open unit ball D = {z | |z| < 1}. Then the
crystalline nature of de Rham cohomology (in particular, the connection) imply
that the de Rham cohomology Hi

dR(Ex̃) is canonically identified for all x̃ ∈ Ux.
Now the variation of the Hodge filtration defines a period map

πx : Ux
∼= D→ P̆1 = (P1

Q̆p
)rig .

There are two cases to consider here. If x corresponds to an ordinary elliptic
curve, then there is an identification Ux

∼= D such that the map πx is given by the
logarithm map

z 7→ log(1 + z) : Ux = D = {z | |z| < 1} → Ă1 ⊂ P̆1 .

This map is an étale covering map onto Ă1, and the geometric fibres are given by
copies of Qp/Zp; for example, the fibre over 0 is given by all p-power roots of unity
minus 1, i.e. z = ζpr − 1. Note that this implies in particular that (A1

Cp
)rig has

interesting (non-finite) étale coverings, contrary both to the scheme case and the
case over the complex numbers.

If x corresponds to a supersingular elliptic curve, then πx becomes a map

πx : Ux
∼= D→ P̆1 .

In this case, the map is known as the Gross-Hopkins period map, [HG94]. It
is an étale covering map of P̆1 whose geometric fibres are given by copies of
GL2(Qp)1/GL2(Zp), where GL2(Qp)1 ⊂ GL2(Qp) is the open subgroup of all
g ∈ GL2(Qp) with det g ∈ Z×

p .
It is important to note that these maps πx for varying x cannot be assembled into

a single map from M̆ towards P̆1, contrary to the case over the complex numbers.
We will however see a global period map in the next section.

These examples are the basic examples of local Shimura varieties, which are
associated with local Shimura data, [RV14]:

(i) A reductive group G over Qp.
(ii) A conjugacy class of minuscule cocharacters µ : Gm → GQp

, defined over
the reflex field E (a finite extension of Qp).

(iii) A σ-conjugacy class b ∈ B(G,µ).
We will say something about datum (iii) in Theorem 6.5 below. In our example,

we have G = GL2, and µ is the conjugacy class of t 7→ diag(t, 1). In this case,
B(G,µ) contains exactly two elements, corresponding to the cases of ordinary and
supersingular elliptic curves, respectively.

Let Ĕ be the completion of the maximal unramified extension of E. Correspond-
ing to G and µ, one gets a flag variety F̆ℓG,µ over Ĕ, which we consider as an adic
space; in our example, this is P̆1. The following theorem on the existence of local
Shimura varieties proves a conjecture of Rapoport-Viehmann, [RV14].
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Theorem 3.1 ([SW17]). There is a natural open subspace FℓaG,µ ⊂ FℓG,µ, called
the admissible locus, and an étale covering map

M(G,b,µ),K → FℓaG,µ ⊂ FℓG,µ

with geometric fibres G(Qp)/K for any compact open subgroup K ⊂ G(Qp).

Remark 3.2. The geometric fibres differ from the examples above. In the exam-
ples,M(G,b,µ),GL2(Zp) is a certain disjoint union of various Ux for x ranging through
a p-power-isogeny class of elliptic curves.

The (towers of) spaces (M(G,b,µ),K)K⊂G(Qp) are known as local Shimura va-
rieties; their cohomology is expected to realize local Langlands correspondences,
cf. [RV14]. This is one of our primary motivations for constructing these spaces.

In hindsight, one can say that in [RZ96], Rapoport-Zink constructed these local
Shimura varieties in many examples, by explicitly constructing M(G,b,µ),K as a
moduli space of p-divisible groups with extra structures such as endomorphisms
and polarization, together with a quasi-isogeny to a fixed p-divisible group. An
advantage of this approach is that, at least for special choices of K such as parahoric
subgroups, one actually constructs formal schemes whose generic fibre is the local
Shimura variety, and it is often easier to understand the formal scheme.

We will explain our construction of local Shimura varieties in Section 6, and in
Section 7 we will deal with integral models of local Shimura varieties.

4. Period maps from étale cohomology

A different period map known as the Hodge-Tate period map parametrizes the
variation of the Hodge-Tate filtration in families, and has been defined for general
Shimura varieties of Hodge type in [Sch15].

If E is an elliptic curve over the algebraically closed p-adic field C, the Hodge-
Tate filtration is given by a short exact sequence

0→ LieE∗ → H1
ét(E,Zp)⊗Zp

C → (LieE)∗(−1)→ 0 .

Note that the Lie algebra terms here appear in opposite order when compared to
the situation over C. To obtain the period map, we need to trivialize the middle
term. Thus, using the space M̆ = (MQ̆p

)rig as in the last section, we consider the
diagram ˜̆M

yyrrr
rrr πHT

&&MM
MMM

M

M̆ P̆1 .

Here ˜̆M→ M̆ parametrizes isomorphisms H1
ét(E,Zp) ∼= Z2

p; this defines a GL2(Zp)-
torsor. An essential difficulty here is that this space will be very big, and in par-
ticular highly nonnoetherian. By [Sch15], it gives a basic example of a perfectoid
space in the sense of [Sch12].

Now ˜̆M admits the Hodge-Tate period map

πHT :
˜̆M→ P̆1

sending a pair of an elliptic curve E/C with an isomorphism H1
ét(E,Zp) ∼= Z2

p to
the filtration LieE∗ ⊂ H1

ét(E,Zp)⊗Zp
C ∼= C2.
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The geometry of this map is very interesting. When restricted to Drinfeld’s
upper half-plane Ω̆2 = P̆1 \ P1(Qp), the map is a pro-finite étale cover, while the
fibres over points in P1(Qp) are curves, so that the fibre dimension jumps. Let us
discuss these two situations in turn.

If we fix a supersingular elliptic curve x ∈ M(Fp), then we can restrict the
Hodge-Tate period map to

Ũx = Ux ×M̆
˜̆M ,

and arrive at the following picture:
Ũx

uukkkk
kk

πHT

$$I
II

II
I

Uxπx

uukkkk
kk

P̆1 Ω̆2 .

Here, the map Ũx → Ux is a GL2(Zp)-torsor, while Ux → P̆1 has geometric fibers
GL2(Qp)1/GL2(Zp); in fact, in total Ũx → P̆1 is a GL2(Qp)1-torsor. To restore full
GL2(Qp)-equivarience, we consider the perfectoid space

MLT,∞ = Ũx ×GL2(Qp)1 GL2(Qp) ∼=
⊔
Z

Ũx ,

which is known as the Lubin-Tate tower at infinite level, cf. [SW13], [Wei16]. On the
other hand, Ũx → Ω̆2 turns out to be an O×

D-torsor, where D/Qp is the quaternion
algebra. Here, the OD-action arises from the identification OD = End(Ex)⊗Z Zp,
where Ex is the supersingular elliptic curve corresponding to x; by functoriality,
this acts on the deformation space of x, and thus also on Ux and Ũx. In terms of
the Lubin-Tate tower,

πHT :MLT,∞ → Ω̆2

is a D×-torsor.
We see that MLT,∞ has two different period morphisms, corresponding to the

Hodge-de Rham filtration and the Hodge-Tate filtration. This gives the isomor-
phism between the Lubin-Tate and Drinfeld tower at infinite level, [Fal02], [FGL08],

MLT,∞GL2(Qp)
ttiiiii

i MDr,∞ D×

++VVV
VV

P̆1 Ω̆2 .

A similar duality theorem holds true for any local Shimura variety for which b

is basic. The local Shimura datum (G, b, µ) then has a dual datum (Ĝ, b̂, µ̂), where
Ĝ = Jb is the σ-centralizer of b, b̂ = b−1 ∈ Jb, and µ̂ = µ−1 under the identification
GQp

∼= ĜQp
.

Theorem 4.1 ([SW13], [SW17]). There is a natural isomorphism

lim←−
K⊂G(Qp)

M(G,b,µ),K
∼= lim←−

K̂⊂Ĝ(Qp)

M(Ĝ,̂b,µ̂),K̂ .

Remark 4.2. This proves a conjecture of Rapoport-Zink, [RZ96, Section 5.54].
One has to be careful with the notion of inverse limits here, as inverse limits in adic
spaces do not exist in general. One interpretation is to take the inverse limit in the
category of diamonds discussed below.
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On the other hand, we can restrict the Hodge-Tate period map to P1(Qp). In
this case, the fibres of πHT are curves. More precisely, consider the Igusa curve
Ig parametrizing ordinary elliptic curves E in characteristic p together with an
isomorphism E[p∞]ét ∼= Qp/Zp of the of the étale quotient E[p∞]ét of the p-divisible
group E[p∞]. Its perfection Igperf lifts uniquely to a flat formal scheme Ig over Z̆p,
and then, modulo boundary issues, π−1

HT (x) is the generic fibre of Ig.
Let us state these results about the Hodge-Tate period map for a general Shimura

variety of Hodge type.
Theorem 4.3 ([Sch15], [CS17]). Consider a Shimura variety ShK , K ⊂ G(Af ), of
Hodge type, associated with some reductive group G/Q and Shimura data, including
the conjugacy class of cocharacters µ with field of definition E. Let FℓG,µ = G/Pµ

be the corresponding flag variety.2 Fix a prime p and a prime p of E dividing p.
(i) For any compact open subgroup Kp ⊂ G(Ap

f ), there is a unique perfectoid
space ShKp over Ep such that

ShKp ∼ lim←−
Kp⊂G(Qp)

(ShKpKp ⊗ Ep)
rig .

(ii) There is a G(Qp)-equivariant Hodge-Tate period map
πHT : ShKp → FℓG,µ ,

where we consider the right-hand side as an adic space over Ep.
(iii) There is a Newton stratification

FℓG,µ =
⊔

b∈B(G,µ)

FℓbG,µ

into locally closed strata.
(iv) If the Shimura variety is compact and of PEL type, then if x ∈ FℓbG,µ is

a geometric point, the fibre π−1
HT (x) is the canonical lift of the perfection of

the Igusa variety associated with b.
We note that the Newton strata in (iii) are only defined on the adic space:

sometimes they are nonempty but have no classical points!

5. Applications to Langlands reciprocity

The geometry of the Hodge-Tate period map has been used to obtain new results
on the Langlands conjectures relating automorphic forms and Galois representa-
tions, especially in the case of torsion coefficients.

Let us first recall the results obtained in [Sch15]. For any reductive group G over
Q and a congruence subgroup Γ ⊂ G(Q), one can look at the locally symmetric
XΓ = Γ\X, where X is the symmetric space for G(R). To study Hecke operators,
it is more convenient to switch to the adelic formalism, and consider

XK = G(Q)\(X ×G(Af )/K)

for a compact open subgroup K ⊂ G(Af ), assumed sufficiently small from now on.
The cohomology Hi(XK ,C) with complex coefficients can be computed in terms
of automorphic forms. By the Langlands correspondence, one expects associated
Galois representations. Much progress was made on these questions in case X is

2There are actually two choices for this flag variety; we refer to [CS17] for a discussion of which
one to choose.
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a hermitian symmetric space, so that the XK are algebraic varieties over number
fields, and their étale cohomology gives Galois representations. However, the groups
G = GLn for n > 2 are not of this type.

It was conjectured by Grunewald in the 70’s and later more precisely Ash,
[Ash92], that this relation between cohomology and Galois representations extends
to the full integral cohomology groups Hi(XK ,Z), including their torsion sub-
groups, which can be enormous, especially in the case of hyperbolic 3-manifolds,
cf. [BV13].

Theorem 5.1 ([Sch15]). Assume that G = ResF/Q GLn for some totally real or
CM field F . Consider the abstract Hecke algebra T acting on XK , generated by
Hecke operators at good primes, and let TK ⊂ End(

⊕
i H

i(XK ,Z)) be the image of
T. For any maximal ideal m ⊂ TK , there is a continuous semisimple representation

ρm : Gal(F/F )→ GLn(TK/m)

which is unramified at good primes, with Frobenius eigenvalues determined in terms
of Hecke operators. If ρm is absolutely irreducible, then there is a nilpotent ideal
Im ⊂ TK,m in the m-adic completion TK,m of TK whose nilpotence degree is bounded
in terms of n and [F : Q], such that there is a continuous representation

ρm : Gal(F/F )→ GLn(TK,m/Im)

which is unramified at good primes, with the characteristic polynomials of Frobenius
elements determined in terms of Hecke operators.

In particular, for all cohomological automorphic representations π of G, there ex-
ists a corresponding continuous semisimple Galois representation ρπ : Gal(F/F )→
GLn(Qℓ) unramified at good primes.

The final part of this theorem was proved previously by Harris-Lan-Taylor-
Thorne, [HLTT16]. The general strategy is to realize XK as a boundary compo-
nent of the Borel-Serre compactification of a Shimura variety X̃K̃ associated with
a quasisplit symplectic or unitary group, and use the known existence of Galois
representations for cusp forms on that space. The key part of the argument then
is to show that all torsion cohomology classes on X̃K̃ can be lifted to characteristic
0, which is done using certain subtle results from p-adic Hodge theory in [Sch15].

For applications, one needs a precise understanding of the behaviour of the Galois
representations at bad primes as well, in particular for primes dividing ℓ. To attack
such questions, a better understanding of the torsion in X̃K̃ is necessary. This has
been obtained recently in joint work with Caraiani.

Theorem 5.2 ([CS]). Let T̃ be the Hecke algebra acting on the cohomology of X̃K̃ .
Assume that the maximal ideal m̃ ⊂ T̃ is generic. Then

Hi
c(X̃K̃ ,Zℓ)m̃ = 0

for i > d = dimC X̃K̃ .

Essentially by Poincaré duality, this implies that also Hi(X̃K̃ ,Zℓ)m̃ = 0 for i < d,
and that Hd(X̃K̃ ,Zℓ)m̃ is ℓ-torsion free. From the realization of XK in the boundary
of X̃K̃ , one gets a long exact sequence

. . .→ Hd(X̃K̃ ,Zℓ)m̃ → Hd((XK)′,Zℓ)m̃ → Hd+1
c (X̃K̃ ,Zℓ)m̃ = 0→ . . . ,



10 PETER SCHOLZE

where (XK)′ is a torus bundle over XK , and the source is ℓ-torsion free. Now the
general strategy is to move any cohomology class in Hi(XK ,Zℓ)m to Hd((XK)′,Zℓ)m̃
by using the torus bundle to shift cohomological degrees, lift it to Hd(X̃K̃ ,Zℓ)m̃,
and then use that this group injects into its rationalization, which can be expressed
in terms of automorphic forms on G̃.

Let us comment on the proof of Theorem 5.2. The result works for more general
Shimura varieties,3 so let us change the notation. Let (ShK)K⊂G(Af ) be a Shimura
variety corresponding to a reductive group G over Q together with some extra data,
including a conjugacy class of minuscule cocharacters µ : Gm → G, defined over
the reflex field E. Fix a prime p ̸= ℓ so that a certain genericity condition on the
fixed maximal ideal of the Hecke algebra holds true at p, and a (sufficiently small)
tame level Kp ⊂ G(Ap

f ). We get (the minimal compactification of) the perfectoid
Shimura variety at infinite level,

Sh∗Kp ∼ lim←−
Kp

(Sh∗KpKp ⊗ Ep)
rig ,

where p is a prime of E dividing p. We have the Hodge-Tate period map

πHT : Sh∗Kp → FℓG,µ .

The strategy now is to rewrite RΓc(ShKp ,Zℓ) as RΓ(FℓG,µ, RπHT∗j!Zℓ), where
j : ShKp → Sh∗Kp is the open immersion. The Hecke operators away from p act
trivially on the flag variety, so one can also rewrite

RΓc(ShKp ,Zℓ)m = RΓ(FℓG,µ, (RπHT∗j!Zℓ)m) .

The task is now to understand the sheaf (RπHT∗j!Zℓ)m. The first observation is
that, with a suitable definition, it lies in pD≤d for the perverse t-structure; this
uses that RπHT∗ is simultaneously affine and partially proper (but still has fibres
of positive dimension – a phenomenon only possible in this highly nonnoetherian
setup). The other observation is that its fibres are given by the cohomology of
Igusa varieties, by using Theorem 4.3. The cohomology of Igusa varieties has been
computed by Shin, [Shi10], but only with Qℓ-coefficients and in the Grothendieck
group. Under the genericity condition, one finds that this always gives zero ex-
cept if the point lies in FℓG,µ(Qp) ⊂ FℓG,µ. One can now play off these obser-
vations, which gives the conclusion that (RπHT∗j!Zℓ)m is concentrated on the 0-
dimensional space FℓG,µ(Qp). Thus, there is no higher cohomology, and the bound
(RπHT∗j!Zℓ)m ∈ pD≤d implies that RΓc(ShKp ,Zℓ)m = RΓ(FℓG,µ, (RπHT∗j!Zℓ)m)
is in degrees ≤ d.

One nice aspect of this strategy is that it describes the cohomology of Shimura
varieties in terms of the cohomology of certain sheaves on the flag varieties FℓG,µ,
and it becomes an interesting question to understand those sheaves themselves.
This leads to a relation to the geometrization of the local Langlands correspondence
conjectured by Fargues, cf. Section 6.

Finally, let us mention that these results have led to the following applications.

Theorem 5.3 ([ACC+17]). Let F be a CM field.
(1) For any elliptic curve E over F , the L-function L(E, s) has meromorphic

continuation to C. Moreover, E satisfies the Sato-Tate conjecture.

3The compact case has appeared in [CS17].
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(2) For any cuspidal automorphic representation π of GL2(AF ) whose archimedean
component is of parallel weight 2, the Ramanujan-Petersson conjecture holds
true at all places.

Theorem 5.3 is proved by establishing the potential automorphy of E and of
all symmetric powers of E resp. π; here “potential” means after base change to
(many) extensions F̃ /F . Thus, the second part follows Langlands’s strategy for
establishing the Ramanujan-Petersson conjecture in general, and it is the first time
that this conjecture has been proved in a case where the associated motive (or some
closely related motive) is not known to exist, and in particular the proof does not
invoke Deligne’s theorem on the Weil conjectures.

For the proof of Theorem 5.3, one wants to see that “all” Galois representations
arise via Theorem 5.1. This follows Wiles’ strategy [Wil95]; more precisely, we use
the variant proposed by Calegari-Geraghty, [CG17].

6. p-adic twistor theory

Further developments in p-adic geometry arose from the realization that the
structures arising from the cohomology of proper smooth rigid-analytic varieties
over the algebraically closed p-adic field C can be naturally organized into a modi-
fication of vector bundles on the Fargues-Fontaine curve in a way closely resembling
a reinterpretation of Hodge theory in terms of vector bundles on the twistor-P1.

Let us first recall the statements over C. Consider the twistor-P1, i.e. the nonsplit
real form P̃1

R of P1, which we will take to be given as the descent of P1
C to R via

z 7→ − 1
z . We fix the point ∞ ∈ P̃1

R(C) corresponding to {0,∞} ⊂ P1
C. There is an

action of the nonsplit real torus U(1) (that we consider as an algebraic group) on
P̃1
R fixing ∞.

Proposition 6.1 (Simpson, [Sim97, Section 5]). The category of U(1)-equivariant
semistable vector bundles on P̃1

R is equivalent to the category of pure R-Hodge
structures.

Let us briefly recall the proof of this result. As the action of the algebraic group
U(1) on P̃1

R \ {∞} is simply transitive (as after base change to C, it is the simply
transitive action of Gm on itself), U(1)-equivariant vector bundles on P̃1

R \ {∞} are
equivalent to R-vector spaces V . Thus, given a U(1)-equivariant vector bundle E
on P̃1

R, we get an R-vector space V such that

E|P̃1
R\{∞}

∼= V ⊗R OP̃1
R\{∞}

equivariantly for the U(1)-action. Identifying the completion of P̃1
R at ∞ with

Spf C[[t]], we get at the completion at ∞ a U(1)-equivariant C[[t]]-lattice Λ ⊂
V ⊗R C((t)). However, this is equivalent to a decreasing filtration Fili VC ⊂ VC, via
the Rees construction

Λ =
∑
i∈Z

t−i(Fili VC)[[t]] ⊂ V ⊗R C((t)) .

One then checks that E is semistable precisely when (V,Fili VC) defines a pure
Hodge structure.
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Thus, a description of the inverse functor is that one starts with a pure R-Hodge
structure (V,Fili VC) and the trivial vector bundle E ′ = V ⊗R OP̃1

R
, and modifies it

at ∞ via the lattice Λ defined above to obtain a new vector bundle E which is still
U(1)-equivariant.

A very similar formalism exists in the p-adic case. Associated with the alge-
braically closed p-adic field C, there is the Fargues-Fontaine curve FFC , which is a
regular noetherian scheme over Qp of Krull dimension 1 with a distinguished point
∞ ∈ FFC . The completed local ring of FFC at ∞ is Fontaine’s period ring B+

dR, a
complete discrete valuation ring with residue field C and fraction field BdR.

Theorem 6.2 (Fargues-Fontaine, [FF17]). All residue fields of FFC at closed points
are algebraically closed nonarchimedean extensions of Qp. Any vector bundle on
FFC is a direct sum of stable vector bundles, and there is a unique stable vector
bundle OFFC

(λ) for every rational slope λ = s
r ∈ Q, which is of rank r and degree

s (if r and s are chosen coprime with r > 0).

Note that a similar result holds true for P̃1
R, but only half-integral slopes λ ∈ 1

2Z
occur in that case.

Given a proper smooth rigid-analytic space X over C, one can form the trivial
vector bundle

E = Hi
ét(X,Zp)⊗Zp

OFFC
.

Theorem 6.3 ([BMS16, Theorem 13.1, Theorem 13.8]). There is a functorial
B+

dR-lattice
Ξ = Hi

crys(X/B+
dR) ⊂ Hi

ét(X,Zp)⊗Zp BdR .

If X = X0⊗̂KC for some discretely valued subfield K ⊂ C, then Hi
crys(X/B+

dR) =

Hi
dR(X0/K) ⊗K B+

dR and the inclusion comes from the de Rham comparison iso-
morphism.

Thus, one can form a modification E ′ of E along ∞. The new vector bundle will
in general be related to the (log-)crystalline cohomology of a (log-)smooth formal
model. In other words, the comparison isomorphism between étale and crystalline
cohomology can be understood in terms of a modification of vector bundles on the
Fargues-Fontaine curve.

In fact, contrary to étale cohomology that is ill-behaved for spaces like the unit
disc, it should be possible to define this modified vector bundle much more generally,
without properness and without using formal models. The following conjecture
arose from discussions of the author with Arthur-César le Bras.

Conjecture 6.4. There is a cohomology theory Hi
FFC

(X) for quasicompact sep-
arated smooth rigid spaces X over C taking values in vector bundles on FFC . If
X has an overconvergent model X† (for example, if X is affinoid), then the fi-
bre of Hi

FFC
(X) at ∞ is the overconvergent de Rham cohomology Hi

dR(X
†/C) in

the sense of Große-Klönne, [GK04], and the completion of Hi
FFC

(X) at ∞ is the
overconvergent crystalline cohomology Hi

crys(X
†/B+

dR) defined following [BMS16,
Section 13].

In other words, not only does de Rham cohomology lift naturally to B+
dR along

the surjection B+
dR → C as can be explained in terms of a version of crystalline

cohomology, but it does actually deform into a vector bundle on all of FFC .
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Now we define for any local Shimura datum (G, b, µ) the local Shimura variety
M(G,b,µ),K in terms of modifications of G-torsors on the Fargues-Fontaine curve.

Theorem 6.5 (Fargues, [Far17]). For any reductive group G over Qp, there is a
natural bijection b 7→ Eb between Kottwitz’ set B(G) of σ-conjugacy classes and the
set of G-torsors on FFC up to isomorphism. Moreover, b ∈ B(G,µ) ⊂ B(G) if and
only if Eb can be written as a modification at ∞ of type µ of the trivial G-torsor E1.

The final statement appears in [Rap17]. Now we define
M(G,b,µ),∞(C) = lim←−

K

M(G,b,µ),K(C)

to be the set of all modifications E1 99K Eb at ∞ of type µ. The group G(Qp) is
the group of automorphisms of E1, and thus acts on this inverse limit; then for all
K ⊂ G(Qp),

M(G,b,µ),K(C) =M(G,b,µ),∞(C)/K .

In order to make M(G,b,µ),K into a rigid space, we need to define it as a moduli
problem. For the rest of this section, we make extensive use of the theory of
perfectoid spaces, and assume that the reader is familiar with it, cf. [Sch14]; some
of the structures that appear now will however be motivated in the next section.
We use that for any perfectoid space S of characteristic p together with an untilt
S♯ over Qp, one can construct a relative Fargues-Fontaine curve FFS that is an adic
space over Qp and comes with a section ∞ : SpaS♯ → FFS . Then M(G,b,µ),∞(S)
parametrizes modifications E1|FFS

99K Eb|FFS
at∞ of type µ as before. This defines

a structure of a diamond, [Sch17b]:

Definition 6.6. Let Perf be the category of perfectoid spaces of characteristic p. A
diamond is a pro-étale sheaf Y on Perf that can be written as a quotient Y = X/R
of a perfectoid space X by a pro-étale equivalence relation R ⊂ X ×X.

An example of a diamond is given by the sheaf SpdQp that attaches to any per-
fectoid space S of characteristic p the set of all untilts S♯ over Qp. More generally,
if X is an adic space over Qp, one can define a diamond X♢ whose S-valued points
are given by an untilt S♯ over Qp together with a map S♯ → X.

Theorem 6.7 ([SW17]). For any nonarchimedean field L/Qp, the functor X 7→ X♢

defines a fully faithful functor from the category of seminormal rigid spaces over L
to the category of diamonds over SpdL = (SpaL)♢.

The diamond M(G,b,µ),K =M(G,b,µ),∞/K over Spd Ĕ is the image of a smooth
rigid space over Ĕ under this functor.

The proof makes use of the results of Kedlaya, [Ked10], and Kedlaya-Liu, [KL15],
on families of vector bundles on the Fargues-Fontaine curve.

From here, it becomes natural to consider much more general spaces, parametriz-
ing modifications of arbitrary G-bundles at several points with modifications of
arbitrary type, not necessarily minuscule. Such spaces live over the base space
SpdQp × . . . × SpdQp parametrizing the points of modification: These products
give good meaning to the non-existent products SpecQp×Spec F1

. . .×Spec F1
SpecQp.

The resulting spaces are now in general just diamonds. The purpose of the foun-
dational manuscript [Sch17b] is to develop a solid theory of étale cohomology for
diamonds with the aim of using these spaces to obtain a general local Langlands
correspondence.
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These spaces are naturally organized into Hecke stacks acting on the stack BunG
of G-bundles on the Fargues-Fontaine curve. Fargues realized that this gives rise to
a picture perfectly resembling the geometric Langlands correspondence for classical
smooth projective curves, [Far16], [Far18], [FS]. This in particular involves perverse
ℓ-adic sheaves on BunG whose pullback to the flag varieties FℓG,µ should arise
globally from the construction RπHT∗Zℓ sketched in the previous section.

It is too early to state the expected theorems about the applications to the local
Langlands correspondence, but let us mention that recently Kaletha-Weinstein,
[KW17], have used the étale cohomology of diamonds as developed in [Sch17b] to
prove Kottwitz’ conjecture, [Rap95], about the realization of the Jacquet-Langlands
correspondence in the cohomology of local Shimura varieties.

Remark 6.8. As the theory of diamonds is critical to the foundations, as is the
possibility of defining SpdQp × SpdQp, let us quickly give a description of the
product SpdQp × SpdQp. Consider the open unit disc DQp

= {z | |z| < 1} as
embedded in the multiplicative group via z 7→ 1 + z; then DQp

itself is a group
object. Let D̃Qp

be the inverse limit of DQp
along z 7→ (1 + z)p − 1. Then D̃Qp

is
(pre)perfectoid, and admits a natural Qp-action. Now

SpdQp × SpdQp = (D̃Qp \ {0})♢/Z×
p .

On the right-hand side, one factor of SpdQp arises from the structure map D̃Qp
→

SpaQp, but the other factor gets realized in terms of the perfectoid punctured unit
disc, and thus has become geometric.

These constructions in fact lead to a description of the absolute Galois group of
Qp as a geometric fundamental group:

Theorem 6.9 ([Wei17]). For any algebraically closed nonarchimedean field C/Qp,
the étale fundamental group of (D̃C \{0})/Q×

p agrees with the absolute Galois group
of Qp.

A search for a hypothetical space SpecZ× SpecZ thus seems closely related to
a realization of the absolute Galois group of Q as a geometric fundamental group.
For a step in this direction, let us mention the following result, which uses the ring
of rational Witt vectors Wrat(R) ⊂Wbig(R). For all r ∈ R, there is the Teichmüller
lift [r] ∈Wrat(R).

Theorem 6.10 ([KS16]). Let L be a field of characteristic 0 that contains all roots
of unity, and fix an embedding Q/Z ↪→ L×, 1/n 7→ ζn. Then the category of finite
extensions of L is equivalent to the category of connected finite coverings of the
topological space

X(L) ⊂ (SpecWrat(L))(C)
that is the connected component singled out by the condition that [ζn] maps to
e2πi/n ∈ C for all n ≥ 1.

In fact, X(L) has a deformation retract to a compact Hausdorff space, which
gives a realization of the absolute Galois group of L as the profinite fundamental
group of a compact Hausdorff space! This formally implies that the absolute Galois
group of L is torsion-free, cf. [KS16, Proposition 7.10].

The space X(L) gives rise to certain non-profinitely complete structures on nat-
ural arithmetic invariants. If L is the cyclotomic extension of Q, one can show
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that the actual fundamental group of X(L) given by topological loops is a proper
dense subgroup of the absolute Galois group. Moreover, it acts naturally on the set
logQ ⊂ C of logarithms of algebraic numbers, compatibly with exp : logQ → Q×.
Similarly, for general L as in the theorem, the Čech cohomology groups Hi(X(L),Z)
give certain torsion-free non-profinitely completed abelian groups with

Hi(X(L),Z)/n = Hi(Gal(L/L),Z/nZ)

for all n ≥ 1, cf. [KS16, Theorem 1.8].

7. p-adic shtukas

Going further, one can reinterpret the linear-algebraic structures that appeared
in the last section in terms of a p-adic analogue of shtukas. Let us first recall the
basic definition of a shtuka from the function field case. There is a version of the
following definitions for any reductive group G obtained by replacing vector bundles
by G-torsors.

Definition 7.1. Let X be a smooth projective curve over Fp and let S be a scheme
over Fp. A shtuka over S relative to X with legs at x1, . . . , xn : S → X is a vector
bundle E over S ×Fp

X together with an isomorphism

(Frob∗SE)|S×FpX\
∪n

i=1 Γxi

∼= E|S×FpX\
∪n

i=1 Γxi
,

where Γxi
: S ↪→ S ×Fp

X is the graph of xi.

Drinfeld used moduli spaces of shtukas with two legs to prove the global Lang-
lands correspondence for GL2, [Dri80]. This was generalized to GLn, still using
moduli spaces with two legs, by L. Lafforgue, [Laf02]. Recently, V. Lafforgue has
used all moduli spaces with an arbitrary number of legs simultaneously to prove
the automorphic to Galois direction of the global Langlands correspondence for any
reductive group G, [Laf12].

There is a corresponding notion of local shtuka, where one works with the local
curve X = Spf Fp[[t]]. The legs are now parametrized by maps x1, . . . , xn : S →
X = Spf Fp[[t]], i.e. locally nilpotent elements ti ∈ OS(S). As this contains no
topological information, we pass to the world of rigid geometry. For simplicity,
we discuss the case of geometric points, and so assume that S = SpaC for some
complete algebraically closed nonarchimedean field C of characteristic p; we will
later allow more general base spaces again. The legs are maps S → X, which are
parametrized by topologically nilpotent elements ti ∈ C, i.e. |ti| < 1. The fibre
product S ×Fp X becomes the open unit ball DC = {t ∈ C | |t| < 1}, and the legs
give rise to points xi ∈ DC . There is a Frobenius FrobC acting on DC , coming from
the Frobenius on C. This is not a map of rigid spaces over C, but it does exist in
the category of adic spaces.

Definition 7.2. A (local) shtuka over S = SpaC relative to X = Spf Fp[[t]] with
legs at x1, . . . , xn : S → X given by elements ti ∈ C, |ti| < 1, is a vector bundle E
over DC = S ×Fp

X together with an isomorphism

(Frob∗CE)|DC\{t1,...,tn}
∼= E|DC\{t1,...,tn}

that is meromorphic along the ti.
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The main observation of [SW17] is that it is possible to give a mixed-characte-
ristic version of this definition, where X = Spf Zp. As a geometric point, one still
takes S = SpaC where C is a complete algebraically closed nonarchimedean field
of characteristic p. Naively, there are now no interesting maps S = SpaC → X =
Spf Zp; there is exactly one, which factors over SpecFp. We will see momentarily
how to solve this problem. But let us first face the other problem of defining a
reasonable fibre product “S ×X”, where the product should be over SpecFp. The
basic insight is that for any perfect ring R, “ SpecR × Spf Zp” should be given by
SpfW (R) with the p-adic topology on W (R). If R is itself an adic ring with the
I-adic topology, then “ Spf R×Spf Zp = SpfW (R)”, where W (R) is equipped with
the (p, [I])-adic topology.

In particular, we should set “ Spf OC×Spf Zp” = Spf(W (OC)). The ring W (OC)
plays an important role in p-adic Hodge theory, and is traditionally called Ainf there.
If ϖ ∈ C is a topologically nilpotent unit, then passing from Spf OC to its generic
fibre SpaC amounts to inverting ϖ. Thus, we define the open subspace

“ SpaC × SpaZp” = {[ϖ] ̸= 0} ⊂ Spa(W (OC)) ,

which is a well-defined adic space. The following proposition shows that this be-
haves very much like a classical smooth rigid curve, except that it does not live over
any base field.
Proposition 7.3 ([FF17], [Ked16]). For any connected open affinoid subspace

U = Spa(R,R+) ⊂ “ SpaC × SpaZp” ,

the ring R is a principal ideal domain. For any maximal ideal m ⊂ R, the quotient
Cm = R/m is a complete algebraically closed nonarchimedean field. Moreover, there
is a canonical isomorphism

lim←−
x 7→xp

OCm
/p ∼= OC ,

i.e. C ∼= C♭
m is the tilt of Cm in the terminology of [Sch12]. Conversely, for

any complete algebraically closed nonarchimedean field C♯ with an isomorphism
(C♯)♭ ∼= C, there is a unique maximal ideal m ⊂ R (for any large enough open
subset U) such that C♯ = R/m, compatibly with the identification of (C♯)♭ with C.

In other words, “classical points” of “ SpaC × SpaZp” parametrize untilts of C.
This shows that we should reinterpret the data of the maps xi : S = SpaC → X =

SpaZp as the data of untilts C♯
1, . . . , C

♯
n of C.

Definition 7.4. A (local/p-adic) shtuka over S = SpaC relative to X = Spf Zp

with legs at x1, . . . , xn given by untilts C♯
1, . . . , C

♯
n of C, is a vector bundle E over

“ SpaC × SpaZp” together with an isomorphism
(Frob∗CE)|“ SpaC×SpaZp”\{x1,...,xn}

∼= E|“ SpaC×SpaZp”\{x1,...,xn}

that is meromorphic along the xi.
In the case of one leg, these structures are closely related to the structures that

appeared in the last section, by the following theorem of Fargues.
Theorem 7.5 (Fargues, [SW17]). Assume that C♯ is an untilt over Qp, let ∞ :
SpecC♯ → FFC be the corresponding point of the Fargues-Fontaine curve,4 and

4The Fargues-Fontaine curve depends only on the tilt of C♯, but the point ∞ depends on C♯.
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let B+
dR = B+

dR(C
♯) be the complete local ring at ∞ with quotient field BdR. The

following categories are equivalent.
(i) Shtukas over S = SpaC relative to X = Spf Zp with one leg at C♯.
(ii) Pairs (T,Ξ), where T is a finite free Zp-module and Ξ ⊂ T ⊗Zp

BdR is a
B+

dR-lattice.
(iii) Quadruples (F1,F2, β, T ), where F1 and F2 are two vector bundles on

the Fargues-Fontaine curve FFC , β : F1|FFC \{∞} ∼= F2|FFC \{∞} is an
isomorphism, and T is a finite free Zp-module such that F1 = T ⊗Zp

OFFC

is the corresponding trivial vector bundle.
(iv) Breuil-Kisin-Fargues modules, i.e. finite free Ainf = W (OC)-modules M

together with a φ-linear isomorphism M [ 1
φ−1(ξ) ]

∼= M [ 1ξ ], where ξ ∈ Ainf is
a generator of ker(Ainf → OC♯).

Note that local Shimura varieties are parametrizing data of type (iii). The
equivalence with (i) shows that one can regard local Shimura varieties as moduli
spaces of shtukas, and it gives a possibility of formulating an integral model for the
local Shimura varieties that we will now discuss.

In [SW17], we construct moduli spaces of shtukas with any number of legs.
However, already the case of one leg has important applications, so let us focus on
this case. In addition to the group G over Qp, we need to fix a model G of G over Zp,
and the most important case is when G is parahoric. To define the moduli problem,
we need to bound the modification at the leg; this leads to a version of the affine
Grassmannian. Here, SpdZp denotes the functor on Perf taking any perfectoid
space S of characteristic p to the set of untilts S♯ over Zp. If S = Spa(R,R+) is
affinoid, then S♯ = Spa(R♯, R♯+), and there is a natural ring B+

dR(R
♯) that surjects

onto R♯ with kernel generated by some nonzerodivisor ξ ∈ B+
dR(R

♯) such that
B+

dR(R
♯) is ξ-adically complete. This interpolates between the following cases:

(1) If R♯ = C♯ is an untilt over Qp of an algebraically closed nonarchimedean
field R = C of characteristic p, then B+

dR(C
♯) is Fontaine’s ring considered

previously.
(2) If R♯ = R is of characteristic p, then B+

dR(R
♯) = W (R) is the ring of

p-typical Witt vectors.

Definition 7.6. Let G be a parahoric group scheme over Zp. The Beilinson-Drin-
feld Grassmannian

GrG,SpdZp
→ SpdZp

is the moduli problem on Perf taking an affinoid perfectoid space S = Spa(R,R+)
of characteristic p to the set of untilts S♯ = Spa(R♯, R♯+) over Zp together with a
G-torsor over B+

dR(R
♯) that is trivialized over BdR(R

♯).

In the following, we make use of the following proposition to identify perfect
schemes or formal schemes as certain pro-étale sheaves. In both cases, one can
define a functor X 7→ X♢, where X♢ parametrizes untilts over X.

Proposition 7.7. The functor X 7→ X♢ defines a fully faithful functor from the
category of perfect schemes to the category of pro-étale sheaves on Perf. Similarly,
for any nonarchimedean field L over Qp, the functor X 7→ X♢ from normal and
flat formal schemes locally formally of finite type over Spf OL to pro-étale sheaves
over SpdOL is fully faithful.
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The proof of the second part relies on a result of Lourenço, [Lou17], that recovers
formal schemes as in the proposition from their generic fibre and the perfection of
their special fibre, together with the specialization map.
Theorem 7.8 ([Zhu17], [BS17], [SW17]). The special fibre of GrG,SpdZp

is given by
the Witt vector affine Grassmannian GrWG constructed in [Zhu17] and [BS17] that
can be written as an increasing union of perfections of projective varieties along
closed immersions. The generic fibre of GrG,SpdZp is the B+

dR-affine Grassmannian
of G, and can be written as an increasing union of proper diamonds along closed
immersions.

For a conjugacy class of minuscule cocharacters µ defined over E, there is a
natural closed immersion

Fℓ♢G,µ ↪→ GrG,SpdZp ×SpdZp SpdE .

We let
Mloc

(G,µ) ⊂ GrG,SpdZp
×SpdZp

SpdOE

be the closure of Fℓ♢G,µ. We conjecture that it comes from a normal and flat projec-
tive scheme over SpecOE under Proposition 7.7. This would give a group-theoretic
definition of the local model in the theory of Shimura varieties, cf. e.g. [Pap18].
Definition 7.9. Given local Shimura data (G, b, µ) and a parahoric model G, let

Mint
(G,b,µ) → Spd ŎE

be the moduli problem taking S ∈ Perf to the set of untilts S♯ over ŎE together with
a G-shtuka over “S × SpaZp” with one leg at S♯ that is bounded by Mloc

(G,µ), and a
trivialization of the shtuka at the boundary of “S × SpaZp” by Eb.

For a precise formulation of the following result, we refer to [SW17].
Theorem 7.10 ([SW17]). This definition recovers Rapoport-Zink spaces.

Using this group-theoretic characterization of Rapoport-Zink spaces, we can ob-
tain new isomorphisms between different Rapoport-Zink spaces.
Corollary 7.11. The conjectures of Rapoport-Zink, [RZ17], and Kudla-Rapoport-
Zink, [KRZ], on alternative descriptions of the Drinfeld moduli problem hold true.

In particular, by [KRZ], one gets an integral version and moduli-theoretic proof
of Čerednik’s p-adic uniformization theorem, [Cer76].

To prove Theorem 7.10, one needs to see that p-adic shtukas are related to
the cohomology of algebraic varieties or p-divisible groups. This is the subject of
integral p-adic Hodge theory that we will discuss next.

8. Integral p-adic Hodge theory

The following question arises naturally from Theorem 7.5. As it is more natural
in this section, let us change notation, and start with an algebraically closed p-adic
field C and consider shtukas over its tilt C♭ with one leg at the untilt C of C♭. Given
a proper smooth rigid-analytic space X over C, consider T = Hi

ét(X,Zp)/(torsion)
with the finite free B+

dR-module Ξ = Hi
crys(X/B+

dR) ⊂ T ⊗Zp
BdR from Theo-

rem 6.3. By Theorem 7.5, there is a corresponding Breuil-Kisin-Fargues module
Hi

Ainf
(X); we normalize it here so that the Frobenius is an isomorphism after in-

verting ξ resp. φ(ξ). Can one give a direct cohomological construction of this?
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SpecOC♭

SpecZp
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SpecW (k)

SpecW (C♭)

étale
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de Rham

Figure 1. A picture of some parts of SpecAinf = “SpecOC♭ × SpecZp”.

We expect that without further input, the answer is no; in fact, Fargues’s equiv-
alence is not exact, and does manifestly not pass to the derived category. However,
in joint work with Bhatt and Morrow, [BMS16], we show that it is possible once a
proper smooth formal model X of X is given.5

Theorem 8.1 ([BMS16]). Let X be a proper smooth formal scheme over Spf OC

with generic fibre X. There is a perfect complex RΓAinf
(X) of Ainf-modules together

with a φ-linear map φ : RΓAinf
(X) → RΓAinf

(X) that becomes an isomorphism
after inverting ξ resp. φ(ξ). Each Hi

Ainf
(X) is a finitely presented Ainf-module

that becomes free over Ainf [
1
p ] after inverting p. Moreover, one has the following

comparison results.

(i) Crystalline comparison: RΓAinf
(X)

L
⊗Ainf

W (k) ∼= RΓcrys(Xk/W (k)), φ-
equivariantly, where k is the residue field of OC .

(ii) De Rham comparison: RΓAinf
(X)

L
⊗Ainf

OC
∼= RΓdR(X/OC).

(iii) Étale comparison: RΓAinf
(X) ⊗Ainf

W (C♭) ∼= RΓét(X,Zp) ⊗Zp
W (C♭), φ-

equivariantly.
Moreover, if Hi

crys(Xk/W (k)) is p-torsion free6, then Hi
Ainf

(X) is finite free over
Ainf , and agrees with Hi

Ainf
(X) as defined above.7

The theorem implies a similar result for p-divisible groups, which is the key
input into the proof of Theorem 7.10. On the other hand, the theorem has direct
consequences for the behaviour of torsion under specialization from characteristic
0 to charateristic p.

5All of these results were recently extended to the case of semistable reduction by Česnavičius-
Koshikawa, [CK17].

6Equivalently, Hi
dR(X/OC) is p-torsion free, cf. [BMS16, Remark 14.4].

7In that situation, part (iii) implies that also Hi
ét(X,Zp) is p-torsion free.
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Corollary 8.2. For any i ≥ 0, one has dimk H
i
dR(Xk/k) ≥ dimFp

Hi
ét(X,Fp), and

lengthW (k)H
i
crys(Xk/W (k))tor ≥ lengthZp

Hi
ét(X,Zp)tor .

For example, for an Enriques surface X over C, so that it has a double cover by a
K3 surface, there is 2-torsion in the second étale cohomology group. By the theorem,
this implies that for all Enriques surfaces in characteristic 2 (all of which deform
to characteristic 0), one has 2-torsion in the second crystalline cohomology, or
equivalently H1

dR ̸= 0, contrary to the situation in any other characteristic. This is a
well-known “pathology” of Enriques surfaces in characteristic 2 that finds a natural
explanation here. In this case, one actually has equality in the corollary; however,
in [BMS16] we give an example of a projective smooth surface over Z2 whose étale
cohomology is torsionfree while there is torsion in crystalline cohomology.

The construction of the Ainf -cohomology given in [BMS16] was the end result
of a long detour that led the author to study topological Hochschild and cyclic
homology. This started with the paper [Hes06] of Lars Hesselholt that computes
THH(OC). This is an E∞-ring spectrum with an action by the circle group T = S1.
In particular, one can form the homotopy fixed points TC−(OC) = THH(OC)

hT to
get another E∞-ring spectrum.
Theorem 8.3 (Hesselholt, [Hes06]). The homotopy groups of the p-completion of
TC−(OC) = THH(OC)

hT are given by Ainf in all even degrees, and 0 in all odd
degrees. The generators in degree 2 and −2 multiply to ξ ∈ Ainf .

If now X is a proper smooth (formal) scheme over OC , it follows that the p-
completion of TC−(X) is a perfect module over the p-completion of TC−(OC),
and in particular its homotopy groups are Ainf -modules. Moreover, topological
Hochschild homology comes with a T-equivariant Frobenius operator THH(X) →
THH(X)tCp , where Cp ⊂ T is the cyclic group of order p and StCp = cone(Nm :
ShCp → ShCp) denotes the Tate construction. This gives rise to the desired Frobe-
nius on TC− by passing to homotopy T-fixed points. In the classical formulation,
THH has even more structure as encoded in the structure of a cyclotomic spec-
trum. However, in joint work with Nikolaus, we proved that this extra structure is
actually redundant.
Theorem 8.4 ([NS17]). On respective subcategories of bounded below objects, the
∞-category of cyclotomic spectra (in the sense of Hesselholt-Madsen, [HM97], and
made more precise by Blumberg-Mandell, [BM15]) is equivalent to the ∞-category
of naively T-equivariant spectra S together with a T-equivariant map φp : S → StCp

for all primes p.8

The only issue with this construction of the Ainf -cohomology theory (besides its
heavy formalism) is that one gets an essentially 2-periodic cohomology theory. To
get the desired cohomology theory itself, one needs to find a filtration on TC−(X)
and then pass to graded pieces; this is similar to the “motivic” filtration on algebraic
K-theory with graded pieces given by motivic cohomology, and the existence of such
a filtration was first conjectured by Hesselholt. Using perfectoid techniques, it is
possible to construct the desired filtration on TC−; this is the content of [BMS].
On the other hand, in the original paper [BMS16], we were able to build the theory
independently of THH. We refer to [BMS16] and the surveys [Bha16], [Mor16] for
details on this construction.

8No compatibility between the different φp is required.
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9. Shtukas for Spec Z

Roughly, the upshot of the Ainf -cohomology theory is that the “universal” p-
adic cohomology theory is given by a shtuka relative to Spf Zp. Currently, the
author is trying to understand to what extent it might be true that the “universal”
cohomology theory is given by a shtuka relative to SpecZ. It seems that this is a
very fruitful philosophy.

Let us phrase the question more precisely. Given a proper smooth scheme X over
a base scheme S, what is “the” cohomology of X? Experience in arithmetic and
algebraic geometry shows that there is no simple answer, and that in fact there are
many cohomology theories: singular, de Rham, étale, crystalline, etc.9 It helps to
organize these cohomology theories according to two parameters: First, they may
only defined for certain (geometric) points s ∈ S, and their coefficients may not be
Z but only Z/nZ or Zℓ or R.

This makes it natural to draw a picture of a space “S×SpecZ”, where at a point
(s, ℓ) we put “Hi(Xs,Z/ℓZ)”, whatever we want this to mean. Note that inside
this space, we have the graph of S, taking any s ∈ S to (s, char(s)) where char(s) is
the characteristic of s. For simplicity, we assume that S = SpecZ in the following;
then the graph is given by the diagonal SpecZ ⊂ “ SpecZ×SpecZ”. We will use p
to denote a point of p ∈ S = SpecZ, and ℓ to denote a point of the vertical SpecZ.

Thus, let X be a proper smooth scheme over S = SpecZ.10 We include the
following cohomology theories in the picture:

(i) Singular cohomology Hi
sing(X(C),Z). This gives a vertical line over the

infinite point of SpecZ.
(ii) De Rham cohomology Hi

dR(X/Z). Note that (up to torsion problems)

Hi
dR(X/Z)⊗Z Z/ℓZ = Hi

dR(XFp
/Fp)

for p = ℓ, so a horizontal fibre of Hi
dR(X/Z) agrees with a vertical fibre.

Thus, it sits on the diagonal. It meets singular cohomology, via the com-
parison isomorphism

Hi
dR(X/Z)⊗Z C ∼= Hi

sing(X(C),Z)⊗Z C .

(iii) Étale cohomology Hi
ét(Xs,Z/ℓmZ), which is defined for all geometric points

s ∈ SpecZ \ {ℓ}. This gives a horizontal line with a hole at ℓ, and in
fact an infinitesimal neighborhood of the horizontal line. It meets singular
cohomology via the comparison isomorphism

Hi
ét(XC,Z/ℓmZ) ∼= Hi

sing(X(C),Z/ℓmZ) .

(iv) Crystalline cohomology Hi
crys(XFp

/Zp). This sits in a vertical fibre over p,
and extends de Rham cohomology infinitesimally.

9We use the word “cohomology theory” in a loose sense, but it should be of Weil type and
compatible with base change, so for example H1 of an elliptic curve should be of rank 2 over
some ring, and base changing the elliptic curve should amount to a corresponding base change of
its H1 along an associated map of rings. In particular, “absolute” cohomologies such as motivic
cohomology or syntomic cohomology are disregarded.

10The known examples are not too interesting, so the reader may prefer to take S = SpecZ[ 1
N
]

for some N to get more interesting examples. He should then remove the vertical fibres over p|N
from the picture.
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Figure 2. A picture of known cohomology theories.

If we zoom in near a point (p, p) in this picture, we arrive at a picture that looks
exactly like Figure 1 depicting the Ainf -cohomology theory! And indeed, one can
use the Ainf -cohomology theory to fill in this part of the picture.

The picture bears a remarkable similarity with the following equal-characteristic
structure.

Definition 9.1 (Anderson, Goss, [And86], [Gos96]). For a scheme S = SpecR
over SpecFp[T ] sending T to t ∈ R, a t-motive is a finite projective R[T ]-module
M together with an isomorphism

φM : Frob∗RM [ 1
t−T ]

∼= M [ 1
t−T ] .

Let us briefly discuss the similar specializations.

(i) If R = K is an algebraically closed field mapping to the infinite point of
SpecFp[T ] (which, strictly speaking, is not allowed – but we can compactify
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SpecFp[T ] into P1
Fp

) we get a vector bundle on P1
K together with an isomor-

phism with its Frobenius pullback.11 These are equivalent to vector bundles
on P1

Fp
, and by restricting back to SpecFp[T ], we get an Fp[T ]-module.

(ii) Restricting along R[T ] → R sending T to t we get a finite projective R-
module. Moreover, φM gives rise to a R[[t−T ]]-lattice in M⊗R[T ]R((t−T )),
which gives rise to a filtration of M ⊗R[T ] R similarly to the discussion in
the case of B+

dR-lattices or C[[t]]-lattices in Section 6.12

(iii) Restricting modulo a power of T (or T − a, a ∈ Fp), the pair
(Mn, φMn

) = (M ⊗R[T ] R[t−1, T ]/Tn, φM )

is equivalent to an étale Fp[T ]/T
n-local system on SpecR[t−1] by taking

the étale sheaf MφMn=1
n .

(iv) Restricting to the fibre t = 0 (or t = a, a ∈ Fp) and taking the T -adic
completion, M ⊗R[T ] (R/t)[[T ]] with φM defines a structure resembling
crystalline cohomology.

(v) Similarly, by the analogy between local shtukas and local p-adic shtukas,
the picture near (t, T ) = (0, 0) resembles the picture of the Ainf -cohomology
theory.

An interesting question is what happens in vertical fibres, i.e. for S = SpecFp.
In the function field case, we get generically the following structure.
Definition 9.2. A (generic) shtuka over SpecFp relative to SpecFp(T ) is a finite-
dimensional Fp(T )-vector space V together with a FrobFp

-semilinear isomorphism
φV : V ∼= V .

Amazingly, Kottwitz [Kot14] was able to define an analogue of this category for
number fields.
Construction 9.3 (Kottwitz). For any local or global field F , there is an F -linear
⊗-category KtF , constructed as the category of representations of a gerbe banded by
an explicit (pro-)torus which is constructed using (local or global) class field theory.
Moreover, one has the following identifications.

(i) If F = Fp((T )), then KtF is the category of finite-dimensional Fp((T ))-
vector spaces V with a semilinear isomorphism V ∼= V .

(ii) If F = Fp(T ), then KtF is the category of finite-dimensional Fp(T )-vector
spaces V with a semilinear isomorphism V ∼= V .

(iii) If F = Qp, then KtF is the category of finite-dimensional W (Fp)[
1
p ]-vector

spaces V with a semilinear isomorphism V ∼= V .
(iv) If F = R, then KtF is the category of finite-dimensional C-vector spaces

V together with a grading V =
⊕

i∈Z Vi and a graded antiholomorphic
isomorphism α : V ∼= V such that α2 = (−1)i on Vi.

Remark 9.4. In the local cases (i) and (iii), one can replace Fp with any alge-
braically closed field of characteristic p without changing the category. However,
in the global case (ii), the equivalence holds only for Fp; for this reason, we fix this
choice.

11One might think that one has to allow a pole at ∞, but the analogy seems to suggest that
it is in fact not there.

12A subtle point is that M ⊗R[T ],T 7→t R is the analogue of Hodge(-Tate) cohomology, and
de Rham cohomology corresponds to the specialization M ⊗R[T ],T 7→tp R.



24 PETER SCHOLZE

Hodge theory

∞

∞
SpecZ

p

SpecZ

ℓ

2

3

5

7

2 3 5 7

singular

de Rham

étale

Integral p−adic
Hodge theory

twistor

KtQ

Figure 3. A picture of the known, and some unknown, cohomol-
ogy theories.

It is an important problem to find a linear-algebraic description of KtQ. There
are natural global-to-local maps, so there are functors KtQ → KtQp

and KtQ →
KtR. The analogy between cohomology theories and shtukas suggests the following
conjecture.

Conjecture 9.5. There is a Weil cohomology theory Hi
KtQ

(X) for varieties X over
Fp taking values in KtQ. Under the functor KtQ → KtQp

, this maps to crystalline
cohomology, and under the functor KtQ → KtQℓ

for ℓ ̸= p, this maps to étale
cohomology (considered as an object of KtQℓ

via the fully faithful embedding of
finite-dimensional Qℓ-vector spaces into KtQℓ

). Under the restriction KtQ → KtR,
it gives a Weil cohomology theory Hi

KtR
(X) with values in KtR.

This conjecture is known to follow from the conjunction of the standard conjec-
tures and the Tate conjecture (over Fp) and the Hodge conjecture (for CM abelian
varieties) by the work of Langlands-Rapoport, [LR87]. In fact, Langlands-Rapoport
show that these conjectures imply that the category of motives over Fp can be de-
scribed as the category of representations of an explicit gerbe, and it is clear by
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inspection that there is a surjective map from Kottwitz’ gerbe (which is independent
of p!) to Langlands-Rapoport’s gerbe. In particular, KtQ conjecturally contains the
category of motives over Fp as a full subcategory, for all p.

It may be interesting to note how Serre’s objection to a 2-dimensional R-cohomology
theory is overcome by the R-linear cohomology theory Hi

KtR
, in an essentially min-

imal way: For a supersingular elliptic curve E/Fp, its associated H1
KtR

(E) will be
given by a 2-dimensional C-vector space V = V1 together with an antiholomorphic
isomorphism α : V ∼= V such that α2 = −1, so α does not give rise to a real
structure; instead, it gives rise to a quaternionic structure. But the endomorphism
algebra of E, which is a quaternion algebra over Q that is nonsplit over R, can of
course act on the Hamilton quaternions!

It is also interesting to note that there are functors from the category of isocrys-
tals KtQp

to the category of vector bundles on the Fargues-Fontaine curve, and
similarly from the category KtR to the category of vector bundles on the twistor-
P1, which in both cases induce a bijection on isomorphism classes. This gives
another strong indication of the parallel between the Fargues-Fontaine curve and
the twistor-P1, and how Kottwitz’ categories play naturally into them.

In particular, one can also draw a horizontal line at ℓ = ∞, where for all s ∈ S
one gets a vector bundle on the twistor-P1 (via the previous conjecture in finite
characteristic, and via the twistor interpretation of Hodge theory in characteristic
0). In other words, the complex variation of twistor structures must, in a suitable
sense, be defined over the scheme S (which is a general scheme over SpecZ, not
necessarily over C).

10. q-de Rham cohomology

One may wonder what the completion of “ SpecZ× SpecZ” along the diagonal
looks like; in the picture of cohomology theories, this should combine p-adic Hodge
theory for all primes p with usual Hodge theory. One proposal for how this might
happen was made in [Sch17a]. This paper builds on the following observation on the
Ainf -cohomology theory. Namely, one can write down explicit complexes computing
this cohomology on affines. For example, if R = OC⟨T ⟩ is the p-adic completion of
OC [T ], then one looks at the following complex:

Ainf⟨T ⟩
∇q−→ Ainf⟨T ⟩ : Tn 7→ ∇q(T

n) = [n]qT
n−1 ,

where [n]q = 1 + q + . . . + qn−1 = qn−1
q−1 is Gauß’s q-integer, and q = [ϵ] ∈ Ainf

is a certain element of Ainf . This is precisely the q-de Rham complex studied by
Aomoto, [Aom90]; it sends a general function f(T ) to the Jackson q-derivative

(∇qf)(T ) =
f(qT )− f(T )

qT − T
.

Unfortunately, the q-de Rham complex depends heavily on the choice of coordinates,
and it is not clear how to see the independence of the Ainf -cohomology from the
choice of coordinates using this picture.

However, in recent work with Bhatt, [BS], we were able to prove the following
theorem, proving a conjecture of [Sch17a].

Theorem 10.1 ([BS]). There is a Z[[q − 1]]-linear q-de Rham cohomology theory
for smooth schemes over SpecZ that for any smooth Z-algebra R with a choice of an
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étale map Z[T1, . . . , Tn]→ R is computed by a q-deformation qΩ•
R of the de Rham

complex Ω•
R. For example,

qΩ•
Z[T ] = Z[T ][[q − 1]]

∇q−→ Z[T ][[q − 1]] : Tn 7→ ∇q(T
n) = [n]qT

n−1 .

After base change along Z[[q − 1]] → Ainf via q 7→ [ϵ], this recovers the Ainf-
cohomology theory.

In particular, this suggests that the completion of “ SpecZ× SpecZ” along the
diagonal is related to Spf Z[[q − 1]].

Previous progress towards this result was made by Pridham, [Pri16], and Cha-
tzistamatiou, [Cha], and announced by Masullo. In particular, Chatzistamatiou
was able to write down explicitly the quasi-automorphism of qΩ•

Z[T ] for an auto-
morphism of Z[T ], like T 7→ T + 1; this is a highly nontrivial result!13

Unfortunately, the proof of Theorem 10.1 proceeds by first constructing such
complexes after p-adic completion, and then patching them together in some slightly
artificial way, so we believe that there is still much more to be understood about
what exactly happens along the diagonal.

In fact, the prismatic cohomology defined in [BS] gives in the p-adic case a
Breuil-Kisin variant14 of the Ainf -cohomology theory for varieties over OK where
K is a finite extension of Qp. This Breuil-Kisin module contains some slightly
finer information than the q-de Rham cohomology and is in some sense a Frobenius
descent of it, but it is not clear how to combine them for varying p. This is
related to the observation that in the analogy with t-motives, the diagonal T =
t corresponds to Hodge(-Tate) cohomology, while the Frobenius-twisted diagonal
T = tp corresponds to de Rham cohomology. In this picture, the q-de Rham
cohomology would sit at the completion at T = tp, while the prismatic picture
seems more adapted to a picture corresponding to the completion at the diagonal
T = t.
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