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I am grateful for the opportunity to share my ideas with the mathe-
matics community. My field is Dynamical Systems, an area of mathematics
concerned with time evolutions of processes natural and engineered, of iter-
ative schemes and algorithms. It is the study of change, of moving objects
and evolving situations, and the goal is to describe, analyze, explain, and
ultimately predict.

I will be discussing mostly my own work, but to provide context – mostly
for the benefit of readers not working in Dynamical Systems – I would like to
start with a brief introduction to the field, where it has been, and where we
are today. Dynamical Systems is now a little over 100 years old. As with any
2− 3 page overview of such a vast body of ideas, my account will necessarily
be a gross simplification, a biased and intensely personal one at that, but
still I hope it will help put the field in perspective.
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Dynamical systems: a very brief overview
To facilitate referencing, I will divide the growth of the subject into four

distinct phases, with the understanding that these are, for the most part,
artificial boundaries.
I. A field was born. It is generally accepted that the origin of Dynamical
Systems goes back to two sets of truly great ideas before and around the
turn of the 20th century. One is the introduction of qualitative analysis
into the study of differential equations by Poincaré in his work on celestial
mechanics; the other consists of ideas surrounding the Ergodic Hypothesis.

Prior to the time of Poincaré, understanding a system defined by a set of
(ordinary) differential equations meant solving analytically those equations,
or approximating them with infinite series expansions. As we know now, most
differential equations are not analytically solvable, and series expansions do
not always shed light. Poincaré showed that a wealth of information about
the qualitative behavior of a system, local and global, can be deduced without
solving the equations explicitly, thereby introducing the world to the idea of
geometric or qualitative analysis.

The Ergodic Hypothesis came from statistical mechanics. It asserts,
roughly speaking, that because trajectories explore the phase space, time
averages of an observable along individual trajectories should reflect the spa-
tial average. In part because the needed language did not exist at the time,
there is little consensus on how exactly this Hypothesis was first formulated
or to whom to attribute it, though Boltzmann clearly had some of the ideas.
However it came about, the impact that this profound idea has had on Dy-
namical Systems is undisputed.
II. Laying of foundation. Though Dynamical Systems was not recognized as
a branch of mathematics until later, most of its foundation was laid in the
first part of the twentieth century through the 1960s.

The framework for Ergodic Theory as the study of measure-preserving
transformations was put on firm footing by the Ergodic Theorems of Birkhoff
and von Neumann in the 1930s, and through the introduction of important
invariants such as entropy later on. Ergodic theory can be seen as a prob-
abilistic approach to Dynamical Systems, an approach in which one is not
concerned with every initial condition but focuses instead on averages and
almost-sure behaviors.

On the geometric-analytic side, the subject saw an explosion of creative
activity in the middle of the 20th century for two distinct types of dynam-

2



ical systems. I think of them as occupying the two ends of an “ordered-
disordered” spectrum:

At the “ordered” end are quasi-periodic systems. In integrable Hamilto-
nian systems, orbits move about in an orderly fashion on highly constrained
surfaces. The theory of Kolmogorov, Arnold and Moser (KAM) guarantees
the persistence of this order on large parts of the phase space when such
systems are perturbed.

At the “disordered” end are chaotic dynamical systems (though the word
“chaos” was not yet in use at that time). Smale led a bold attempt to axiom-
atize chaotic behavior. Globalizing the idea of dynamics near a fixed point
of saddle type, he invented as models of chaotic behavior the idea of hyper-
bolic invariant sets, characterized by exponential separation of nearby orbits
on the set. His seminal work led to what eventually became the hyperbolic
theory of dynamical systems.
III. Maturation and diversification. In the next few decades, Dynamical
Systems gained formal recognition as an area of mathematics. The ideas
outlined above continued to blossom, both conceptually and technically. New
topics of research opened up, and the subject became more diverse. I mention
below a sample of these developments:

Smooth ergodic theory, the use of ergodic theory techniques to study
differentiable dynamical systems, was pioneered in the then Soviet Union
in the early 1970s. The result was a nonuniform hyperbolic theory, which
generalizes the uniformly hyperbolic invariant sets of Smale to a version where
hyperbolicity occurs only almost everywhere and its onset is nonuniform in
time.

KAM theory gave rise to two major topics: one studies structures that
are remnants of KAM tori as one moves farther from integrable systems,
and the other, pioneered by Arnold, studies the diffusion of orbits in near-
integrable systems having more than two degrees of freedom, where motion
is not blocked by invariant tori.

In the 1980s and 90s, a large number of researchers flocked to the study
of one dimensional maps, real and complex, attracted by the fact that (i) the
low dimensionality of the phase space made these systems more tractable, yet
(ii) such “simple” systems already exhibited rich dynamical behaviors. The
subject flourished; a number of deep and very striking theorems were proved.
One dimension, however, is very special, and implications of 1D results for
higher dimensions remain to be explored.

3



There was also growing interest in the analysis of concrete systems. Well
known examples include the Lorenz system (3-mode truncation of convection
in 2D), the periodically forced van der Pol Equation (a slow-fast system
the forcing of which produces complex dynamics), and a class of dynamical
systems known as “billiards” and “hard balls”. Billiard systems are models
of uniform motion of point particles in bounded domains, making elastic
collisions with the walls of the domain.

Finally, smooth actions of groups other than Z and R on manifolds ex-
tending the theory of diffeomorphisms and flows became an active area.
Many results concern “rigidity”, as relations on group elements can severely
limit the actions that can exist.
IV. Making connections. Starting from its inception, Dynamical Systems
has always had contact with other fields. These contacts have intensified
in recent years for multiple reasons: While it makes sense to have a general
theory, what can be said about general systems without more specific context
is limited. At the same time, the fact that many parts of mathematics and
science can benefit from Dynamical Systems thinking became clearer than
ever before.

Though I don’t know enough to write about them individually, I know
that Dynamical Systems has interactions with many branches of pure math-
ematics, including Number Theory, Geometric Group Theorey, Differential
Geometry, Analysis and Probability, some through problems of mutual inter-
est, or analogous phenomena, and also because many problems are naturally
studied through iterative procedures.

Opportunities of collaborative interaction with applied mathematics, en-
gineering, the physical and biological sciences abound, as almost all systems
evolve with time. Many such collaborations are already in place or ongoing,
but here I think we have some distance to go to achieve the full potential of
Dynamical Systems’ usefulness. I also think that to do that, some retooling
may be necessary on our part.

This concludes the brief overview.
Turning now to my own research, I entered the field during Phase III

in the Overview. In the sections to follow, I want to share with the reader
some highlights of my work, the bulk of which lies in the ergodic theory of
chaotic dynamical systems, the topic that descended from what I described
as the “disordered” end of the spectrum in Part II — though my interests
diversified with time. I have chosen to present several snapshots taken from
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a cross-section of my work, as opposed to an in-depth discussion of one or
two results, because I believe that will give you a more balanced view of what
I do, and of what my field is about.

This article is written with the aim of communicating with the broader
mathematics community. I hope you will find it readable except for a few
things here and there that I have to ask you to accept on faith.

1 Entropy, Lyapunov exponents, and fractal
dimension

The middle third Cantor set can be seen as the invariant set

Λ :=

{
x ∈ [0, 1] : fnx ∈

[
0,

1

3

]
∪
[
2

3
, 1

]
∀n ∈ Z+

}
of the map f(x) = 3x mod 1, x ∈ [0, 1]. When iterated, the complexity of
f restricted to Λ can be thought of as growing like 2n, as in each iterate
there is the possibility of getting sent to two distinct intervals. Clearly,
(fn)′ = 3n, and an elementary exercise shows that the Hausdorff dimension
of Λ, HD(Λ) = log 2/ log 3.

The main result of this section is a relation among three invariants for
general dynamical systems: entropy, which measures the average growth in
complexity, Lyapunov exponents, which measures average derivative growth,
and the dimension of an invariant measure. The results presented will hold in
all dimensions. In one dimension, it generalizes the Cantor set computation
above, illustrating a concept at the heart of Ergodic Theory, namely that
quantities that vary from point to point in the phase space can be represented
by time averages along orbits.

For the benefit of readers not familiar with the subject, I have included in
the first half of Sect. 1.1 some background material in smooth ergodic theory.
The idea of Lyapunov exponents, in particular, will appear many times in
Sections 1–4.

1.1 Setting and background information
Let M be a C∞ compact Riemannian manifold without boundary. We con-
sider a pair (f, µ), where f : M ⟲ is a diffeomorphism of M onto itself, of
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differentiability class C1+α for some α > 0, and µ is a Borel probability mea-
sure preserved by f , i..e., for every Borel subset E ⊂M , µ(f−1(E)) = µ(E).

Given (f, µ), there are two important, and conceptually different, ways
to quantify the dynamical complexity of the system. One is entropy, and the
other is Lyapunov exponents. The entropy of f with respect to µ, denoted
hµ(f), is defined to be

hµ(f) = sup
η
hµ(f ; η)

where the supremum is taken of all finite measurable partitions η of M and

hµ(f ; η) = lim
n→∞

1

n
H(

n−1∨
i=0

f−iη) .

Here H(η) =
∫
I(η)dµ where I(η)(x) = − log µ(η(x)), so hµ(f ; η) has the

interpretation of average information gain, or average uncertainty removed,
per iteration of the map. (See [43] for an introductory text.) The Lyapunov
exponent of f at x in the direction of a tangent vector v is the growth rate
of ∥Dfn

x (v)∥, i.e.,
λ(x, v) = lim

n→∞

1

n
log ∥Dfn

x (v)∥

if this limit exists. By the well known Multiplicative Ergodic Theorem [33],
given (f, µ), at µ-a.e. x, there is a set of numbers

λ1(x) > λ2(x) > · · ·λr(x)(x)

and a splitting of the tangent space TxM at x into a direct sum of subspaces

TxM = E1(x)⊕ E2(x)⊕ · · · ⊕ Er(x)(x)

such that for all v ∈ Ei(x), v ̸= 0, we have λ(x, v) = λi(x). The functions
x 7→ r(x), λi(x), Ei(x) are Borel measurable, and since λi(x) = λi(fx), we
have that if (f, µ) is ergodic, then the Lyapunov exponents are given by a
finite set of numbers λ1 > · · · > λr with multiplicities m1, · · · ,mr where
mi = dim(Ei).

I started to learn about these ideas when a number of exciting results
had just been proved. Among them are the following relations between en-
tropy and Lyapunov exponents: Most basic are Ruelle’s inequality [38], which
asserts that

hµ(f) ≤
∫ ∑

i

λ+i (x)mi(x)dµ , a+ = max{a, 0} , (1)
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and Pesin’s entropy formula [34], which asserts that if µ is volume on M ,
then the inequality in (1) is an equality. These results can be interpreted as
saying that all uncertainty is created by expansion, and that in conservative
systems, all expansion is used to create entropy. The entropy formula was
subsequently generalized to hold for SRB measures [26], i.e., µ is required
only to have conditional densities on unstable manifolds; it does not have to
be volume.

My contribution to this topic is to explain the gap in (1) in terms of the
dimension of µ. For an arbitrary finite Borel measure ν on a metric space,
we define the dimension of ν at x, dim(ν, x), to be δ if ν(B(x, ρ)) ∼ ρδ for
small ρ where B(x, ρ) is the ball of radius ρ centered at x. More precisely,

dim(ν, x) := lim
ρ→0

log ν(B(x, ρ))

log ρ
= δ

assuming this limit exists, and write dim(ν) if dim(ν, x) is constant ν-a.e. So
Lebesgue measure on Rd has dimension d, but δ in general does not have to
be an integer; it is a notion of fractal dimension.

1.2 Results
My first result in this topic was for surface diffeomorphisms. The notation
is as above.

Theorem 1 [51] Let dim(M) = 2, and let f be an arbitrary C1+α diffeomor-
phism of M . We assume (f, µ) is ergodic with λ1 > 0 > λ2. Then dim(µ) is
well defined and is given by

dim(µ) = hµ(f)

[
1

λ1
− 1

λ2

]
.

The idea, roughly speaking, is that the dimension of µ “in the unstable
direction” is equal to hµ(f)/λ1, it is equal to hµ(f)/(−λ2) “in the stable
direction”, and dim(µ) is the sum of these two contributions. The number
hµ(f)/λ1 is the direct analog of log 2/ log 3 in the middle third Cantor set
example at the beginning of this section.

When there are multiple positive Lyapunov exponents, the nonconfor-
mality makes the situation considerably more complicated. The next result,
proved in a joint work with Ledrappier, deals with that.
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Theorem 2 [22] Let f be a C1+α diffeomorphism of a compact Rieman-
nian manifold of arbitrary dimension, and let (f, µ) be ergodic, with positive
Lyapunov exponents λ1 > · · · > λr and multiplicities m1, . . . ,mr respectively.
Then dim(µ|W u), the dimension of the conditional measures of µ on unstable
manifolds, is well defined, and there are numbers δi ∈ [0,mi], i = 1, · · · , r,
such that

hµ(f) =
r∑

i=1

λiδi and dim(µ|W u) =
r∑

i=1

δi .

The numbers δi have the interpretation of being the “partial dimension”
of µ in the direction of Ei, the subspace corresponding to the Lyapunov
exponent λi. Interpreting λiδi as the entropy of (f, µ) in the direction of Ei,
the first equality in Theorem 2 asserts that hµ(f) is the sum of the “partial
entropies” in the different expanding directions, while the second equality
asserts that the dimension of µ|W u is the sum of the partial dimensions. To
be technically correct, I should say that the system (f, µ) has a hierarchy of
unstable manifolds W 1 ⊂ W 2 ⊂ · · · ⊂ W r = W u defined µ-a.e., with W k

tangent to E1 ⊕ · · · ⊕Ek, but there need not be invariant manifolds tangent
to each Ei; and that in the actual proof, the δi are the dimensions of quotient
measures on W i/W i−1, and λiδi = hi − hi−1 where hi can be made precise
as a notion of entropy along the invariant foliation W i.

Clearly, one can apply Theorem 2 to f−1, obtaining an analogous result
for dim(µ|W s). The result of [2], which states that in the absence of zero
Lyapunov exponents,

dim(µ) = dim(µ|W u) + dim(µ|W s) ,

completes this circle of ideas.
I want to stress again the generality of the results in this section: they

hold for all diffeomorphisms and all invariant Borel probability measures,
with no restriction whatsoever on the geometry or the defining equations of
the maps, or on the invariant measure.

2 Statistical properties of chaotic dynamical
systems via Markov extensions

In Paragraph II of the Overview in the Introduction, I portrayed, impression-
istically, all dynamical systems as lying on an “ordered-disordered” spectrum.
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Let (f, µ) be as in Section 1, and think of it as being on the “disordered”
side of this spectrum. Given an observable φ : M → R, how random can
sequences of the form

φ(x), φ(fx), φ(f 2x), . . . , φ(fnx), . . .

be for randomly chosen initial condition x ∈M? Can these sequences be, for
example, as random as functions of coin flips? This is a tricky question, for
dynamical systems generated by maps or flows are deterministic in the sense
that given an initial condition, the entire future trajectory is fully determined
and nothing is left to chance. At the same time, if f has chaotic dynamics,
then it may be hard to predict φ(fnx) from approximate knowledge of x. In-
deed uniformly hyperbolic systems have been shown to produce statistics that
obey some the same probabilistic limit laws as genuinely random stochastic
processes.

A fairly complete theory of the statistical properties of uniformly hyper-
bolic or Axiom A systems (à la Smale) was developed in the 1970s; see [39, 7].
After that, the community began to move beyond Axiom A, to confront the
challenges of examples such as the Lorenz attractor, Hénon maps and various
billiard systems to which previously developed analytical techniques did not
apply. It was against this backdrop that the work presented in this section
was carried out.

2.1 A unified view for predominantly hyperbolic sys-
tems

First, a basic definition: Let Λ ⊂ M be a compact invariant set of a diffeo-
morphism f :M ⟲. We say f |Λ (“f restricted to Λ”) is uniformly hyperbolic
if the tangent bundle TΛM over Λ can be split into the direct sum of two
Df -invariant subbundles

TΛM = Eu ⊕ Es

with the property that Dfn|Eu is uniformly expanding and Dfn|Es is uni-
formly contracting. As mentioned in the Overview, this idea was introduced
by Smale in his ground-breaking work in [42]. It is slightly inaccurate, but I
will use the term “uniformly hyperbolic” and “Axiom A” interchangeably in
this article.

The existence of hyperbolic invariant sets in a dynamical system is often
seen as the presence of chaotic behavior. Many of the examples that chal-
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lenged the community in the 1980s are not uniformly hyperbolic, but their
dynamics are dominated by large hyperbolic invariant sets. This prompted
me to propose the following construction as an attempt to provide a unified
view for a class of dynamical systems with weaker forms of hyperbolicity
than Axiom A. The material in the rest of this subsection is taken from [53].

Given f :M ⟲, my proposal was to construct, where possible, a countable
Markov extension, i.e., a map F : ∆ ⟲ with

∆ ∆

M M

F

π π

f

(2)

where F : ∆ ⟲ has the structure of a countable state Markov chain. To be
clear, F is not a Markov chain, or isomorphic to one in any sense, only that
there is a countable partition on ∆ with respect to which the action of F has
the flavor of a Markov chain.

Finite Markov partitions were constructed for Axiom A systems and were
instrumental in the study of their statistical properties, see e.g. [41, 7, 39].
What I proposed was a generalization of these ideas to systems with weaker
hyperbolicity. The usefulness of this proposal will, of course, depend on what
one can do with it, and I will discuss that in Sects. 2.2 and 2.3.

It’s a little technical, but I will give more detail on F : ∆ ⟲. We look for
a set Λ0 with a nice hyperbolic structure, and study “hyperbolic returns” to
this set. More precisely, we seek Λ0 of the form

Λ0 =

( ∪
γu∈Γu

γu

) ∩ ( ∪
γs∈Γs

γs

)

where Γs and Γu are two families of local stable and unstable manifolds,
each element of γs ∈ Γs intersecting each γu ∈ Γu transversally in a unique
point. We call a subset Θ ⊂ Λ0 a u-subset if Θ = Λ0 ∩ (∪γu∈Γ̃uγu) for some
subset Γ̃u ⊂ Γu; s-subsets of Λ0 are defined analogously. Pictorially, if one
thinks of Γu as a stack of roughly “horizontal” disks and Γs a stack of roughly
“vertical” disks, then Λ0 is the lattice of intersection points of the disks in
the two families, a u-subset of Λ0 is a sublattice that runs from left to right,
and an s-subset is a sublattice that runs from top to bottom.
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Now suppose there is a decomposition of Λ0 into

Λ0 =
∞∪
i=1

Λs
0,i (disjoint union)

with the property that each Λs
0,i is a s-subset, and for each i, there exists

ri ∈ Z+ such that f ri(Λs
0,i) = Λu

0,i where Λu
0,i is an u-subset of Λ0. This

is what I meant by a “hyperbolic return”. The function R : Λ0 → Z+ given
by R(x) = ri for x ∈ Λs

0,i is called the return time function. (We do not
require R to be the first return time, and the Λu

0,i do not have to be pairwise
disjoint.)

For f : M ⟲ admitting the construction above, we let ∆ =
∪∞

i=0∆i,
where each ∆i is a copy of f i({x ∈ Λ0 : R(x) > i}), let π is the identification
map, and define F : ∆ ⟲ so the diagram in (2) commutes. This in our
Markov extension.

2.2 Statistical properties of systems with Markov ex-
tensions

To address the question raised at the beginning of this section, we begin with
the following definitions: Let (f, µ) be as in Section 1, and let F be a class
of functions on M . We say (f, µ) has exponential decay of time correlations
for test functions in F if there exists τ < 1 such that for all φ, ψ ∈ F , there
exists C = C(φ, ψ) such that∣∣∣∣∫ (φ ◦ fn)ψdµ−

∫
φdµ

∫
ψdµ

∣∣∣∣ ≤ Cτn ∀n ≥ 1 .

Thus if φ ◦ fn represents the observation on “Day n”, then (f, µ) having ex-
ponential correlation decay means in particular that φ◦fn and φ decorrelate
exponentially fast in n. Informally, on Day n, there is still some memory
of Day 0, but memory is fading exponentially fast. Polynomial decay of
correlations is defined similarly.

In ergodic theory, a measure-preserving transformation (f, µ) is said to be
mixing if for all measurable sets A,B, µ(f−nA∩B) → µ(A)µ(B) as n→ ∞.
The decay of time correlations to 0 is just a functional form of the same idea,
i.e., exponential correlation decay means exponential mixing of sets in the
phase space.
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We say φ satisfies the Central Limit Theorem (CLT) with respect to (f, µ)
if

1√
n

(
n−1∑
i=0

φ ◦ f i − n

∫
φdµ

)
→ N (0, σ) ,

the normal distribution with variance σ2 for some σ ≥ 0.
Consider now a map f : M ⟲ admitting a Markov extension. To this

construction we now add a reference measure: Recall that Γs and Γu are the
families of stable and unstable disks defining the hyperbolic product set Λ0.
We let m = mγu be the Riemannian measure on γu, and assume that

m(γu ∩ Λ0) > 0 for some γu ∈ Γu . (3)

Furthermore, we require only that the return time function R be defined on
m-a.e. x ∈ Λ0 ∩ γu. The reason for this focus on m is that we are primarily
interested in SRB measures, the conditional measures on unstable manifolds
of which are equivalent to Lebesgue. The importance of SRB measures is
discussed in Sect. 3.1.

For systems satisfying the conditions above, I proved the following results:

Theorem 3 [53, 54] Let f : M ⟲ be as above, i.e., there is a set Λ0 ⊂ M
satisfying (3) with return time function R : Λ0 → Z+ and reference measure
m on γu, and let F : ∆ ⟲ be its Markov extension. Then the following hold:

(a) If
∫
Rdm <∞, then f has an SRB measure µ.

(b) If
∫
Rdm <∞ and gcd{R} = 1, then (f, µ) is mixing.

Here gcd = greatest common divisor. Assume below that the conditions in
(b) hold. All results pertain to (f, µ), and all test functions are Hölder
continuous.

(c) If m{R > n} ≤ Cθn for some θ < 1, then correlation decay is expo-
nential.

(d) If m{R > n} = O(n−α), α > 1, then correlation decays at O(n−α+1).
(e) If m{R > n} = O(n−α), α > 2, then the CLT holds.

The results in Theorem 3 were first proved for F : ∆ ⟲ and then passed
to f , the idea being that proofs for F are simpler because F : ∆ ⟲ has the
topological structure of a countable state Markov chain. Parts (a) and (b)
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have obvious analogs with Markov chain theory: finite expectation of return
times is equivalent to positivity of recurrence, gcd{R} = 1 means periodicity.
Parts (c)–(e) establish the connection between statistical properties of the
system and the tails of “renewal” times. Though I was not aware of it
until later, results along similar lines for (real) Markov chains were obtained
around that same general time frame [32]. My “Markov extensions” are not
Markov chains as I have indicated earlier, but the ideas are similar.

2.3 Periodic Lorentz gas and other potential applica-
tions

The method discussed in Sects. 2.1 and 2.2 was used to study the statis-
tical properties for a number of examples of dynamical systems that have
hyperbolic properties but are not necessarily uniformly hyperbolic (see e.g.
[49, 53, 54, 10, 36]). I will discuss in some detail one example, the 2-
dimensional periodic Lorentz gas, and finish with some remarks on other
applications.

The 2D periodic Lorentz gas. The Lorentz gas is a model for electron
gases in metals. Mathematically, the 2D periodic case is represented by the
motion of a point mass in R2 bouncing elastically off a fixed periodic configu-
ration of convex scatterers. It was first studied by Sinai around 1970 [40], and
is sometimes called the Sinai billiard. Putting the dynamics on the 2-torus
T2, we obtain the billiard flow φt on Ω× S1 where Ω = T2 \ Ωi and the Ωi’s
are disjoint convex regions with C3 boundaries. Points in Ω×S1 are denoted
(x, θ) where x ∈ Ω is the footpoint of the arrow pointing in direction θ, the
direction of the motion. A section to the billiard flow is the collision manifold
M = ∂Ω × [−π

2
, π
2
]. We consider the collision map f of the billiard flow, or

the first return map from M to itself. It is straightforward to check that f
leaves invariant the probability measure µ = c cos θdxdθ where θ is the angle
the arrow makes with the normal pointing into Ω and c is the normalizing
constant. For simplicity, we will assume the finite horizon condition, which
requires that the time between collisions be uniformly bounded.

Following the strategy outlined in Sects. 2.1 and 2.2, i.e., by constructing
for f a countable Markov extension and investigating the tail properties of
the return time function R, I proved the following result. Let Cα denote the
class of Hölder functions on M with Hölder exponent α.
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Theorem 4 [53] Let (f, µ) be as above. Then correlation decays exponen-
tially fast for observables in Cα. More precisely, there exists β = β(α) > 0
such that for every φ, ψ ∈ Cα,∣∣∣∣∫ (φ ◦ fn)ψdµ−

∫
φdµ

∫
ψdµ

∣∣∣∣ ≤ Ce−βn ∀n ≥ 1

for some C = C(φ, ψ).

For more information on statistical properties of billiards and hard balls,
see [11]. A weaker version of this result showing “stretched exponential
decay” was first proved for this class of billiards in [8] along with other sta-
tistical properties like the CLT. Markov extensions are, needless to say, not
the only way to study correlation decay of dynamical systems. Stronger re-
sults on larger classes of billiard maps were obtained by Chernov [10], and
exponential decay of the billiard flow, a much harder problem, was solved
only recently by Baladi, Demers and Liverani [1].

Summary and other applications. The ideas of this section were intended
for systems possessing a good amount of hyperbolicity but are not necessarily
uniformly hyperbolic. The approach I proposed was to set aside individual
characteristics of the dynamical system, focus on return times to a good
reference set, and to deduce the statistical properties of the system from tail
properties of these return times.

This method has been particularly effective for systems with a localized
source of nonhyperbolicity, an identifiable set that spoils the hyperbolicity
of orbits passing near it. The simplest examples are 1D maps of the form
f(x) = 1− ax2, x ∈ [−1, 1], a ∈ [0, 2]. Here the “bad set” is {x = 0}, where
f ′ = 0. I showed in [49] that if the orbit of 0 does not approach the point
0 too fast, then the map has exponential correlation decay. In the Lorentz
gas example above, the “bad set” is where particle trajectories graze the
scatterers. In other examples, it can take the form of “traps” or “eddies”,
where orbits linger for long periods of times, thereby slowing down the speed
with which different regions of the phase space are mixed. Two examples in
this category are neutral fixed points of 1D maps [54] and billiard maps with
parabolic regions such as the stadium [31], both of which have polynomial
decay.

Yet another kind of “bad set” is where directions of expansions and con-
tractions are switched, i.e., as the orbit passes near the bad set, tangent

14



vectors that have been growing in length get rotated, causing them to shrink
in subsequent iterates. Bad sets of this type are very challenging to deal
with, as we will see. I want to mention that the results of this section have
also been applied successfully to prove exponential correlation decay for the
“good maps” in Theorem 7 [48].

3 Strange attractors from shear-induced chaos
This was one of my first attempts to connect the abstract theory of chaotic
dynamical systems to concrete settings. An immediate question is: Which
invariant measure should one consider? Except in the case of Hamiltonian
or volume preserving flows, dissipative systems such as those with attractors
do not come equipped with a natural invariant measure. In general, the
number of invariant measures is very large, and not all of them are relevant
for purposes of describing what one sees.

Sect. 3.1 discusses general mathematical issues associated with observable
chaos. Sect. 3.2 describes some examples and Sect. 3.3 the analysis behind
these examples.

3.1 Observable chaos and SRB measures
It is one thing for a dynamical system to have orbits that behave chaotically,
another for this chaotic behavior to be observable. In finite-dimensional
dynamics, one often equates positive Lebesgue measure sets with observable
events. Adopting such a view, we say f : M ⟲ has observable chaos if
λmax > 0 on at least a positive Lebesgue measure set, where

λmax(x) := lim inf
n→∞

1

n
log ∥Dfn

x ∥ ,

i.e. λmax is the largest Lyapunov exponent at x when that is defined. In the
rest of this section, I will write “λmax > 0” as abbreviation for “observable
chaos”.

Hyperbolic invariant sets such as Smale’s horseshoes contain orbits with
chaotic dynamics, but the presence of a horseshoe does not imply λmax > 0,
for the horseshoe itself occupies a zero Lebesgue measure set, and its presence
does not preclude the possibility that orbits starting from Leb-a.e. x ∈ M
may tend eventually to a stable equilibrium, called a “sink”. By contrast,
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λmax > 0 implies that instability is not only observable (in the sense of
Lebesgue measure), but it persists for all future times. It is a much stronger
form of chaos than the presence of horseshoes alone.

The question, then, is: which systems have λmax > 0? Following [12],
we call an invariant probability measure physically relevant if it reflects the
properties of initial conditions on positive Lebesgue measure sets. For Hamil-
tonian or volume-preserving systems, Liouville measure or Riemannian mea-
sure are clearly physically relevant. For systems that are not conservative
(no technical meaning intended), the situation is more subtle: In such sys-
tems, trajectories of most orbits tend toward attractors. For a set to attract,
there is often volume contraction, and when there is volume contraction,
all invariant probability measures are necessarily singular with respect to
Lebesgue measure. A priori, it is not clear if the concept of a physically
relevant invariant measure makes sense for attractors.

An important discovery in the 1970s by Sinai, Ruelle and Bowen was
that every uniformly hyperbolic or Axiom A attractor Λ admits a special
invariant probability measure µ which plays the role of Liouville measure for
Hamiltonian systems, see [41, 37, 7]. This measure – when Λ is not a sink –
is called an SRB measure. SRB measures are generally singular with respect
to Lebesgue. Their physical relevance is derived from the fact that they have
smooth conditional measures on unstable manifolds. A precise definition of
physical relevance here is that for every continuous observable φ : M → R,
Leb-a.e. x in the basin of the attractor has the property that

1

n

n−1∑
i=0

φ(f ix) →
∫
φdµ . (4)

I stress that (4) is not a consequence of Birkhoff’s Ergodic Theorem: In
general, µ is supported on the attractor Λ, a zero Lebesgue measure set Λ;
yet it governs the large-time dynamics of trajectories starting from Leb-a.e.
point in the basin of attraction, a much larger open set containing Λ.

The idea of SRB measures was generalized in the 1980s to a significantly
broader context by Ledrappier and myself, meaning we identified a special
class of invariant measures for general diffeomorphisms and flows that play
a similar role as SRB measures for Axiom A attractors [26, 23, 52]. These
measures continue to be characterized by their smooth conditional measures
on unstable manifolds, though the picture is more complicated and less tidy
than in the uniform hyperbolic case. Importantly, if a system admits an
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ergodic SRB measure µ with no zero Lyapunov exponents, then (4) holds
for initial conditions from a positive Lebesgue measure set [35], implying
λmax > 0.

Generalizing the idea of SRB measures to arbitrary dynamical systems
does not, however, guarantee their existence in this larger context. Uniformly
hyperbolic systems are special in that they have well aligned subspaces Eu

consisting of vectors that are uniformly expanded from one iterate to the
next. They satisfy what is called an “invariant cones” condition. For systems
without continuous families of invariant cones – and that is the case for most
dynamical systems – ∥Dfn

x (v)∥ is likely to sometimes grow and sometimes
shrink as n increases for most tangent vectors v, making it very challenging
to identify aligned directions of exponential growth, a prerequisite for SRB
measures.

Though SRB measures are thought to be prevalent among systems with
chaotic attractors, current state of the art is that few instances of (genuinely)
nonuniformly hyperbolic attractors have been shown rigorously to possess
SRB measures. I will give some concrete examples in Sect. 3.2. All currently
known examples in fact belong in the class of “rank one” attractors, which I
will discuss in Sect. 3.3.

3.2 Shear-induced chaos in periodically kicked oscilla-
tors

A mechanism for producing λmax > 0 is shear-induced chaos, by which I
mean the following: Start with a system with tame, nonchaotic dynamics,
but some amount of shearing. The idea, in a nutshell, is that external forcing
that magnifies the underlying shear can produce stretching and folding of the
phase space, leading to λmax > 0.

A perfect setting for this mechanism is the periodic forcing of oscillators.
The idea goes back nearly 100 years, to van der Pol and van der Mark, who
observed in the course of their work on vacuum tube triode circuits that
periodic forcing of relaxation oscillators could lead to “irregular noise”. The
problem was studied analytically by many authors: Cartwright, Littlewood,
Levinson in the 1940s, Levi and others much later. The existence of horse-
shoes was proved analytically for a linearized system by Levi and for the
original van der Pol equation by Haiduc with a computer assisted proof. See
[15] for references on the above.
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As explained in Sect. 3.1, the existence of horseshoes does not imply
observable chaos. Noting that it is technically simpler to decouple the effects
of the periodic drive from the dynamics of the unforced oscillator, my co-
author Wang and I used pulsatile forcing, or kicks, with relatively long periods
of relaxation in between. The phenomenology already manifests itself in the
following very simple example:

Linear shear flow.2 This model is given by

θ̇ = 1 + σy ,

ẏ = −λy + A · sin(2πθ) ·
∑∞

n=−∞ δ(t− nT ) ,
(5)

where (θ, y) ∈ S1 × R, S1 ≡ R/Z, and σ, λ,A and T are constants with
σ, λ > 0 and T ≫ 1. Here, Eq. (5) with A = 0 is the unforced equation.
Letting Φt denote the unforced flow, one sees that for all z ∈ S1 × R, Φt(z)
tends to the limit cycle γ = {y = 0} as t → ∞. With T being the period
of the forcing, it is natural to consider the time-T map FT = ΦT ◦ κ of
the forced system, where the effect of the instantaneous kick is given by
κ(θ, y) = (θ, y + A sin(2πθ)).

We observed that for λT large, i.e., if the contraction between kicks is
strong, the ratio

σ

λ
A =

shear

contraction
· kick amplitude

is key to determining whether the system is chaotic. See Fig 1. Our results
can be summarized informally as follows:

Theorem 5 [45] For each choice of σ, λ,A and T , the time-T map FT has
a (maximal) attracting set Λ = Λ(σ, λ,A, T ) with the following properties:

(i) For σ
λ
A small, Λ is a closed invariant curve.

(ii) As σ
λ
A increases, the invariant curve breaks; the dynamics of FT is

initially of gradient type (with sinks and sources); then horseshoes start
to develop.

(iii) In the case of large σ
λ
A, regarding T as a parameter:

2After Wang and I had completed the study reported here, we learned that G. Za-
slavsky, a physicist colleague of mine, had studied numerically a similar example 30 years
earlier [55].
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σ = 0.05 σ = 0.25

σ = 0.5 σ = 1

Figure 1: Effect of increasing shear. Images of Ψτ (γ) for T = 10 and λ = A =
0.1.

(a) FT has horseshoes and sinks on an open set of T , and
(b) provided that e−λT is sufficiently small, FT has an SRB measure,

and λmax > 0 Leb-a.e. for a positive measure set of T .

The ideas in this linear oscillator example are valid for general limit cycles
in arbitrary dimensions, except that the effects of σ, λ and A cannot be
separated. Instead, one has to interpret “shear” as the degree to which the
kick “scrambles” the limit cycle, its variation measured with respect to the
strong stable foliation of the unforced system. See the review article [29] for
more detail.

The following is another illustration of the same mechanism at work.

Periodically forced Hopf bifurcations in ODEs and PDEs. Consider
first the usual picture of a Hopf bifurcation in 2D, for an equation ẋ = Fµ(x)
where µ here is the bifurcation parameter. We assume Fµ(0) = 0 for all µ,
and that x = 0 undergoes a generic supercritical Hopf bifurcation at µ = 0,
so that a limit cycle of radius ∼ √

µ emerges as 0 destabilizes. Writing all
this in normal form, we have

ż = k0(µ)z + k1(µ)z
2z̄ + k2(µ)z

3z̄2 + h. o. t.

We define the twist of the system to be

τ =
Im k1(0)

−Re k1(0)
.

As we will see, this quantity is the analog of the shear in the previous example.
The result below applies to dynamical systems defined by ODEs on phase
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spaces of any dimension d ≥ 2 [46] as well as to systems defined by PDEs [30].
As illustration of the breadth of its applicability, I will state it for dissipative
parabolic PDEs undergoing a Hopf bifurcation.

Consider, for example, a 1-parameter family of semilinear parabolic equa-
tions on a bounded domain Ω ⊂ Rd with smooth boundary:

ut = D∆u+ fµ(u), x ∈ Ω, u ∈ Rm,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

Here D is a diagonal matrix with positive entries, µ is a parameter, and
fµ : Rd → Rm is a polynomial with fµ(0) = 0 for all µ. We assume, in a
sense to be made precise, that the solution u(x, t) ≡ 0 is stable for µ < 0,
and that it loses its stability at µ = 0. To this equation, we add a periodic
forcing that is close to impulsive, i.e.,

ut = D∆u+ fµ(u) + ρφ(x)pT (t) (6)

where ρ ∈ R is a constant, φ : Ω → Rm is a smooth function satisfying mild
conditions, pT =

∑∞
n=−∞ ε−1I[nT,nT+ε] and IA is the indicator function on

A. As a dynamical system on
(
H1

0 (Ω)
)m, (6) is a special case of an abstract

system generated by an equation of the form

u̇ = Au+ fµ(u) + ρΦ(u)pT (t). (7)

The result below applies to evolutionary equations of the form (7); we have
motivated with a concrete PDE but the exact PDE that gives rise to it is
immaterial.

Theorem 6 [30] Let H be a Hilbert space. Our unforced equation has the
form

u̇ = Au+ F(u, µ), u ∈ H, µ ∈ (−µ1, µ1) ⊂ R, (8)
where −A is a sectorial operator and F : Hσ× (−µ1, µ1) → H is C5 for some
σ ∈ [0, 1).3 We assume F(0, µ) = 0 for all µ, and rewrite (8) to obtain

u̇ = Aµu+ fµ(u), fµ(0) = 0, ∂ufµ(0) = 0. (9)

This system is assumed to undergo a generic supercritical Hopf bifurcation
at µ = 0, with a limit cycle γµ emerging from u = 0 for µ > 0.

3{Hσ} are a family of interpolating subspaces called fractional power spaces; see [16]

20



To (9) we add a forcing term, resulting in

u̇ = Aµu+ fµ(u) + ρΦ(u)pT (t). (10)

Here ρ > 0 is a constant, Φ : Hσ → Hσ is C5 with uniformly bounded C5-
norms, and pT is as above. Let Hσ = Ec

µ ⊕ Es
µ be the decomposition into

Aµ-invariant center and stable subspaces, Ec
µ corresponding to the two leading

eigenvalues in the Hopf bifurcation. We assume Φ(0) ̸∈ Es
0, and normalize

to give |P c
0 (Φ(0))| = 1 where P c

0 is the projection of Hσ onto Ec
0.

Let FT be the time-T map of the semiflow defined by (10). For T > const
·µ−1, FT has an attractor Λµ near the limit cycle γµ of (9), attracting all
points in an open neighborhood U of Λµ in Hσ. Assume further that

|τ |ρµ− 1
2 > L0 for a certain L0 .

Then we have for each small enough µ > 0 a roughly T -periodic positive
measure set ∆µ ⊂ (Mµ,∞) for some Mµ ≫ µ−1 with the property that for
every T ∈ ∆,

(a) FT has an ergodic SRB measure and
(b) λmax > 0 “almost everywhere” in U .

The term “almost everywhere” above certainly requires justification, as U
is an open set in an infinite dimensional function space. We discussed in Sect.
3.1 the idea of equating observable events with positive Lebesgue measure
sets. There is, of course, no Lebesgue measure on Banach spaces, but one
can use finite parameter families of initial conditions, and use Lebesgue as a
reference measure on parameter space. In Theorem 6, “almost everywhere”
refers to Lebesgue-a.e. initial condition in every 2-parameter family of initial
conditions transversal to the strong stable foliation in U . See [27, 30, 6] for
more information.

3.3 A theory of rank-one attractors
The Λmax > 0 results in Sect. 3.2 were obtained by appealing to a general the-
orem on “rank-one attractors”, the name my co-author Qiudong Wang and
I coined for a class of attractors that we introduced and studied [44, 47, 48].
These attractors can live in phase spaces of any dimension. They are so
called because they have only one direction of instability, with (strong) con-
traction in all other directions. Rank-one attractors are, in many ways, the
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t=0+ t=3 t=6

t=6+ t=9 t=12

Figure 2: Hopf attractor. Grey circle is the limit cycle γµ of the unforced Hopf
bifurcation. At time t = 0, the system receives a “kick”, sending γµ to the blue
circle. Between t = 0 and t = 6, the unforced flow brings the blue circle black
to the grey, rotating counterclockwise with points farther from the center of the
grey circle rotating at a higher speed due to a nonzero twist as explained in the
text. At t = 6, the image of γµ has the shape shown, due to the differential in
rotational speeds. The kick is repeated once every 6 units of time, i.e., T = 6.
Here ρµ− 1

2 = 1
2 and τ = 10.
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simplest and least chaotic among chaotic attractors. They occur naturally,
often following the loss of stability.

Of interest to us here are those rank-one attractors that possess SRB
measures and exhibit observable chaos. The existence and abundance of
such attractors is guaranteed by the theorem below. The precise statement
of this result is technical, and since this article is not the right forum for
technical details, I will suppress some of them, referring the reader to [47].
(A 2D version of this result was first proved in [44], but [47] is both more
general and more readable.)

Theorem 7 [44, 47] (Informal version) Let M = I ×Dm where I is either
an interval or a circle and Dm is an m-dimensional disk, m ≥ 1. For each
ε > 0, let Fa,ε : M ⟲ be a C3 family of embeddings with | det(DFa,ε)| ∼ εm.
Assume

(a) as ε → 0, Fa,ε → Fa,0 in C3 where Fa,0 is a family of maps from
M → I × {0};

(b) letting fa = Fa,0|I×{0}, we obtain a family of 1D maps with
(i) nondegenerate critical points and
(ii) sufficiently strong expansion away from critical sets;

(c) the mappings Fa,0 satisfy certain nondegeneracy and transversality con-
ditions.

Then for each sufficiently small ε > 0, there exists a positive measure set ∆ε

such that for all a ∈ ∆ε:
(i) Fa,ε has an ergodic SRB measure;

(ii) λmax > 0 Leb-a.e. on M .

This is a perturbative result. The idea is to embed the systems of interest
in a family that can be passed, in a meaningful way, to a singular limit, which
is an object of a lower dimension (in this case 1D), the idea being that lower-
dimensional objects are more tractable. The tricky part is to “unfold” the
1D results at ε = 0 to recover the dynamical picture for small ε > 0.

Theorem 7 is a generalization of the work of Benedicks and Carleson [3]
and Benedicks and myself [4] on the Hénon maps; [3] and [4] can be seen as
an extension of Jakobson’s theorem [18] in 1D. Theorem 7 extends the core
ideas in [3, 4], permitting the attractor to be embedded in a phase space
of arbitrary dimension and replacing the formula-based arguments in [3] by
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geometric conditions that imply the existence of chaotic rank-one attractors
with SRB measures.

The proof of Theorem 7 is technically quite involved, as it required a
delicate parameter selection. This proof together with the study of dynamical
properties in [48] for the “good maps” Fa,ε in Theorem 7 occupy well over
150 pages. To avoid having to repeat a parallel analysis every time a similar
situation is encountered, we have formulated Theorem 7 in such a way that
the conclusion of SRB measure and λmax > 0 holds once certain conditions
are met. The results in Sect. 3.2 were proved by checking these conditions.
Another application was to slow-fast systems [14].

To summarize, Theorem 7 provides a general framework for producing
rank-one attractors with SRB measures and λmax > 0, and all currently
known examples of nonuniformly hyperbolic attractors with observable chaos
belong in this class.

4 Random dynamical systems
Most realistic systems are governed by laws that are neither purely deter-
ministic nor purely stochastic but a combination of the two. Noise terms are
routinely added to differential equations to model uncontrolled fluctuations
or forces not accounted for. Now it is known that solutions of stochastic
differential equations have representations as stochastic flows of diffeomor-
phisms, i.e., for each ω corresponding to a realization of Brownian path,
there is a 1-parameter family of diffeomorphisms x 7→ φt(x;ω) satisfying
φs+t(x;ω) = φt(φs(x;ω);σs(ω)) where σs is time-shift along the path. See
e.g. [20]. Thus systems modeled by SDEs can be seen as i.i.d. sequences of
random maps, and as such, they have been studied a fair amount.

In Sect. 4.1, I will discuss two sets of results, both illustrating the fact
that the averaging effect of randomness makes deterministic systems nicer
and more tractable. An application of random dynamical systems is discussed
in Sect. 4.2.

4.1 Extensions of deterministic theory to random maps
Consider first a random maps system X defined as follows. Fix a probability
ν on Ω, the space of diffeomorphisms of a compact manifold M . We consider
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the composition

· · · ◦ fn ◦ · · · ◦ f2 ◦ f1 , n = 1, 2, . . . ,

where f1, f2, . . . are chosen independently with law ν. Such a sequence defines
a Markov chain on M , its transition probabilities being given by P (A|x) =
ν{f ∈ Ω : f(x) ∈ A} for Borel subsets A ⊂ M . A probability measure µ on
M is called stationary for X if µ(A) =

∫
P (A|x)dµ(x). Given a stationary

measure µ, under the usual integrability conditions, Lyapunov exponents
{λi} are defined µ-a.e. for νN-almost every sequence f+ = (fi)

∞
i=1 and are

nonrandom. The (pathwise) entropy hµ for X is as defined in the case of
nonrandom maps, replacing the iteration of a single map by compositions of
(fi)

∞
i=1; it is also nonrandom. See [19] for more information.
While µ is invariant under the Markov chain, i.e., when averaged over all

random maps, there is the following pathwise notion of invariant measure:
First we extend the sequence of maps f+ = (fi)

∞
i=1to a bi-infinite sequence

f = (fi)
∞
i=−∞, chosen i.i.d. Viewing the system as having started from time

−∞, one obtains sample measures {µ−
f } defined for a.e. f = (fi)

∞
i=−∞ by

conditioning µ on “the past”. That is to say, µ−
f describes the distribution

at time 0 given that the maps (fi)i<0 have been applied. Equivalently,

µ−
f = lim

n→∞
(f−1 ◦ f−2 ◦ · · · ◦ f−n)∗µ ;

the limit exists by martingale convergence. It is easy to see that µ−
f depends

only on (fi)i<0, that
∫
µ−
f dν

Z(f) = µ, and that µ−
f is invariant in the sense

that (f0)∗µ
−
f = µ−

σf where σf is the shifted sequence. See e.g. [19, 25].
Now for a bi-infinite sequence f = (fi)

∞
i=−∞, unstable manifolds at time 0

depend also only on the past (while stable manifolds depend on the future).
It therefore makes sense, given a random maps system X , to define µ−

f to
be a random SRB measure if λmax > 0 µ−

f -a.e. and the conditional measures
of µ−

f on unstable manifolds have densities, following the definition in the
deterministic case. The next result is roughly parallel to Theorem 2, to
which we refer the reader for notation.

Theorem 8 Let X be as above with an ergodic stationary measure µ. We
assume that ∫

log+ ∥f∥C2ν(df),

∫
log+ ∥f−1∥C2ν(df) < ∞ .
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(1a) [21] If λmax < 0, then µ−
f is supported on a finite set of points for

νZ-a.e. f .
(1b) [25] If µ has a density and λmax > 0, then

hµ =
∑

λ+i mi

and µ−
f is a random SRB measure for νZ-a.e. f .

(2) [24] Assume in addition to λmax > 0 that the backward derivative process
associated with the Markov chain on the Grassmannian bundle of M
has absolutely continuous transition probability kernels (see [24]). Then
there is an i0 such that the partial dimensions δi (see Sect. 1.2) satisfy

δi = 1 for all i < i0, δi = 0 for all i > i0 .

Moreover, dim(µ−
f ) =

∑
i δimi.

The condition that µ has a density is very natural for random maps;
a sufficient (but not necessary) condition is that the transition probabilities
P (·|x) have densities. Item (1) in Theorem 8 says that except when λmax = 0,
X either has random sinks, i.e., almost all solutions coalesce in time into at
most a finite number of (evolving) trajectories, or they have random attrac-
tors with random SRB measures, i.e., attracting sets having the geometric
characteristics of attractors with SRB measures in the deterministic case –
except that these attractors too evolve with time. Item (2) says that when
randomly perturbed, sample measures align with the most expanding direc-
tions. With the configuration of δi in Theorem 8, the quantity

∑
i δimi is in

fact another way to write the Kaplan-Yorke dimension [13]. Thus Theorem
8(2) proves that the Kaplan-Yorke conjecture holds for random maps.

Positivity of Lyapunov exponents via random perturbations. For
deterministic maps, we discussed at the end of Sect. 3.1 the challenges in
proving the existence of SRB measures. Similar challenges exist for prov-
ing λmax > 0 for volume-preserving maps. The standard maps family, a
1-parameter family of area-preserving maps fL : T2 ⟲ with the property that
∥DfL∥ ∼ L for L > 1, symbolizes the enormity of the challenge: In spite of
considerable effort by leading researchers, no one has been able to prove – or
disprove – the positivity of Lyapunov exponents for fL for any L, however
large.
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The following result illustrates what the addition of random noise can do.
Two points are of note: One is that the amount of noise needed is tiny; the
other is that unlike Theorem 7, no parameter selection is needed.

Theorem 9 [5] Let fL,a : T2 ⟲ be given by

fL,a(x, y) = (L sin(2πx) + a− y, x) .

To fL,a, we add a random perturbation of the form (x, y) 7→ (x + ξ, y),
ξ ∈ [−ε, ε] uniformly distributed. Then given any α, β > 0, there exists C > 0
such that for all L sufficiently large, for all a, and for all ε ≥ L−CL1−β , we
have

λmax > (1− α) logL Lebesgue-a.e. on T2 .

4.2 Interpretation as reliability of driven systems
Consider a continuous-time dynamical system defined on a manifold M . A
signal I(t) ∈ Rn, t ∈ [0,∞), is presented to the system at time 0. Think of it
as an external input being switched on in an engineered system, or the onset
of a stimulus in a biological system. The response of the system at time t > 0
is given by F (t) = F (x0, {I(s)}0≤s<t; t), where x0 ∈ M is the internal state
of the system at time 0. A system is called reliable with respect to a class of
signals I if for almost all I ∈ I, the dependence of F (t) on x0 vanishes with
time. Initially, some dependence of F (t) on x0 is unavoidable. The idea is
that a reliable system will, after a transient, entrain to the signal I(t) and
lose memory of its own initial state; see e.g. [28].

In the simple setting where I(t) are (frozen) realizations of white noise,
this setup can be described by a stochastic differential equation. For a typical
sample Brownian path ω and t1 < t2, flow-maps Ft1,t2,ω from time t1 to t2
are well defined under mild regularity assumptions on the coefficients of the
SDE [20]. This puts us in the setting of random maps. Let µ be the invariant
probability measure, which we assume to be unique. As the sample measures
µ−
ω are given by µ−

ω = limt→∞(F−t,0,ω)∗µ (see Sect. 4.1), we may assume that
for large enough t, the observed distribution of xt starting from µ at time 0
is approximately µ−

σt(ω)
where σt is the time shift.

The interpretation therefore is as follows: In the case λmax < 0, µ−
ω is

a finite set for a.e. ω by Theorem 8(1)(a). Under suitable conditions, it
consists of a single point. That is to say, the approximate location of xt is
largely independent of x0 for large t, the definition of a reliable system. If
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t = 50 t = 500 t = 1900

Figure 3: Random attractors. Snapshopts of distributions of xt starting from
µ for two coupled phase oscillators driven by a white-noise stimulus. These distri-
butions approximate the sample measures µ−

σt(ω)
. The phase space is the 2-torus,

and the system is unreliable. The curves seen are unstable manifolds of random
strange attractors on which SRB measures are supported. The attractors evolve
perpetually with time, retaining certain basic characteristics throughout.

λmax > 0, then by Theorem 8(1)(b), almost surely µ−
ω has the characteristic

geometry of a random SRB measure. That means xt may be very different
depending on x0, and this dependence on x0 will persist for all t > 0. The
system is unreliable, and the effective dimension of the random SRB measure
given by Theorem 8(2) describes the extent of its unreliability.

5 Applications to biology
In the last 5-10 years, I have taken an interest in the application of Dynamical
Systems ideas to the biological sciences. I would like to report here on work
in two different directions: Sect. 5.1 discusses a study on an idealized model
of epidemics control, while Sect. 5.2 contains a glimpse into some work in
computational neuroscience.

5.1 Control of epidemics via isolation of infected hosts
This work is on a simple model of infectious diseases. When an outbreak is
unforeseen, the only available means of containment is the isolation of in-
fected individuals. Isolation is very effective when implemented immediately
and in full; one simply cuts off all contact between infected hosts and the rest
of the population. But such perfect implementation is not feasible in reality:
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facilities to house the infected, and medical personnel to care for them have
to be available at a moment’s notice, and infected hosts have to be identified
as soon as they become infectious.

Below I describe the results of a theoretical study [50] the goals of which
are to quantify minimum response capabilities needed to squash incipient
outbreaks, and to predict the consequences when containment fails. It is
an idealized model built on the well known susceptible-infected-susceptible
(SIS) model of epidemics.

Consider, to begin with, a random network of N nodes; each node rep-
resents a host, and nodes that are linked by edges are neighbors. The mean
degree at a node is given by ⟨k⟩, so the density of connections is denoted by
m = ⟨k⟩/N . In the absence of any control mechanism, the situation is as
follows. Each host is in one of three discrete states: healthy and susceptible
(S), infectious (I) and incubating (E). Infectious hosts infect their neighbors
at rate β; infected nodes incubate the disease for a period of σ units of time
during which they are assumed to be neither symptomatic nor infectious. At
the end of the incubation period they become infectious. Infectious nodes
remain in that state until they recover and rejoin the susceptible group. The
rate of recovery is γ. This, roughly speaking, is the SIS model.

To the setting above, we introduce the following isolation protocol: If a
host remains infectious for τ units of time without having recovered, it enters
a new state, Q (for quarantine), with probability p. The hosts that do not
enter state Q at time τ remain infectious until they recover on their own. A
host that enters state Q remains in this state for κ units of time, at the end
of which it is discharged and rejoins the healthy and susceptible pool.

The quantities of interest in this model are S(t), E(t), I(t), and Q(t),
representing the fractions of the population in the susceptible, incubating,
infectious and quarantine states respectively at time t starting from some
initial condition, and the new parameters of our model are τ, κ > 0 and
p ∈ [0, 1]: p is the probability that an infected individual will be isolated, τ
is the time between becoming infectious and entering isolation, and κ is the
duration of isolation.4

Assuming that links between the infectious and susceptible nodes are
uncorrelated, we obtain, by moment closure, the following system of Delay

4We have not built into the model the idea of immunity, which is of course very relevant
in the long run, but less so for shorter time scales, such as the time evolution following a
single outbreak.
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Differential Equations in the continuum limit as N → ∞:

Ṡ(t) = −βmS(t)I(t) + γI(t) + βmεS(t− σ − τ − κ)I(t− σ − τ − κ),

Ė(t) = βm[S(t)I(t)− S(t− σ)I(t− σ)]

İ(t) = βmS(t− σ) I(t− σ)− γI(t)− βmεS(t− σ − τ) I(t− σ − τ) ,

Q̇(t) = βmε[S(t− σ − τ)I(t− σ − τ)− S(t− σ − τ − κ)I(t− σ − τ − κ)] ,

where β and m are as above and ε = pe−γτ .
Let C := C ([−σ − τ − κ, 0] ,R4), the Banach space of continuous func-

tions. Given an initial function ϕ ∈ C, the solution x(t, ϕ) ∈ R4, t ≥ 0, to
the initial value problem exists and is unique. Standard results imply, in
fact, that the system above defines a C1 semi-flow on C with the sup norm.
Observe that by the conservation of mass property, if ϕ = (ϕS, ϕE, ϕI , ϕQ)
and x(t;ϕ) = (S(t), E(t), I(t), Q(t)), then S(t)+E(t)+I(t)+Q(t) = ϕS(0)+
ϕE(0) + ϕI(0) + ϕQ(0) for all t ≥ 0. Therefore, the 3-D hyperplane H3 :=
{S(t) + E(t) + I(t) + Q(t) = 1} ⊂ R4 is left invariant by the semi-flow. To
obtain biologically relevant solutions we further restrict to the subset of H3

on which S(t), E(t), I(t), Q(t) ≥ 0.
In the SIS model, what determines whether the disease will propagate

is the disease reproductive number r := βm/γ: that is, without an isolation
protocol, a small outbreak is contained if r < 1, and it spreads if r > 1.

Theorem 10 [50] (1) Given p, τ and κ, the effective disease reproductive
number

re = r(1− ε) = r(1− pe−γτ ) .

Starting from an initial condition ϕ = (ϕS, ϕE, ϕI , ϕQ) with ϕI > 0 near the
disease-free equilibrium (1, 0, 0, 0), the following response is needed to ensure
re < 1:

(a) there is a minimum isolation probability pc = 1− 1
r

so that to contain
the outbreak, one must have p > pc; and

(b) for p > pc, there is a critical identification time

τc(p) =
1

γ
log

p

pc
,

so that for τ < τc(p) the disease dies out and for τ > τc(p) it spreads.
(2) Let p, τ, κ and ϕ be as above. If re > 1, then there is at most one possible
endemic equilibrium, given by constant functions (Seq, Eeq, Ieq, Qeq) with

Seq =
1

re
=

1

r(1− ε)
and Ieq =

(1− ε)

σγ + κγε+ (1− ε)
· (1− Seq).
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We conjecture that when re > 1, all solutions starting from ϕ in the
theorem converge to the predicted endemic equilibrium. A proof is out of
reach for now, but numerical evidence is strongly in favor of the conjecture
for reasonable parameters.

5.2 Dynamics of the brain
First, why the brain? The brain is a dynamical system, a large and complex
dynamical system, one of the most fascinating naturally occurring systems
I have ever seen. It is made up of a large number of smaller subsystems,
namely neurons, coupled together in a hierarchical network. Single neurons
are themselves complicated biological entities. While one must eventually
combine information across scales, it is simpler, to begin with, to first focus
on either network level activity or cellular/subcellular properties of individ-
ual neurons. This section is about the former, that is to say, I will suppress
detailed properties of individual neurons and focus on their dynamical inter-
actions.

A crash course on neuronal dynamics. Neurons communicate with one
another by electrical signals which they produce when they spike. When
an Excitatory (E) neuron spikes, it brings the recipients of its signal, called
its postsynaptic neurons, a little closer to their own spiking thresholds. In-
hibitory (I) neurons do the opposite to their postsynaptic neurons.

Neglecting biochemical processes and keeping track of electrical properties
only, the dynamics of a neuron are governed by its membrane potential and
are described by the standard Leaky Integrate-and-Fire (LIF) equation

dv

dt
= −gRv − gE(t)(v − VE)− gI(t)(v − VI) . (11)

Here v is membrane potential in normalized units: Without external input,
v tends to 0 at rate gR (a constant). The Excitatory conductance gE(t) of
a neuron is elevated for a brief period of time (10 − 20 milliseconds) when
the neuron receives excitatory input, such as a spike from a presynaptic E-
neuron. The term gE(t)(v−VE) is called the Excitatory current; it drives the
membrane potential towards the value VE (= 14/3 in the present normaliza-
tion), called the excitatory reversal potential. But v(t) never gets that high:
by the time it reaches 1, the neuron spikes and v is reset to 0. The Inhibitory
conductance gI(t) is elevated similarly when the neuron receives inhibitory

31



input as a result of the spiking of a presynaptic I-neuron; this current drives
the membrane potential towards VI = −2/3.

To summarize, the membrane potential of a neuron swings up and down
depending on the input it receives. When it reaches its spiking threshold 1,
the neuron spikes, sending signals to other neurons thereby affecting their
time evolutions, and its own membrane potential is reset to 0.

Network architecture, or wiring, is of course important. The primate
cerebral cortex (which is what I know best) is organized into regions and
subregions and layers, with neurons in local populations having similar pref-
erences and functional roles. Within local circuitries, E- and I-neurons are
relatively homogeneously though sparsely connected, whereas connections
between distinct regions or layers are specific and tend to be Excitatory
only.

Computational modeling of the visual cortex. Turning now to my own
modeling work in Neuroscience, I have worked mostly with the visual cortex,
the part of the brain responsible for the processing of visual information. The
modeling I do is heavily data-driven, benchmarked by dozens if not hundreds
of sets of experimental data from monkey, whose visual cortex is quite similar
to our own. From point-to-point representation of visual images in the retina,
cortex extracts, through multiple stages of processing, information such as
edges, shapes, color, movement, and texture — features that enable the brain
to make sense of visual scenes. This complex task is accomplished through
the dynamical interaction of neurons. My immediate goal in this research
is to unravel the dynamical processes responsible for feature extraction. My
larger goals are to connect dynamical events on the neuronal level to cortical
functions and ultimately to human perception and behavior.

Working with a small team of neuroscientists and postdocs, I have been
involved in building a comprehensive model of the primary visual cortex, or
V1. This is the area of cortex closest to sensory input. It is also the largest
and most complex of all the visual cortical areas. We have worked mostly on
the input layer of the magnocellular pathway, one of the two main pathways
in V1. Our challenge is to deduce underlying dynamical mechanisms from
experimental data documenting how V1 responded to various stimuli, i.e.,
to reverse-engineer the dynamical system from its outputs in response to
stimuli.

This is less straightforward than one might think, because the brain does
not simply reproduce a copy, pixel by pixel, of the stimulus presented. It
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extracts data, dissects and recombines, suppresses and enhances; it processes
the information. Below I will illustrate this point with an example; the
material is taken in part from [9].

To get a sense of size, think of the moon as projecting to a region of
diameter ∼ 1/2 degree in our retina, near the center of one’s visual field. A
somewhat surprising fact is that to cover a region that projects to 1/4 deg
×1/4 deg of the retina, there are, in the magno-pathway, only about 10 cells
in the Lateral Geniculate Nucleus (LGN), the body that relays information
from the retina to V1. Of these 10 cells in the LGN, about 5 are ON, and
5 are OFF. The ON-cells spike vigorously when luminance in its visual field
goes from dark to light, and the OFF cells do the same when it goes from light
to dark. All that is simple enough, an array of cells reporting the changes in
luminance in their visual fields.

Now LGN neurons project directly to V1, and one of the most salient
features of V1 is that its cells are orientation selective: most cells have a
preference for edges of a particular orientation, and when such an edge passes
through its receptive field, the cell gets excited and spikes. Orientation se-
lectivity (OS) is a very important property; it helps us detect contours in
the visual scene. The question is, how do V1 neurons acquire their OS, since
LGN neurons have no such selectivity?

Half a century ago, Hubel and Wiesel, who eventually won the Nobel
Prize, proposed an explanation for OS in terms of the alignment of LGN
cells that converge on V1 cells [17]. Based on currently available data, our
model confirmed that this idea is very likely the source of OS, but contrary
to conventional wisdom, we found that the signal from LGN is weak — an
idea that is only slowly gaining traction in the neuroscience community. In
our model, the feedforward signal is substantially amplified (and mollified)
through dynamical interactions among cortical neurons, which after all pro-
vide the bulk of the current received by neurons in V1. See Fig 4.

The modeling work above is computation based. Realistic models as
complex as ours are not amenable to rigorous analysis at the present time,
yet much of our model building has been guided by Dynamical Systems
ideas, the only difference being that simulations played the role of proofs in
the validation of conjectures.
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6 Looking forward
Dynamical Systems was born a little over 100 years ago, inspired by curiosity
about natural phenomena. The field has blossomed and matured; we have
developed a rich collection of ideas and techniques that we can proudly call
our own. Advances within the field have suggested new avenues of research
and new questions, but it is also important to reconnect with original goals,
and to build new connections.

Building connections will require developing new techniques and adopting
new viewpoints. Let me give just one example, drawing from my own limited
experience: Most naturally occurring dynamical systems are large – large in
the sense of extended phase spaces, many degrees of freedom, a more complex
dynamical landscape. The concerns are very different when studying “small”
and “large” dynamical systems. For small systems, complexity means chaotic
behavior, positive Lyapunov exponents, positive entropy. In “large” systems,
it is not clear what chaotic behavior means. The focus is more naturally on
emergent phenomena, behaviors that cannot be predicted from local rules and
that emerge as a result of interaction among components. To gain insight,
one looks for ways to reduce system complexity by identifying parameters,
or modes of behavior, that are more important than others.

Since Dynamical Systems is naturally connected to many parts of math-
ematics and many scientific disciplines, I see a future full of possibilities, and
I encourage my fellow dynamicists to embrace the challenge. Not only is
Dynamical Systems a study of moving objects and evolving situations, the
subject itself is also evolving. It must evolve, if it is to remain interesting,
vibrant and relevant.
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Figure 4: Model response to drifting gratings. In the top row are three
drifting gratings oriented at 0◦, 22.5◦ and 45◦ from the vertical; these stimuli are
used a great deal in experiments in neuroscience, as they elicit a strong response
from V1 neurons having a preference for orientations aligned with the gratings.
The bottom three panels show a small piece of our model V1 cortex (layer 4Cα),
about 1.5 × 1.5 mm2 in actual size. Each tiny box corresponds to ∼ 30 neurons,
its color indicating the number of spikes fired per neuron over a 1 sec interval; see
color bar. Visible in each panel is the group of neurons preferring the orientation
of the grating above the panel. Important: The only input to the model are light
intensity maps, i.e., functions g(x, t) where x is location in visual space, t is time,
and g(x, t) is the luminance of the grating at location x at time t. LGN relays
this information to cortex via the spiking of ON and OFF cells as explained in
the text, and our model cortical neurons, the evolutions of which are governed by
(11), interact dynamically to produce the response shown.

40


