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1 Introduction
This article is a broad-brush survey of two areas in differential geometry. While
these two areas are not usually put side-by-side in this way, there are several
reasons for discussing them together. First, they both fit into a very general
pattern, where one asks about the existence of various differential-geometric
structures on a manifold. In one case we consider a complex Kähler manifold
and seek a distinguished metric, for example a Kähler-Einstein metric. In the
other we seek a metric of exceptional holonomy on a manifold of dimension 7
or 8. Second, as we shall see in more detail below, there are numerous points
of contact between these areas at a technical level. Third, there is a pleasant
contrast between the state of development in the fields. These questions in
Kähler geometry have been studied for more than half a century: there is a
huge literature with many deep and far-ranging results. By contrast, the theory
of manifolds of exceptional holonomy is a wide-open field: very little is known in
the way of general results and the developments so far have focused on examples.
In many cases these examples depend on advances in Kähler geometry.

2 Kähler geometry
2.1 Review of basics
Let X be a compact complex manifold of complex dimension n. We recall that
a Hermitian metric on X corresponds to a positive 2-form ω0 of type (1, 1) That
is, in local complex co-ordinates za

ω0 = i
∑
a,b

gabdzadzb,
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where at each point (gab) is a positive-definite Hermitian matrix. The Hermitian
metric is Kähler if ω0 is a closed form, so then X is simultaneously a complex,
Riemannian and symplectic manifold. The form ω0 defines a cohomology class
[ω0] ∈ H2(X;R) and any other Kähler metric in this class can be represented
by a potential function ωϕ = ω0 + i∂∂ϕ. In local co-ordinates this changes gab
to

gab +
∂2ϕ

∂za∂zb
.

Recall that in Riemannian geometry the Ricci tensor is a symmetric 2-tensor
given by a contraction of the full Riemann curvature. Geometrically, it repre-
sents the infinitesimal behaviour of the volume form of the manifold, in geodesic
co-ordinates. In the Kähler case the Ricci curvature also corresponds to a (1, 1)
form and has another interpretation as the curvature of the induced connection
on the anti-canonical line bundle K−1

X = ΛnTX. In local co-ordinates this Ricci
form is given by ρ = i∂∂L, where L is the logarithm of the volume element

L = log det

(
gab +

∂2ϕ

∂za∂zb

)
.

The trace of the Ricci curvature is the scalar curvature S, which is a function
on X.

The aspect of Kähler geometry which is our concern here is the existence of
particular metrics, in a given Kähler class, which correspond to the solutions of
partial differential equations for the potential function ϕ. The four equations
we have in mind are as follows.

• Kähler-Einstein metrics with ρ = λω for λ = 1,−1 or 0. These can only
occur when c1(X) (a topological invariant of the complex structure) is the
corresponding multiple of the Kähler class.

• Constant scalar curvature Kähler (CSCK) metrics with S = constant.
The constant is determined by the topological data, c1(X), [ω]. When
c1(X) is a multiple of [ω] an integral identity shows that a CSCK metric
is Kähler-Einstein.

• Extremal metrics. The satisfy the condition that the gradient of S, a
vector field on the manifold, is holomorphic. Obviously CSCK metrics
(where the gradient is zero) are extremal and in general the holomorphic
vector field is determined by the topological data.

• Kähler-Ricci solitons. These satisfy the condition that

ρ− λω = Lvω

where v is a holomorphic vector field and Lv denotes the Lie derivative.
Obviously Kähler-Einstein metrics satisfy this condition (with v = 0) and,
as before, v is determined by the topological data.
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Extremal metrics and Kähler-Ricci solitons arise naturally in the study of
associated parabolic equations. The Kähler-Ricci flow is the evolution equation

∂ω

∂t
= λω − ρ.

A Kähler-Ricci soliton represents a fixed point of this flow modulo the holomor-
phic diffeomorphisms—the flow starting from a Kahler-Ricci soliton evolves as
a family of geometrically equivalent metrics. The Calabi flow is the evolution
equation

∂ω

∂t
= i∂∂S,

and extremal metrics appear in the same way.

2.2 The YTD conjecture
The existence of Kähler-Einstein metrics in the cases when λ = −1 and λ = 0
was established in the 1970’s in breakthrough work of Yau [84] confirming con-
jectures of Calabi from the 1950’s [10],[8]. (The case when λ = −1 was treated
independently by Aubin.) The positive case, when λ = 1 (which arises when X is
a Fano manifold) is more subtle and, beginning with a theorem of Matsushima—
also from the 1950’s—various obstructions were found to the existence of a
Kähler-Einstein metric. In the 1980’s Yau suggested that the existence of these
metrics should be equivalent to some algebro-geometric notion of “stability”.
One motivation for this idea came from the theory of Hermitian Yang-Mills
connections. Let E be a holomorphic vector bundle over a Kähler manifold
(X,ω0) and suppose for simplicity that c1(E) = 0 and that E is indecompos-
able (cannot be written as a direct sum). A Hermitian Yang-Mills connection
on E is a unitary connection, compatible with the holomorphic structure, such
that the inner product of the curvature with the Kähler form vanishes. The
bundle E is called stable if any proper subsheaf S ⊂ O(E) has c1(S) < 0. This
is a purely complex-geometric notion (or algebro-geometric, in the case when
X is a projective variety), which arose in the study of moduli problems for
holomorphic bundles. The main result is that stability is the necessary and suf-
ficient condition for the existence of a Hermitian Yang-Mills connection. This
was proved by Uhlenbeck and Yau [80] in 1986 (with an independent treatment
by Donaldson in the algebraic case), confirming conjectures made by Kobayashi
and Hitchin. Many extensions of the result have been found, for example to
coupled equations with connections and additional “fields”. Yau’s proposal was
that the Kähler-Einstein question could be put in a similar framework.

Considerable progress towards confirming Yau’s proposal was made by Tian
during the 1990’s, In particular, Tian gave a definition of the notion of stability
for Fano manifolds, called K-stability, which turns out to be the correct one [78].
Around the turn of the century, Donaldson suggested that the whole conjec-
tural picture could be extended to the question of existence of constant scalar
curvature metrics in a given rational Kähler class on an projective variety, with
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a suitable extension of the definition of K-stability [29], [30]. Later, Székelyhidi
proposed further extensions to the existence of extremal Kähler metrics [73].

We now recall the definition of K-stability. We restrict attention to the
case when the Kähler class is the first Chern class of a positive line bundle
L, so in algebro-geometric terms we have a polarised manifold (X,L). The
definition is founded on the notions of test configurations and Futaki invariants.
A test configuration for (X,L) is a normal variety X which forms a flat family
π : X → C with a line bundle L → X such that:

• L is ample on the fibres of π;

• there is a C∗-action on (X ,L) covering the standard action on C;

• the fibre π−1(1) is isomorphic to X and L|π−1(1) = Lr for some r.

Of course the C∗-action means that all non-zero fibres are isomorphic to X and
the essential point is that a test configuration gives a degeneration of X to a
typically-different object: the scheme-theoretic central fibre X0 = π−1(0). For
example we might degenerate a smooth conic in the plane to a pair of lines or
a “double line”.

Given such a test configuration, the central fibre X0 = π−1(0), with the
restriction L0, is a polarised scheme with C∗-action. In such a situation there
is a numerical invariant, the Futaki invariant, which can be defined in various
ways. One is through the induced action on a “CM line” associated to (X0,L0);
another is through the asymptotics as k → ∞ of the induced action on the
vector spaces H0(X0,Lk

0). The upshot is that we get a numerical invariant
Fut(X ) of a test configuration. We say that (X,L) is K-stable if Fut(X ) ≥ 0 for
all test configurations and equality occurs only if X is a product X ×C, with a
possibly non-trivial C∗ action on the X factor. The “standard conjecture” in the
field, which has come to be called the Yau-Tian-Donaldaon (YTD) conjecture,
is that there is a constant scalar curvature metric on X in the class c1(L) if and
only if (X,L) is K-stable. An inkling of the connection between the algebro-
geometric and differential geometric sides is given by considering the case when
the central fibre X0 is smooth. Choose a Kähler form in the class c1(L0) on X0

invariant under the action of the subgroup S1 ⊂ C∗. The action is generated
by a Hamiltonian function H on X0, with respect to this Kähler form, regarded
as a symplectic structure. One then has a formula

Fut(X ) =

∫
X0

(S − Ŝ) H dµ,

where S is the scalar curvature of X0 and Ŝ is the average value of S.
This YTD conjecture has close parallels with the Kobayashi-Hitchin con-

jecture for Hermitian-Yang-Mills connections discussed above and in fact the
definition of stability for holomorphic bundles can be put in a similar shape,
involving suitable degenerations of the vector bundle.
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The YTD conjecture has been confirmed in certain cases, in particular for
toric surfaces [34] and for Fano manifolds, as we will discuss below. However
there are reasons to think that in general the conjecture may not be exactly true
as formulated and that the correct conjecture should involve a slightly different
definition of stability. One such notion has been proposed by Székelyhidi [75].
This involves an algebraic generalisation of the notion of a test configuration
having the form of a filtration of the co-ordinate ring

RX,L =
⊕
k

H0(X,Lk).

The set of filtrations can be thought of roughly as a “completion” of the set
of test configurations. Székelyhidi obtained a slightly stronger notion called K̂-
stability, using an extension of the definition of the Futaki invariant to filtrations.

Another important variant is “uniform K-stability” which also goes back to
work of Székeleyhidi, with later developments by Dervan [27] and Boucksom,
Hisamoto, Jonsson [4]. This notion depends upon a choice of a “norm” ∥X∥
on test configurations. For example in the case of a smooth central fibre con-
sidered above this could be given by an Lp norm of the Hamiltonian function
H, normalised to have integral zero: the definition in the general case is more
technical. A pair (X,L) with no non-trivial automorphisms is called uniformly
K-stable if there is some ϵ > 0 such that for all test configurations X

Fut(X ) ≥ ϵ∥X∥.

(The definition needs to be modified slightly in the case when Aut(X,L) is
non-trivial.)

The relation between these different notions of stability can be illustrated
by considering the case of toric pairs (X,L). Such pairs corresponds to certain
closed polytopes P ⊂ Rn, which come with a distinguished measure dσ on the
boundary. Then we can define a linear functional on functions on P ,

LP (f) =

∫
∂P

fdσ −A

∫
P

fdµ,

where the constant A is fixed by requiring that LP vanishes on constant func-
tions. We say that a function f is “normalised” if∫

P

f dµ = 0,

∫
P

f xi dµ = 0

for each co-ordinate function xi. We say that f is a convex rational piecewise-
linear function if f = max{λr}, where {λr} is a finite collection of affine-linear
functions with rational coefficients. Write QPL for the set of such functions f .
Then we may consider three properties of the polytope P .

1. For all non-zero normalised f ∈ QPL we have LP (f) > 0.

2. For all non-zero normalised continuous convex functions f on P we have
LP (f) > 0.
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3. There is an ϵ > 0 such for all normalised f ∈ QPL we have

LP (f) ≥ ϵ

∫
P

|f |dµ.

These three properties correspond respectively to K-stability, K̂-stability
and uniform K-stability of the pair (X,L) determined by P . (Notice that in
the last item it does not matter whether we consider rational piecewise linear
or general continuous convex functions, since the former are a dense subset of
the latter.)

2.3 Fano manifolds and Kähler-Einstein metrics
The YTD conjecture in the case of Fano manifolds and Kähler-Einstein metrics
(the case originally considered by Yau) was confirmed in [14]. Since this work
was discussed by Székelyhidi in his contribution to the 2014 ICM [74] we will
not say much about it here. By now, four different proofs of (essentially) this
result have appeared; the references for the other three being [25], [15], [62].
Three of these proofs follow somewhat similar strategies. The approach is to
take some deformation or continuity procedure and show that either it produces
a Kähler-Einstein metric on our Fano manifold X or it produces (roughly speak-
ing) the central fibre X0 in a test configuration which contradicts K-stability.
These three proofs depend heavily on the Cheeger-Colding convergence theory
for manifolds with Ricci curvature bounds which we will come back to in Sec-
tion 3.4 below. In the first proof, by Chen, Donaldson and Sun, the deformation
process involves Kähler-Einstein metrics with cone singularities along a divisor
in X and increasing the cone angle from some small initial value. If we achieve
cone angle 2π we have a smooth metric. In the second proof, Datar and Széke-
lyhidi used the Aubin-Yau continuity method with the 1-parameter family of
equations

Ric(ωs) = (1− s)α+ sωs,

where α is a fixed positive (1, 1)-form. In the third proof, Chen and Wang [16]
study the Kähler-Ricci flow ωt starting with some initial metric on X. The
flow exists for all positive time and Chen and Wang show that for any sequence
ti → ∞ there is a subsequence t′i such that the Riemannian manifolds (X,ωt′i

)
converge geometrically to a Kähler-Ricci soliton metric on some possibly singular
space Z, which is a complex algebraic Q-Fano variety. In [15] Chen, Sun and
Wang showed further that this limit is unique, so in fact the Kähler-Ricci flow
(X,ωt) converges in this sense as t → ∞. The case when Z = X gives the
desired Kähler-Ricci soliton metric on X (which is Kähler-Einstein if X is K-
stable), and if Z is not equal to X then Chen, Sun and Wang show how to
produce a destabilising test configuration from Z.

The information which these proofs using convergence theory provide about
the precise way in which the possible failure of the PDE construction strategies
relates to K-stability has independent interest. There are parallel questions in
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the case of the Hermitian-Yang-Mills equations which have been fully settled rel-
atively recently. Jacob[50] and Sibley [70] study the Hermitian Yang-Mills flow
(analogous to the Kähler-Ricci flow) and show that the limit of this produces the
algebro-geometric “Harder-Narasimhan stratification” of a holomorphic bundle,
thus refining the basic existence result for Hermitian-Yang Mills connections on
stable bundles.

The fourth proof of the YTD conjecture for Fano manifolds, by Berman,
Boucksom and Jonsson, uses very different techniques. It relies on foundations
from algebraic geometry and pluripotential theory, rather than from Riemannian
geometry, and they exploit the variational point of view which we discuss in 2.4
below. The result proved is slightly weaker: they show when X has finite
automorphism group the existence of a Kähler-Einstein metric is equivalent to
uniform K-stability.

Over the past four years the interaction between “Kähler-Einstein geometry”
and algebraic geometry has blossomed, with many related developments. One
important theme is given by various notions related to “volume”. A beautiful
example is a result of Fujita [40]. In differential geometric language this states
that if a compact complex n-manifold X has a Kähler-Einstein metric with
Ricci = ω then the volume of the manifold is at most (2π)n(n+1)n, with equality
if and only if X = CPn (with its usual Fubini-Study metric, suitably scaled).
This can be set alongside the standard Bishop comparison result, which states
that among all Riemannian manifolds with Ricci = g (in fact with Ricci ≥ g)
the round sphere (of the right scale) maximises the volume. So Fujita’s result
is a Kähler analogue. But while the statement is differential geometric, Fujita’s
proof is entirely algebro-geometric, using the equivalence with K-stability. In
the other direction, differential geometric results on Kähler-Einstein metrics
have had important consequences for the construction of moduli spaces of Fano
manifolds in algebraic geometry, giving information which cannot at present
be obtained by purely algebro-geometric methods. We will not go into this
important topic further here but refer to the contribution of Song Sun to these
ICM Proceedings [?].

Another line of development involves singularities. An important part of the
Cheeger-Colding convergence theory is that the relevant limit spaces have metric
tangent cones at each point. In a setting (such as the limits of the Ricci flow
discussed above, or in considering compactified moduli spaces) where one has
such a limit space Z which is a singular complex algebraic variety one can ask
how this metric theory is related to the algebraic geometry of the singularities.
This question was studied by the author and Sun [33], who showed that the
metric tangent cone at a point p ∈ Z is unique and can be obtained from a
valuation νp on the local ring of Z at p. This valuation records the order of
vanishing of a function, with respect to the metric on Z:

νp(f) = lim
r→0

logmaxBr |f |
log r

,
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where Br is the r-ball in Z centred at p. The work of Donaldson and Sun left
open the question of whether the valuation can be determined entirely algebro-
geometrically. This was settled by Hein and Sun [46] in the case of singular
Calabi-Yau varieties with certain singularities, including ordinary double points
(which is the most important case for applications). Much progress in the gen-
eral case has been made by Li, Liu and Xu, who show that the valuation can be
characterised as minimising a certain algebro-geometrically defined normalised
volume [57], [58],[63], [59] Again we refer to [?] for a more detailed account of
these developments.

The tangent cones that appear in this context are, differential-geometrically,
Sasaki-Einstein cones (possibly with singularities). The algebro-geometric set-
ting is to consider an action of a torus T = (C∗)

r on CN and a T-invariant affine
variety W ⊂ CN with trivial canonical bundle. The general existence question
in this setting asks if there is a Sasaki-Einstein metric on W with radial vector
field generated by a vector in the Lie algebra of T . One case is when r = 1
and we have the standard action of C∗, so W is a cone in the algebro-geometric
sense over a projective variety and the existence problem reduces to the exis-
tence of a Kähler-Einstein metric on this projective variety. The analogue of the
YTD conjecture in this Sasaki-Einstein setting (for varieties W with an isolated
singularity at 0) was established by Collins and Székelyhidi [17].

A glaring problem in this field is that it is usually very hard to decide if a
manifold is K-stable. On the face of it, the definition requires one to check all
possible test configurations. (This is in contrast to the situation for bundles,
where the criterion for stability is very explicit.) We mention three lines of
recent progress in this direction.

• The proofs of the YTD conjecture show that in the Fano case it suffices to
check test configurations with normal central fibres (as in Tian’s original
proposal). This was also proved algebro-geometrically a little earlier by
Li and Xu [60].

• For explicit examples of interest such as cubic 3-folds in P4 [63], and
intersections of two quadrics [71], K-stability is completely understood
(including for the singular varieties that are added to compactify moduli
spaces).

• Various cases of manifolds with large symmetry groups have been analysed
[49], [26].

• Fujita and Odaka [41] defined a numerical invariant δ(X) of a Fano man-
ifold and conjectured that uniform K-stability is equivalent to δ(X) > 1,
which was later confirmed by Blum and Jonsson [3]. This invariant δ is
obtained from the theory of the log canonical threshold (lct) (which in
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this context is a numerical invariant measuring how singular a divisor is).
In fact δ(X) = lim supk→∞ δk(X) with

δk = inf
D

lct(X,D).

Here, for each k, the divisor D ranges over sums
∑

i Di, of the divisors
associated to a basis si of H0

k = H0(X,K−k
X ) and with a normalising factor(

k dimH0
k

)−1. Fujita and Odaka also relate their invariant δ to another
definition of “Gibbs stability” proposed by Berman.

2.4 Geometry in the space of Kähler metrics
The existence questions in Kähler geometry which we have been discussing
have appealing formulations in terms of infinite-dimensional geometry. Given
the Kähler class [ω0] we write H for the space of Kähler potentials

H = {ϕ : ω0 + i∂∂ϕ > 0}.

(When the Kähler class is integral this has a more invariant description in terms
of metrics on the corresponding ample line bundle.) We define a Riemannian
metric, making H into an infinite-dimensional Riemannian manifold

∥δϕ∥2ϕ =

∫
X

(δϕ)2dµϕ,

where dµϕ is the usual volume form ωn
ϕ/n!. This metric was discovered by

Mabuchi [66] and rediscovered later by Semmes and Donaldson. It has the
remarkable property that H becomes an infinite-dimensional symmetric space
of non-positive curvature, formally the dual of the group of Hamiltonian sym-
plectomorphisms of (X,ω0) [30]. A geodesic segment in H corresponds to an
S1-invariant degenerate (1, 1) form Ω on (0, 1)× S1 ×X with Ωn+1 = 0, which
in turn corresponds to a solution of a certain homogeneous complex Monge-
Ampère equation.

Various functionals on H play an important role in the theory. Typically
these are defined through their first variations (that is, what is defined is a
closed 1-form on H). The Mabuchi functional F is defined by

δF =

∫
X

(δϕ)(S − Ŝ) dµϕ,

where S is the scalar curvature and Ŝ is the average [65] By construction, the
Euler-Lagrange equation associated to the Mabuchi functional is the constant
scalar curvature condition. The Mabuchi functional is convex along geodesics
in H; so in a formal way the search for a constant scalar curvature metric is the
search for a critical point (in fact a global minimum) of a convex function on
a space of negative curvature. This formal picture can be fitted into a general
framework involving “stability” and moment maps—see the exposition in [?],
for example.
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The first steps in making this formal picture of real use in Kähler geometry
were taken by Chen [13]. He showed that any two points in H can be joined by
a geodesic segment, provided that the definitions were extended to allow non-
smooth potentials, roughly speaking of class C1,1. Calabi and Chen showed
in [9] that there is a genuine induced metric on H, and that it is a space of
negative curvature in a generalised sense of triangle comparison. Chen also
found an important formula for the Mabuchi functional. Let Vϕ be the volume
element of ωϕ in terms of the fixed reference metric ω0:

Vϕω
n
0 = ωn

ϕ

and let ρ0 be the Ricci form of ω0. Then Chen’s formula is

F(ϕ) =

∫
X

Vϕ log Vϕ dµ0 + Jρ0
(ϕ),

where the “J-functional” is defined by

δJρ0 =

∫
X

(δϕ) ρ0 ∧ ωn−1
ϕ .

One important consequence of this formula is that it gives a definition of F for
C1,1 potentials.

The connection with K-stability and algebraic geometry comes from the fact
that under certain conditions a test configuration gives a geodesic ray in H and
the asymptotic behaviour of the Mabuchi functional along the ray can be related
to the Futaki invariant of the test configuration. Statements along these lines,
under various technical hypotheses, have been proved by Phong and Sturm [68]
and many other authors.

There have been important developments in this area over the past few years.
One is due to Berman and Berndtsson [2], who showed that F is convex along
generalised geodesics. This leads to a short and conceptual proof of various
foundational results, such as the uniqueness of constant scalar curvature metrics.
(All of this discussion can be modified to apply to extremal metrics.) Another
is due to Darvas [23], who showed that a metric completion of H has a good
analytical meaning. In fact it turns out to be best to start with a Finsler metric
on H, defined by the L1-norm rather than the L2-norm. Then Darvas showed
that the completion can be identified with a space E1 of “finite-energy” currents
which was introduced previously in [35] and which is important in pluripotential
theory.

These ideas form some of the background for the version of the YTD con-
jecture proved by Berman et al. In fact they work with both the Mabuchi
functional and the Ding functional, which has a similar character but is only
defined in the Kähler-Einstein context. Very roughly, the strategy is as follows.

• Existence of the minimum follows from properness of the Ding functional;
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• If the functional is not proper there is a geodesic ray on which the func-
tional is bounded above;

• This geodesic ray can be approximated by test configurations and the
boundedness gives a contradiction to uniform K-stability.

The same kind of strategy can be applied beyond the Kähler-Einstein case.
For example Darvas and Rubinstein show that (for any Kähler class), proper-
ness of the Mabuchi functional (with respect to the L1-distance) implies the
existence of “weak” minimisers, in the completion E1 [24]. This brings to the
fore the question of regularity of the weak minimisers. In a similar vein, Streets
[72] defined a generalised “minimising movement” version of the Calabi flow (ex-
ploiting on the favourable metric geometry of H), and proved that this satisfies
long time existence. So there are parallel question about the regularity of this
Streets flow.

Very recent work of Chen and Cheng makes important progress in this vari-
ational and PDE framework [12]. In connecting with these developments with
algebraic geometry, one central question is whether uniform K-stability implies
properness of the Mabuchi functional.

3 Exceptional holonomy
3.1 Background
Let (M, g) be a Riemannian manifold of dimension m and p ∈ M a basepoint.
Parallel transport around a loop based at p defines an orthogonal transformation
of the tangent space at p. The set of all these transformations arising from
contractible loops is a closed, connected, subgroup of the orthogonal group
called the holonomy group of (M, g). This can be viewed, up to conjugacy, as
a subgroup G of SO(m). Work of Berger from the 1950’s, with refinements by
later authors, gives a complete classification of all groups that can arise. Leaving
aside reducible subgroups (where the manifold has a local product structure)
and symmetric spaces (which are completely classified) there are five standard
families and two exceptional cases. The standard families fall into three pairs.

• Real: G = SO(m).

• Complex: m is even and G = U(m/2) or G = SU(m/2).

• Quaternionic: m is divisible by 4 and G = Sp(m/4) or G = Sp(m/4).Sp(1)

The first case is that of a generic Riemannian metric. In the second we make
the standard identification Rm = Cm/2. In the third we make the standard
identification Rm = Hm/4 where H denotes the quaternions and the group
Sp(n).Sp(1) is given by left multiplication by quaternionic matrices in Sp(n)
and right multiplication by unit quaternions Sp(1).

The exceptional cases occur in dimensions 7 and 8 and correspond to the
exceptional Lie group G2 ⊂ SO(7) and the subgroup Spin(7) ⊂ SO(8) given by
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the spin representation in dimension 7. Just as the standard families are built
on the algebra of the three fields R,C,H, the exceptional cases are built on
“exceptional” algebraic phenomena, associated to the Octonions, triality, etc.
The basic definitions can be approached in various ways: a convenient approach
for differential geometers emphasises exterior algebra.

Let V be a real vector space of dimension m. For m ≥ 9 and 2 < p < m− 2
the dimension of the exterior power ΛpV ∗ exceeds that of the general linear
group GL(V ). But in low dimensions there are a few cases where GL(V ) acts
with an open orbit. In particular this happens when m = 7 and p = 3. For an
oriented 7-dimensional V and ϕ ∈ Λ3V ∗ we consider the quadratic form on V

v 7→ iv(ϕ) ∧ iv(ϕ) ∧ ϕ. (1)

This takes values in the oriented line Λ7V ∗, so it makes sense to say that the
form is positive definite. In such a case we say that ϕ is a positive 3-form. The
basic facts are:

• the positive 3-forms make up a single orbit for the action of GL+(V );

• the stabiliser in GL+(V ) of a positive 3-form is a compact Lie group
isomorphic to the exceptional Lie group G2.

With regard to the second item; a positive 3-form ϕ determines a Euclidean
form gϕ on V , so the stabiliser is a subgroup of the orthogonal group for this
Euclidean structure. Indeed the quadratic form (1) gives a conformal class of
Euclidean structures, so the definition of gϕ is just a matter of fixing the scale.
This can be achieved by requiring that |ϕ|2 = 7 in the norm induced by gϕ. Let
∗ϕ be the ∗-operator determined by gϕ. Then we have a 4-form ∗ϕϕ which is
also preserved by the stabiliser of ϕ.

We now go to dimension 8 by considering the vector space W = V ⊕R with
co-ordinate t in the R factor. Given a positive 3-form ϕ as above we consider
the 4-form

Ω = ϕ ∧ dt+ ∗ϕϕ ∈ Λ4(W ∗).

The basic fact is that the stabiliser of Ω in GL+(W ) is a compact Lie group
isomorphic to Spin(7) (the double cover of SO(7)). We write A for the orbit
under GL+(W ) of Ω in Λ4W ∗, so A has dimension 64− 21 = 43. The forms in
A are called admissible.

Moving to differential geometry, we have a notion of a positive 3-form on an
oriented 7-manifold and an admissible 4-form on an oriented 8-manifold. The
link with exceptional holonomy is provided by a result of Fernández and Gray
[36]. To state this precisely it is useful to make a small change of viewpoint and
to talk about a “torsion-free G-structure”, which is to say a reduction of the
structure group of the tangent bundle of the manifold to a group G ⊂ SO(m)
and a torsion-free G-connection on the tangent bundle. This gives a Riemannian
metric with holonomy contained in G and the notion takes care of technical
complications when considering holonomy around non-contractible loops and
when the holonomy is strictly smaller than G. The result of Fernández and
Gray is:
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• Giving a torsion-free G2-structure on an oriented 7-manifold is equivalent
to giving a positive 3-form ϕ such that dϕ = 0 and d ∗ϕ ϕ = 0.

• Giving a torsion free Spin(7)-structure on an oriented 8-manifold is equiv-
alent to giving a admissible 4-form Ω with dΩ = 0.

There are many other points of view on these two exceptional holonomy
groups. For example, they also can be characterised by the existence of a covari-
ant constant spinor field. A very important feature is that the Ricci curvature
is identically zero in both cases.

For the rest of this article we will concentrate on the 7-dimensional case. For
euphony here we will call a torsion-free G2-structure simply a G2-structure.

3.2 Examples of manifolds with holonomy G2

While the Berger classification goes back to the 1950’s, the modern developments
in this area begin with work of Bryant in the mid 1980’s [5], giving the first
local examples of metrics with exceptional holonomy–see also Bryant’s lecture
in ICM 1986 [6]. The global theory took off about 10 years later when Joyce
established the existence of compact examples [53], [51]. Joyce’s approach was
to start with a singular quotient space such as T/Γ where T is a flat torus and
Γ is a finite group and then remove the singularities by a “gluing” construction.
This work was described in Joyce’s 1998 ICM lecture [52] and in a monograph
[54] which gives a comprehensive treatment of the field up to the turn of the
century. There is at present essentially only one other source of examples of
compact manifolds with G2-holonomy, given by the “twisted connected sum”
construction introduced by Kovalev in [56].

We give a brief outline of these Joyce and Kovalev constructions. One might
think of these as being based on two models for a positive 3-form, corresponding
to the two subgroups: SO(4) ⊂ G2 and SU(3) ⊂ G2. For the first model we
take R4, regarded as an oriented 4-dimensional Euclidean vector space, and
choose a standard basis ω1, ω2, ω3 for the space of self-dual 2-forms Λ2

+ on R4.
Then we take R3 with co-ordinates t1, t2, t3 and write down the positive 3-form

ϕ = dt1dt2dt3 −
∑

ωidti (2)

on the 7-dimensional vector space R4 ⊕ R3. In more invariant terms, there
is a canonical positive 3-form on R4 ⊕ Λ2

+, preserved by the action of SO(4).
Now let Q be a hyperkähler 4-manifold, which is the same as saying that there
is a orthonormal frame of closed self-dual forms ωi on Q. The same formula
(2) defines a closed and co-closed positive 3-form on on Q × R3 or Q × T 3,
which of course corresponds to a metric with holonomy strictly contained in
G2. The simplest case of Joyce’s construction arises from a quotient T 7/Γ
where the singular set is a disjoint union of flat 3-tori and a neighbourhood of
each component is modelled on T 3 ×R4/± 1. The Eguchi-Hanson manifold Q
is a non-compact hyperkäher 4-manifold asymptotic to R4/± 1. Joyce removes
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neighbourhoods of each of the components of the singular set and replaces them
by corresponding neighbourhoods in T 3 × Qϵ, where Qϵ is the same manifold
Q with the metric scaled by a factor ϵ. He defines a positive 3-form—the
“approximate solution”— on the resulting 7-manifold by gluing the structures
on each piece and then shows, using a PDE and implicit function theorem
argument, that for small ϵ this approximate solution can be deformed slightly
to obtain a G2-structure.

For the second model we start with C3, regarded as having symmetry group
SU(3), so we have the standard Hermitian metric with (1, 1) form ω and a
standard complex 3-form Θ. Thus, in the usual co-ordinates za = xa + iya:

ω =
∑

dxadya , Θ = dz1dz2dz3.

We write down a positive 3-form

ω ∧ dt+Re(Θ), (3)

on the 7-dimensional real vector space C3⊕R, where t is the coordinate on the
R-factor. Let Z be a 6-manifold with holonomy SU(3). This is the same as
saying that Z is a three complex-dimensional Kähler manifold with Kähler form
ω and a holomorphic 3-form Θ of constant norm: at each point we can choose
co-ordinates so that the forms match up with the standard models above. (This
is also called a Calabi-Yau structure on Z. Up to coverings, it is equivalent to
saying that Z has a Kähler-Einstein metric with zero Ricci curvature: the case
λ = 0 in the language of the first part of this article.) The same formula (3)
defines a G2 structure on the product Z ×R or Z × S1.

Kovalev’s construction depends on a supply of suitable examples of Calabi-
Yau manifolds Z, and these come from a variant of the Kähler theory discussed
in the first part of this article. Kovalev takes a Fano 3-fold W with a smooth
anticanonical divisor D ⊂ W . By standard algebraic geometry theory, D is
a complex K3 surface. (An example is W = CP3 and D a smooth quartic
surface.) Also by standard theory, we can choose a curve C ⊂ D so that the
proper transform D̃ of D in the blow-up W̃ of W along C has trivial normal
bundle. (Of course, the proper transform D̃ is isomorphic to D.) Now let Z
be the complement of D̃ in W̃ . A result of Tian and Yau, in the general vein
of the theory discussed in the first part of this article, gives the existence of a
complete Calabi-Yau structure on Z. Kovalev showed (with later clarification by
Haskins, Hein and Nordström [44]) that this Tian-Yau metric is asymptotically
cylindrical— it is asymptotic to a cylinder D̃×S1×R where the K3 surface D̃ =
D is endowed with the Ricci-flat Kähler-Einstein metric given by Yau’s theorem.
Thus, from the preceding discussion, we get an asymptotically cylindrical 7-
manifold Z × S1 with holonomy strictly contained in G2 and with asymptotic
cross-section

D̃ × S1 × S1. (4)
Next, Kovalev considers two manifolds Z1, Z2 constructed by the above pro-

cedure. These have asymptotic cross-sections D̃i × S1 × S1. He cuts off the
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ends of these manifolds, taking a large parameter L which will be roughly the
diameter of the remaining pieces, and constructs a compact 7-manifold M by
gluing these pieces together. The “twist” in the construction is that in making
this gluing he interchanges the two S1 factors in the cross-sections (4) , so there
is no global S1 action on M . To match up (asymptotically, for large L) the
positive 3-forms on the two pieces the K3 surfaces D̃i must satisfy a certain
matching condition involving “hyperkähler rotation” of the complex structures.
This matching problem can be studied through the highly-developed Torelli the-
ory on K3 surfaces, and the upshot was that Kovalev was able to find many
examples satisfying the condition. Gluing the positive three forms on the two
pieces in M gives an approximate solution and Kovalev showed that this could
be deformed to a genuine G2-structure on M , for large values of the parameter
L.

The Joyce and Kovalev constructions have similarities. They both start with
building blocks constructed using better-understood geometry—with holonomy
strictly contained in G2— and then apply analytical gluing or singular per-
turbation techniques. Such techniques have been used very widely in global
differential geometry over the past three decades and in particular dominate
much of the work so far in areas related to exceptional holonomy. There is also
a contrast between the two constructions. As the parameter ϵ tends to 0 the
diameters in the Joyce examples are bounded but the maximum of the curvature
tends to infinity; while in the Kovalev examples, as L → ∞ the curvature stays
bounded but not the diameter.

3.3 The Hitchin functional, moduli and general existence
questions.

The condition for G2 holonomy comes in two parts dϕ = 0, d∗ϕ ϕ = 0 and so we
may consider the weaker condition of a closed positive 3-form. This structure
is somewhat analogous to a symplectic structure: it is a closed differential form
satisfying an open condition pointwise. In this framework, the G2-holonomy
condition has a variational formulation, due to Hitchin [47], [48]. We first return
to the elementary geometry of 3-forms on a 7-dimensional vector space V . A
positive 3-form ϕ defines a volume form ν(ϕ) ∈ Λ7V ∗. In this setting, the 4-form
∗ϕϕ appears as the derivative of the function ν:

δν =
1

3
∗ϕ ϕ ∧ (δϕ). (5)

Now let M be a compact oriented 7-manifold. For c ∈ H3(M ;R) write Pc for
the set of closed positive 3-forms representing c (of course this could be the
empty set). Hitchin considers the functional on Pc given by the total volume:

V (ϕ) =

∫
M

ν(ϕ).

15



A variation within Pc is give by the exterior derivative of a 2-form: δϕ = dα
and after applying (5) and integration by parts we have

δV =
1

3

∫
M

α ∧ d(∗ϕϕ)),

so the condition d ∗ϕ ϕ = 0 is the Euler-Lagrange equation defining the critical
points of the volume functional V . By Hodge theory considerations, Hitchin
showed that any critical point of is a strict local maximum, modulo the action
of the diffeomorphisms of M . That is, the Hessian of V is negative-definite
transverse to the orbits of the diffeomorphism group acting on Pc.

This approach leads to a simple treatment of the deformation theory of
G2-structures (which was analysed first by Bryant). The nondegeneracy of the
Hessian means that for c′ close to c in H3(M ;R) there is a small perturbation of
the critical point in Pc to one in Pc′ , and this is unique up to diffeomorphisms.
Let Diff0 be the identity component of the diffeomorphism group of M and T the
“moduli space” of G2-structures on M modulo Diff0. Then the discussion above
leads to the fact that the period map ϕ 7→ [ϕ] induces a local homeomorphism
from T to H3(M ;R).

This approach also gives motivation for the Laplacian flow on closed positive
3-forms, which was introduced by Bryant [7]. This the evolution equation

∂ϕ

∂t
= ∆ϕϕ, (6)

where ∆ϕ is the Laplacian on the metric gϕ defined by ϕ. This flow has a similar
character to the Ricci flow: in fact under the flow (6) the metric evolves by

∂g

∂t
= −2Ricci +Q(τ),

where Q(τ) is a quadratic expression in the torsion tensor τ = d∗ϕϕ. The leading
term (involving two derivatives of ϕ) is the same as the Ricci flow. Under the
Laplacian flow the volume evolves as

dV

dt
= ∥d ∗ϕ ϕ∥2,

and the flow can be viewed as the ascending gradient flow of the volume func-
tional.

This variational point of view leads to many questions. The most optimistic,
naive, hope might be that there is a unique G2-structure (up to diffeomorphism)
for each connected component of Pc; that this is a global maximum of the volume
functional and that the Laplacian flow starting from any initial point exists for
all time and converges to this maximum. If all this were true the existence
problem for G2-structures would essentially be reduced to understanding the
existence of closed positive 3-forms. Examples of Fernández show that this
most naive picture does not always hold ([37], and see also the discussion in
[7]). Fernández considers left-invariant structures on a 7-dimensional nilpotent
Lie groups, which descend to compact quotient manifolds N/Γ. She gives an
example where:
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• There are closed positive 3-forms but no G2 structures;

• The volume functional is not bounded above;

• The flow exists for all time but the volume tends to infinity and the Rie-
mannian curvature tends to 0.

But it remains possible that some modified version of the naive picture is true—
for example it could (as far as the author knows) be true for manifolds M with
H1(M ;R) = 0. Or it could be that one needs to allow singularities in the flow
and the limits. But at present there is very little known about any of these
questions, both for the existence of closed positive 3-forms and for their relation
to the existence of G2-structures. (For example, it is not known—as far as the
author is aware—if there is a closed positive 3-form on the sphere S7.)

There is a symmetry in the differential geometric foundations between the
3-form ϕ and the 4-form ∗ϕϕ. One can equally well start with a “positive” 4-
form and use that to define the 3-form. Thus we can ask analogous questions
on the relation between “co-closed” 3-forms and G2-structures. By contrast to
the closed case, the existence of co-closed structures is completely understood
through work of Crowley and Nordström [21]. They show that these structures
obey an “h-principle”, so the question is reduced to the homotopy theory of
reductions of the structure group of the tangent bundle to G2, which we will
discuss in the next section.

3.4 Some recent developments
We will now outline some developments in the study of G2-structures from the
past 5 years or so. One such development came in the work of Corti, Haskins,
Nordström and Pacini [19], which clarified and greatly extended Kovalev’s work
on twisted connected sums. As we sketched in Section 3.2 above, Kovalev’s con-
struction begins with “building blocks” which are 3-dimensional Fano manifolds.
Recall that a complex manifold is Fano if its anticanonical line bundle K−1

Z is
ample. Corti et al considered more generally semi-Fano 3-folds, where K−1

Z

is big and nef, and showed that these could be used in the twisted connected
sum construction. Fano 3-folds, up to deformation, are completely classified
and there are 105 deformation types. While there is no complete classification,
the number of deformation types of semi-Fano 3-folds is known to be many or-
ders of magnitude larger and so the work of Corti et al lead to a huge increase
in the number of known examples of compact manifolds with G2-structures.
The original work of Joyce lead to about 250 examples and Kovalev’s origi-
nal construction gave a number of a similar order. Corti et al found at least
50 million—and probably many, many more—deformation classes of matching
pairs which could be used to construct G2-manifolds. They were also able to
adjust the construction to give examples with various interesting features and
they gave a detailed analysis of the topology of the manifolds constructed.

The topological theory is relatively straightforward in the case of 2-connected
7-manifolds M with H3(M ;Z) torsion-free. Up to homeomorphism the only
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invariants are the third Betti number b3 and the divisibiity of the Pontrayagin
class p1(M) ∈ H4(M ;Z). Any such manifold is homeomorphic to a connected
sum

˜S3 × S4 ♯ S3 × S4 . . . ♯ S3 × S4,

where the factor ˜S3 × S4 (which carries the Pontryagin class) is one of standard
list of S3 bundles over S4. This also gives the diffeomorphism classification
up to connected sums with one of the 27 exotic 7-spheres. Corti et al show
that many hundreds of manifolds of this kind can be constructed as twisted
connected sums. Moreover they show that the same differentiable manifold can
often be constructed in a many different ways, leading to the question whether
the resulting G2-structures are in the asme connected component of the moduli
space.

Topological aspects of G2-manifold theory were developed in a series of pa-
pers of Crowley, Nordström [21][22] and Crowley, Goette, Nordström [20]. The
quotient Spin(7)/G2 is a 7-sphere and it follows immediately that any spin 7-
manifold has a compatible topological G2-structure (in the sense of reduction
of the structure group of the tangent bundle). But there are different homo-
topy classes of such reductions. For example if the tangent bundle is trivial the
reduction corresponds to a map

M → Spin(7)/G2 = S7

which has an integer degree. Taking account of the action of the diffeomor-
phisms, Crowley and Nordstrom showed that this integer is cut down to an
invariant ν ∈ Z/48. If the divisibility of the Pontrayagin class divides 224
they show that this is a complete invariant (up to homotopy and diffeomor-
phism), and in general they introduced another more refined invariant to com-
plete the classification. The ν invariant can be defined as the reduction mod
48 of χ(W )− 3σ(W ), where W is an 8-manifold with boundary M and with a
Spin(7) structure compatible with the G2 structure on the boundary. They show
that ν = 24 for all the structures obtained from twisted connected sums, but
that there is an example from the Joyce construction with ν odd. In [20], Crow-
ley, Goette and Nordström develop an analytical approach based on the Atiyah,
Patodi, Singer theory and define a Z-valued lift ν̂ of ν which is a deformation
invariant of G2-structures. The arguments hinge on the fact that the kernel of
the Dirac operator defined by such a structure has fixed dimension 1, spanned
by the covariant constant spinor field. They apply this to the question raised at
the end of the previous paragraph, giving an example of a pair of G2-structures
on the same differentiable manifold which are equivalent at the homotopy level
but which can not be joined by a path of torsion-free structures. In another
direction, Crowley and Nordström define a “generalised Eels-Kuiper invariant”
of the smooth structure, and show that different twisted connected sums can
realise different values of this invariant on the same topological manifold [22].

Another line of activity makes contact with Riemannian convergence the-
ory. As we noted in 3.2 above, the Joyce and Kovalev constructions can both
be seen as describing regions near the “boundary of moduli space”—or in other
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words different kinds of degeneration of sequences of torsion-free G2-structures.
Understanding all such degenerations is an important general question. Since
these structures define metrics with zero Ricci curvature the substantial body of
Riemannian convergence theory, as developed by Cheeger, Colding and others,
can be brought to bear on this question and fit them into a wider context. We
recall the basic Gromov compactness theorem for a sequence of complete Rie-
mannian m-manifolds (Mi, gi) with (say) zero Ricci curvature and with chosen
base points pi ∈ Mi. After passing to a subsequence there is a Gromov-Hausdorff
limit (M∞, p∞) which is a based metric space. If the sequence has bounded di-
ameter then there is no need to choose base points. In this theory there is
a fundamental distinction between non-collapsing and collapsing cases. In the
non-collapsing case the limit is a Riemannian m-manifold outside a singular set
of codimension at least 4. This occurs for Joyce’s examples, when the parameter
ϵ tends to zero and the limit is an orbifold. The twisted sum construction, with
parameter L → ∞, is also non-collapsing, but there are three possible choices
of limits depending on the choice of base-points. In a collapsing situation the
Gromov-Hausdorff limit is a space of dimension less than m and one can hope
that it can be endowed with some vestige of the structure on the sequence Mi.

In [32] the author proposed a programme to study collapsing of G2-structures
along co-associative fibrations. This develops ideas of Kovalev [55] and Baraglia
[1], and is in a similar vein to seminal work of Gross and Wilson in the case of
K3 surfaces collapsing along elliptic fibrations [43]. Recall that a 4-dimensional
submanifold X of a G2 manifold (M,ϕ) is called co-associative if the restriction
of ϕ to X vanishes. We consider a smooth map π : M → B where B is a
3-manifold and π is a fibration outside a link L ⊂ B, with fibres diffeomorphic
to the K3 surface. Transverse to L, the map is required to be modelled on a
non-degenerate complex quadratic form. so the fibres over L are modelled on
complex surfaces with ordinary double points. A particular example of this set-
up is when M = Y ×S1, B = S2×S1 for a Calabi-Yau 3-fold Y with a Lefschetz
fibration over S2. The proposal of [32] is a sequence of structures of this kind in
which the fibres collapse should have an “adiabatic limit”. Locally, on a small
ball B0 ⊂ B \L, the limiting data is given by a family of hyperkähler sructures
on a fixed 4-manifold X (diffeomorphic to a K3 surface), parametrised by B0.
By the Torelli Theorem for K3 surfaces this data is a map

f : B0 → Gr+3 (H
2(X,R)),

where the target is the space of positive 3-dimensional subspaces of H2(X),
the latter being endowed with its cup product form of signature (3, 19). The
proposal is that the vestige of the G2-structures is the requirement that f be
the Gauss map of a maximal submanifold in H2(X;R) (i.e. a critical point
of the induced volume functional on 3-dimensional submanifolds). This local
discussion can be extended to the whole of B but the set-up is more complicated
and brings in the monodromy action on the cohomology of the fibres. The main
analytical difficulty in carrying through this proposal involves the behaviour
around the singular fibres. Indeed just the same difficulty arises when studying
the analogous question for fibred Calabi-Yau 3-folds (a problem which has been
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studied by many authors, for example [42]). Significant progress in this direction
comes from recent work of Y.Li [61], who constructed a new Ricci-flat metric
on C3 which makes a likely model for the collapsing sequence. Li’s work was
extended soon after by Conlon and Rochon [18] and Székelyhdi [76], leading to
many new families of non-compact Ricci-flat Kähler metrics. One can expect
that these metrics will be important both in Kähler geometry and in exceptional
holonomy.

Other recent work involving collapsing comes in work of Foscolo, Haskins
and Nordstrom [39] on codimension one collapse. They consider a circle bundle
π : M → Y over a non-compact Calabi-Yau 3-fold Y and S1-invariant G2-
structures on M . There is a parameter ϵ related to the length of the circle
fibres and they obtain a well-defined adiabatic limit of the equations as ϵ → 0.
They give general conditions under which this limiting equation can be solved
and show that one can go back to construct a solution of the original problem,
for small ϵ. They also find explicit examples of Calabi-Yau 3-folds satisfying
the conditions, so the result is that they get new examples of families of G2-
structures, collapsing to a 6-dimensional limit. The existence of the relevant
metrics on Y depends on recent developments in the Kähler theory, of the kind
discussed in the first part of this article.

Further developments have taken place in the study of the Laplacian flow for
closed positive 3-forms. Lotay and Wei develop may foundational results and
show that the flow can be continued for all time provided that the torsion and
curvature are bounded [64]. G. Chen showed that the deep results of Perelman
for Ricci flow can be adapted to the Laplacian flow [11]. This was used by Fine
and Yao to obtain long time existence of a 4-dimensional reduction of the flow
under the assumption that the scalar curvature remains bounded [38].

3.5 Gauge Theory and Calibrated geometry
There are two particularly interesting classes of differential geometric objects
which can be considered on manifolds with the exceptional holonomy groups
G2,Spin(7):

• special “instanton” solutions of the Yang-Mills equation;

• special “calibrated” solutions of the minimal submanifold equation.

In the Yang-Mills case, for a Riemannian manifold M with holonomy group
G we get a sub-bundle Λ2

G of the 2-forms corresponding to the Lie algebra of
G (that is, Λ2 can be viewed as the Lie algebra of the orthogonal group of the
tangent bundle and G is a subgroup of that orthogonal group). So we can define
an “instanton” to be a connection on a bundle E → M whose curvature lies
in Λ2

G ⊗ EndE. For general holonomy groups G this may not be an interesting
notion, but in the two exceptional cases it yields an elliptic equation (suitably
interpreted) for the connection. In [31] the author and R. Thomas pointed out
the strong formal analogies between these equations in dimensions 8 and 7 and
the usual instanton theory and Floer theory in dimensions 4 and 3. In fact the
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discussion can be extended to link dimensions 8,7,6 and the holonomy groups
Spin(7), G2, SU(3). The “instanton” equation over a manifold with holonomy
SU(3) is just the Hermitian Yang-Mills equation discussed in Section 2.2 above,
whose solutions (over a compact manifold) correspond to stable holomorphic
vector bundles.

In the submanifold case we have the calibrated submanifolds:

• Spin(7): codimension-4 Cayley submanifolds;

• G2: codimension 4 associative submanifolds, codimension 3 co-associative
submanifolds

• SU(3): codimension 4 holomorphic curves, codimension 3 special La-
grangian submanifolds

The calibrated condition means that these submanifolds are absolutely volume
minimising in their homology class. This theory goes back to the seminal paper
of Harvey and Lawson from the early 1980’s (which was influential in reviv-
ing interest generally in exceptional holonomy). A notable feature of the cases
above is that the calibrated condition is an elliptic equation, suitably inter-
preted. The suggestion in [31] was that there could be “enumerative” theories
built on these geometric objects (connections and submanifolds), yielding nu-
merical invariants or other structures such as Floer homology groups. In the
two decades since [31] only one such theory has been developed rigorously, lead-
ing to what are sometimes called Donaldson-Thomas invariants of Calabi-Yau
3-folds. This development has been entirely algebro-geometric, working with
stable holomorphic bundles, or more generally sheaves, rather than Hermitian
Yang-Mills connections. In fact the main algebro-geometric interest has been in
the rank 1 case, where the Hermitian Yang-Mills theory does not directly apply.

Going back to differential geometry: there has been substantial activity and
advances. A first question is the very existence of these higher dimensional in-
stantons. This has been addressed by Walpuski [81],[83] Sá Earp and Menet
[69], [67] through gluing constructions which parallel the Joyce and Kovalev
constructions of the underlying manifolds. Sá Earp showed that a stable holo-
morphic bundle over a Fano building block whose restriction to the divisor D
is stable gives rise to a Hermitian -Yang-Mills connection on the cylindrical-end
manifold. Two such bundles can be used to construct an instanton the twisted
connected sum if they satisfy a suitable matching condition over the divisors.
In [81], Walpuski proved the existence of instantons over one of Joyce’s exam-
ples by gluing a connnection constructed from a 4-dimensional instanton over
the Eguchi-Hanson manifold to a flat connection over the orbifold. Walpsuki
used related techniques to construct instantons over manifolds with Spin(7)-
holonomy [83].

The fundamental problem in developing enumerative theories is the potential
failure of compactness. The foundations to treat this question were developed
by Tian [79], leading to a theory which has close analogies with the Riemannian
convergence theory. For any sequence of solutions of the instanton equation on
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a fixed bundle there is a subsequence which converges outside a set S of codi-
mension at least 4 and the codimension 4 component of S satisfies a generalised
form of the corresponding calibrated condition. Restricting to the G2 case, the
basic problem occurs in a generic 1-parameter family ϕt of G2-structures. We
expect that for each t there are a finite number of G2 instantons (on a given
bundle E), but at some parameter value t0 this number may change because a
family of solutions At for t < t0 (say) may diverge as t → t0 with “bubbling”
along some associative submanifold P . Thus, starting on the gauge theory side,
we are inevitably drawn to consider the submanifold theory as well. This fits in
with the close analogies between the theories at the formal level and also with
the algebro-geometric point of view in the Calabi-Yau case (where we asociate
an ideal sheaf to a curve). Under reasonable assumptions one can show that this
divergent phenomenon occurs exactly for the parameter values t where there is
a solution of a certain “Fueter equation” over an associative submanifold P [82].

Haydys and Walpuski have proposed an approach to overcome this funda-
mental compactness problem [45]. They consider a variant of the Seiberg-Witten
equations over a 3-manifold and their proposal is to count both instantons and
associative submanifolds, the latter weighted by a count of the solutions of the
Seiberg-Witten equations. The reason for this is that compactness can also fail
for these Seiberg-Witten equations and an analysis of this failure of compactness
suggests that it occurs exactly when there is a solution of the same Fueter equa-
tion. So one can hope that (with a careful choice of signs) the jump in the count
of instantons should be exactly compensated by the jump in the Seiberg-Witten
count.

There are many technical problems in carrying through this Haydys and
Walpuski programme (particulary in the case when P is a homology sphere and
reducible solutions present difficulties, of a kind familiar in the gauge theory
literature). The programme motivates a better understanding of higher codi-
mension singularities, making contact with deep work of Taubes [77]. As shown
by Doan and Walpuski [28], one has to consider also solutions of the Fueter
equation which have singularities along 1-dimensional sets in P and it seems
likely that these correspond to instantons on the 7-manifold with 1-dimensional
singular sets. Once again there is link here with the complex geometry. Bando
and Siu showed that the Hermitian-Yang-Mills theory can be extended to re-
flexive sheaves and one expects that, transverse to the 1-dimensional singular
set in the 7-manifold, the geometry of the connection should be modelled by a
reflexive sheaf on a complex 3-fold, with a point singularity.
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