

Close

Quit

Strong Law of large number Law of the iterated logarithm for nonlinear probabilities

ZENGJING CHEN

SHANDONG UNIVERSITY

July 5, 2010

Main Question Home Page Title Page Itle Page

Outline

- ♦ History of LLN and LIL for probabilities
- ♦ Why to study LLN and LIL for capacities
- **Nonlinear probabilities and nonlinear expectations**
- \diamond Main results
- ♦ Applications

Main Question Main Question Reports

0.1. History of LLN and LIL for probability

- ★ Law of large number(LLN):
 - (1) Brahmagupta (598-668), Cardano (1501-1576)
 - (2) Jakob Bernoulli(1713), Poisson (1835)
 - (3) Chebyshev, Markov, Borel(1909), Cantelli and Kolmogorov(IID).
- * Law of iterated logarithm(LIL):
 - (1) Khintchine(1924) for Bernoulli model
 - Kolmogorov(1929), Hartman–Wintner(1941) (IID)
 - (2) Levy(1937) for Martingale
 - (3) Strassen(1964) for functional random variables.

Main Question Main Question Reports

Main Question

0.2. Strong LLN and LIL for probabilities

Assumption: $\{X_i\}$ IID, $S_n/n := \sum_{i=1}^n X_i$, $EX_1 = \mu$, Then **Theorem 1:**Kolmogorov:

$$P(\lim_{n \to \infty} S_n / n = \mu) = 1$$

Theorem 2: Hartman–Wintner(1941): If $EX_1 = 0$, $EX_1^2 = \sigma^2$, Then (a)

$$P\left(\limsup_{n\to\infty}\frac{S_n}{\sqrt{2n\log\log n}}=\sigma\right)=1$$

(b)

$$P\left(\liminf_{n\to\infty}\frac{S_n}{\sqrt{2n\log\log n}}=-\sigma\right)=1$$

(c) Suppose that $C({x_n})$ is the cluster set of a sequence of ${x_n}$ in R, then

$$P\left(C(\{\omega: S_n(\omega)/\sqrt{2n \log\log n}\}) = [-\sigma, \sigma]\right) = 1.$$

Main Question Main Question Reports

0.3. Why to study LLN and LIL in Finance

THEOREM 1 (Black-Scholes, 1973:) In complete markets, there exists a unique probability measure Q, such that the pricing of option ξ at strike date T is given by $E_Q[\xi e^{-rT}]$. Where r = 0 is interest rate of bond.

Monte Carlo, $\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n X_i = E_Q[\xi].$

- $\star (Linear) expectation \leftarrow \underline{Black-Scholes} \rightarrow Complete Markets$
- * $\inf_{Q \in \mathcal{P}} E_Q[\xi]$, $\sup_{Q \in \mathcal{P}} E_Q[\xi] \iff$ Incomplete Markets, Q is not unique, SET \mathcal{P} .
- * Super-pricing: $\inf_{Q \in \mathcal{P}} E_Q[\xi]$, $\sup_{Q \in \mathcal{P}} E_Q[\xi]$. Nonlinear expectation! $\lim_{n \to \infty} S_n/n = ?$

Main Question Main Question Reports

0.4. Bernoulli Trials with ambiguity

* Bernoulli Trials:

Repeated independent trials are called Bernoulli trials if there are only two possible outcomes for each trial and their probabilities **REMAIN** (are no longer) the same throughout the trials.

* Let $X_i = 1$ if head occurs and $X_i = 0$ if tail occurs.

$$P_{\theta}(X_i = 1) = \theta, \quad P_{\theta}(X_i = 0) = 1 - \theta, \quad S_n := \sum_{i=1}^n X_i$$

* If $\theta = 1/2$ (Unbalance), LLN stats

$$P_{\theta}(\lim_{n \to \infty} S_n/n = 1/2) = 1$$

Or

$$\lim_{n \to \infty} S_n / n = 1/2 \quad a.s \quad (P_{\theta})$$

Main Question Main Question Reports

★ If a coin is balance. P_θ(X_i = 1) = θ ∈ [1/3, 1/2]. Let P := {P_θ, θ ∈ [1/3, 1/2]}. E_{P_θ}[X_i] = θ Unknown, But max_{P∈P} E_P[X_i] = 1/2, min_{P∈P} E_P[X_i] = 1/3.
★ Question: what is the limit S_n/n →? (a) Capacity: If V(A) := max_{P∈P} P(A), v(A) := min_{P∈P} P(A) Can S_n/n converge to max_{P∈P} E_P[X_i] or min_{P∈P} E_P[X_i] a.s. V or v? (b) The relation between the set of limit points of S_n/n and the interval of min_{P∈P} E_P[X_i] and max_{P∈P} E_P[X_i].

Main Question Main Question Reports

Main Question

0.5. Linear and Nonlinear Expectations

* Kolmogorov: Linear expectation: $P : \mathcal{F} \to [0, 1], P(A) = E[I_A]$

 $P(A+B) = P(A) + P(B), \ A \cap B = \emptyset \Leftrightarrow E[\xi + \eta] = E[\xi] + E[\eta]$

Expectation is a linear functional of random variable.

* Nonlinear probability(capacity): $V(\cdot) : \mathcal{F} \to [0, 1]$ but

 $V(A+B) \neq V(A) + V(B)$, even $A \cap B = \emptyset$.

*Nonlinear expectation: $\mathbb{E}(\xi)$ is nonlinear functional in the sense of

 $\mathbb{E}[\xi + \eta] \neq \mathbb{E}[\xi] + \mathbb{E}[\eta].$

Capacity $V(A) = \mathbb{E}[I_A]$ is nonlinear.

Main Question Main Question Reports

Modes of nonlinear expectations and capacity

(1)Choquet expectations (Choquet 1953, physics)

$$C_V[X] := \int_0^\infty V(X \ge t) dt + \int_{-\infty}^0 [V(X \ge t) - 1] dt.$$

(2)g-expectation (Peng 1997)

- (3) Sub-linear expectation(Peng 2007).
 - (a)Monotonicity: X ≥ Y implies E[X] ≥ E[Y].
 (b)Constant preserving: E[c] = c, ∀c ∈ R.
 (c)Sub-additivity: E[X + Y] ≤ E[X] + E[Y].
 (d)Positive homogeneity: E[λX] = λE[X], ∀λ ≥ 0.

(1) Distorted probability measure: $V(A) = g(P(A)), g : [0, 1] \rightarrow [0, 1].$ (2) 2-alternating capacity: $V(A \cup B) \leq V(A) + V(B) - V(A \cap B)$ (3) $V(A) = \max_{P \in \mathcal{P}} P(A), \mathcal{P}$ set of Probability.

Main Question Main Question Reports

Main Question

Quit

1. Independence w.r.t probability or capacity

* Linear: A and B independent P(AB) = P(A)P(B)

$$\Leftrightarrow E[\phi(I_A + I_B)] = E[E[\phi(x + I_B)]|_{x = I_A}], \forall \phi(x)$$

* Nonlinear: Epstein(2002), Marinacci(2005) V(AB) = V(A)V(B)

 $\Leftarrow \mathbb{E}[\phi(I_A + I_B)] = \mathbb{E}[\mathbb{E}[\phi(x + I_B)]|_{x = I_A}]$

Main Question Main Question Reports

Quit

2. Definition of IID under expectation

DEFINITION 1 (Peng 2007)

Independence: A random variable $X \in \mathcal{H}$ is said to be independent under \mathbb{E} to Y, if for each φ such that $\varphi(X, Y) \in \mathcal{H}$ and $\varphi(X, y) \in \mathcal{H}$ for each $y \in \mathbb{R}$

 $\mathbb{E}[\varphi(X,Y)] = \mathbb{E}[\overline{\varphi}(Y)],$

where $\overline{\varphi}(y) := \mathbb{E}[\varphi(X, y)].$

Identical distribution: *Random variables* X *and* Y *are said to be identically distributed, if for each* φ *such that* $\varphi(X), \ \varphi(Y) \in \mathcal{H}$ *,*

 $\mathbb{E}[\varphi(X)] = \mathbb{E}[\varphi(Y)].$

Mutual independence: X and Y are mutually independent

 $\mathbb{E}[\phi(X+Y)] = \mathbb{E}[\mathbb{E}[\phi(X+y)]|_{y=Y}]$

Main Question Main Question Reports

Main Question

3. Definition: capacity and nonlinear expectation

(1) Probability space :(Ω, F, P) ⇒ (Ω, F, P). Where P := {P_θ : θ ∈ Θ}.
(2) Capacity: P ⇒ (v, V), where

$$v(A) = \inf_{Q \in \mathcal{P}} Q(A), \quad V(A) = \sup_{Q \in \mathcal{P}} Q(A).$$

(3)Property:

 $V(A) + V(A^c) \ge 1, \quad v(A) + v(A^c) \le 1$

but

 $V(A) + v(A^c) = 1.$

(4) Nonlinear expectations: Lower-upper expectation $\mathcal{E}[\xi]$ and $\mathbb{E}[\xi]$

 $\mathcal{E}[\xi] = \inf_{Q \in \mathcal{P}} E_Q[\xi], \qquad \mathbb{E}[\xi] = \sup_{Q \in \mathcal{P}} E_Q[\xi]$

Main Question

4. LLN for sub-linear expectations

* Weak LLN:

Home Page
Title Page

III >>
Page 13 of 21
Go Back
Full Screen
Close
Quit

THEOREM 2 (Peng 2007,2008) $\{X_i\}_{i=1}^{\infty}$ IID random variables, $\overline{\mu} := \mathbb{E}[X_1], \quad \underline{\mu} := \mathcal{E}[X_1].$ Then for any continuous and linear growth function $\phi,$ $\mathbb{E}\left[\phi\left(\frac{1}{n}\sum_{i=1}^n X_i\right)\right] \to \sup_{\mu \le x \le \overline{\mu}} \phi(x), \text{ as } n \to \infty.$

* Theorem (Peng, 2006,2007). CLT for IID

Main Question Main Question Reports

- $\star V(AB) = V(A)V(B), v(AB) = v(A)v(B)$
- * Theorem (Epstein, 02, Marinacci, 99, 05). ξ Bounded, Ω Polish, $C_v[X_i] = \underline{\mu}, C_V[X_i] = \overline{\mu}. \{X_i\}$ IID, then

$$v\left(\underline{\mu} \le \liminf_{n \to \infty} S_n/n \le \limsup_{n \to \infty} S_n/n \le \overline{\mu}\right) = 1.$$

Where V is totally 2-alternating $V(A \bigcup B) \le V(A) + V(B) - V(AB)$, here C_v and C_V is Choquet are integrals. Note $C[Y] \le \mathcal{E}[Y] \le \mathbb{E}[Y] \le C[Y] \forall Y$

Note $C_v[X] \leq \mathcal{E}[X] \leq \mathbb{E}[X] \leq C_V[X], \forall X.$

Main Question Home Page Title Page Image Title Page Image Image

4.1. Limit theorem 1

Theorem: If $\{X_i\}$ is IID, then $\frac{S_n}{n}$ converges as $n \to \infty$ a.s. v if and only if

 $\mathcal{E}[X_1] = \mathbb{E}[X_1].$

In this case,

 $\lim S_n/n = \mathcal{E}[X_1], \quad a.s. \quad v.$

5. Main results

THEOREM 3 $\{X_i\}_{i=1}^n$ IID under nonlinear expectation \mathbb{E} . Set $\overline{\mu} := \mathbb{E}[X_i]$, $\underline{\mu} := \mathcal{E}[X_i]$ and $S_n := \sum_{i=1}^n X_i$. If $\mathbb{E}[|X_i|^{1+\alpha}] < \infty$ for $\alpha > 0$. Then (I)

 $v\left(\omega \in \Omega : \underline{\mu} \leq \liminf_{n \to \infty} S_n(\omega)/n \leq \limsup_{n \to \infty} S_n/n(\omega) \leq \overline{\mu}\right) = 1.$

(II)

$$V(\omega \in \Omega : \limsup_{n \to \infty} S_n(\omega)/n = \overline{\mu}) = 1$$
$$V(\omega \in \Omega : \liminf_{n \to \infty} S_n(\omega)/n = \underline{\mu}) = 1.$$

(III) Suppose that $C(\{S_n(\omega)/n\})$ is the cluster set of a sequence of $\{S_n(\omega)/n\}$, then

 $V\left(\omega \in \Omega : C(\{S_n(\omega)/n\}) = [\underline{\mu}, \overline{\mu}]\right) = 1$

(I)

(II)

1

6. Law of iterated logarithm for sub-linear expectations

THEOREM 4 { X_n } bounded IID. $\mathbb{E}[X_1] = \mathcal{E}[X_1] = 0, \ \overline{\sigma}^2 := \mathbb{E}[X_1^2], \underline{\sigma}^2 := \mathcal{E}[X_1^2]$. Let $S_n := \sum_{i=1}^n X_i, a_n := \sqrt{2n \lg \lg n}$, then

$$v\left(\underline{\sigma} \le \limsup_{n} \frac{S_n}{a_n} \le \overline{\sigma}\right) = 1;$$

$$v\left(-\overline{\sigma} \le \liminf_{n} \frac{S_n}{a_n} \le -\underline{\sigma}\right) = 1.$$

(III) Suppose that $C(\{x_n\})$ is the cluster set of a sequence of $\{x_n\}$ in R, then

$$\upsilon\left(C(\{S_n/\sqrt{2n\mathrm{loglog}n}\})\supset(-\underline{\sigma},\underline{\sigma})\right)=1.$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

Main Question Main Question Reports

Main Question Home Page

7. Key of proof

Quit

THEOREM 5 Suppose ξ is distributed to G normal $N(0; [\underline{\sigma}^2, \overline{\sigma}^2])$, where $0 < \underline{\sigma} \leq \overline{\sigma} < \infty$. Let ϕ be a bounded continuous function. Furthermore, if ϕ is a positively even function, then, for any $b \in R$,

$$e^{-\frac{b^2}{2\underline{\sigma}^2}} \mathcal{E}[\phi(\xi)] \le \mathcal{E}[\phi(\xi-b)].$$

Main Question Main Question Reports

8. Application

Main Question Home Page Title Page Then Page 19 of 21 (b) Go Back Full Screen Close Quit

Total 100 balls in box, Black + Red + Yellow = 100, Black = Red, Yellow $\in [30, 40]$, then $P_Y \in [3/10, 4/10]$. Take a ball from this box, $X_i = 1$, if ball is black, $X_i = 0$, if ball is Yellow, $X_i = -1$ for red. $S_n = \sum_{i=1}^n X_i$, is the excess frequency of black than Red Then (a) $\mathbb{E}[X_i] = \mathcal{E}[X_i] = 0$ (b) $\sqrt{6/10} \leq \lim_{n \to \infty} \sum_{i=1}^{n} S_n \leq \sqrt{7/10}$

 $\sqrt{6/10} \le \limsup_{n \to \infty} \frac{S_n}{\sqrt{2n \lg \lg n}} \le \sqrt{7/10}.$

Main Question Main Question Reports

Main Question				
	Home Page			
	Title Page			
	ا	••		
	Page 20 of 21			
	Go Back			
	Full Screen			
	Close			
	Quit			

9. Nonlinear expectation in Finance

In incomplete markets, there exists a set \mathcal{P} of probability measures, such that the super-sub-hedging price of option ξ at strike date T are given by $\underline{\mu} := \inf_{Q \in \mathcal{P}} E_Q[\xi], \overline{\mu} := \sup_{Q \in \mathcal{P}} E_Q[\xi].$ then

$$\underline{\mu} \leq \liminf_{n \to \infty} S_n(\omega)/n \leq \limsup_{n \to \infty} S_n/n(\omega) \leq \overline{\mu}$$

(2)

(1)

$$\operatorname{im} \operatorname{sup}_{n \to \infty} S_n(\omega) / n = \overline{\mu}, \quad V,$$

$$\liminf_{n \to \infty} S_n(\omega)/n = \underline{\mu}, \quad V$$

Page 21 of 21

Go Back

Full Screen

Close

Quit

Thank you !