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Methods for Making Maximal Profit · · ·

The insurance company generally takes the following means to

earn maximal profit, reduce its risk exposure and improve its
security:

Proportional reinsurance

Controlling dividends payout

Controlling bankrupt probability(or solvency) and so on
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Cramér-Lundberg model of cash flows

The classical model with no reinsurance, dividend
pay-outs

The cash flow (reserve process) rt of the insurance
company follows

rt = r0 + pt −
Nt∑

i=1

Ui ,

where

claims arrive according to a Poisson process Nt with
intensity ν on (Ω,F , {Ft}t≥0,P).
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Cramér-Lundberg model of reserve process

Ui denotes the size of each claim. Random variables Ui are
i.i.d. and independent of the Poisson process Nt with finite first
and second moments given by µ1 and µ2.

p = (1 + η)νµ1 = (1 + η)νE{Ui}

is the premium rate and η > 0 denotes the safety loading.
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Diffusion approximation of Cramér-Lundberg model

By the central limit theorem, as ν →∞,

rt
d
≈ r0 + BM(ηνµ1t , νµ2t).

So we can assume that the cash flow {Rt , t ≥ 0} of insurance
company is given by the following diffusion process

dRt = µdt + σdWt ,

where the first term " µt " is the income from insureds and the
second term " σWt " means the company’s risk exposure at any
time t .
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Making Proportional reinsurance to reduce risk

The insurance company gives fraction λ(1− a(t)) of its
income to reinsurance company

As a return, the reinsurance share with the insurance
company’s risk exposure σWt by paying money
(1− a(t))σWt to insureds.

The cash flow {Rt , t ≥ 0} of the insurance company then
becomes

dRt = (µ− (1− a(t))λ)dt + σa(t)dWt , R0 = x .

We generally assume that λ ≥ µ based on real market.
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Making dividends payout for the company’s shareholders

If Lt denotes cumulative amount of dividends paid out to the
shareholders up to time t ,then the cash flow {Rt , t ≥ 0} of the
company is given by

dRt = (µ− (1− a(t))λ)dt + σa(t)dWt − dLt , R0 = x , (1)

where 1− a(t) is called the reinsurance fraction at time t , the
R0 = x means that the initial capital is x , the constants µ and λ
can be regarded as the safety loadings of the insurer and
reinsurer, respectively.
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Optimal Control Problem for the model (1)

Notations:

A policy π = {aπ(t),Lπt } is a pair of non-negative càdlàg
Ft -adapted processes defined on a filtered probability
space (Ω,F , {Ft}t≥0,P)

A pair of Ft adapted processes π = {aπ(t),Lπt } is called a
admissible policy if 0 ≤ aπ(t) ≤ 1 and Lπt is a nonnegative,
non-decreasing, right-continuous with left limits.

Π denotes the whole set of admissible policies.

When a admissible policy π is applied, the model (1) can
be rewritten as follows:

dRπ
t = (µ− (1− aπ(t))λ)dt + σaπ(t)dWt − dLπt , Rπ

0 = x . (2)
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Optimal Control Problem for the model (1)

General setting:

The performance function J(x , π) defined by

J(x , π) = E
{∫ τπx

0
e−ctdLπt

}
(3)

where τπx = inf{t ≥ 0 : Rπ
t = 0} is the time of bankruptcy,

c > 0 is a discount rate.

The optimal return function V (x) defined by

V (x) = sup
π∈Π
{J(x , π)}. (4)

Optimal control problem for the model (1) is to find the
optimal return function V (x) and the optimal policy π∗ such
that V (x) = J(x , π∗)
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Solution of optimal control problem for the model (1) does not
meet safety level

It well known that one can find a dividend level b0 > 0, an
optimal policy π∗b0

and an optimal return function V (x , π∗b0
) to

solve optimal control problem for the model (1), i.e.,

V (x) = V (x ,b0) = J(x , π∗b0
)

and b0 satisfies ∫ ∞
0

I
{s:R

π∗b0 (s)<b0}
dL

π∗b0
s = 0

However, the b0 may be too low and it will make the company
go bankrupt soon
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Solution of optimal control problem for the model (1) does not
meet safety level

Indeed, we proved that the b0 and π∗b0
satisfy for any

0 < x ≤ b0 there exists ε0 > 0 such that

P{τ
π∗b0
x ≤ T} ≥ ε0 > 0, (5)

where
ε0 = min

{ 4[1−Φ( x
dσ
√

T
)]2

exp{ 2
σ2 (λ2+δ2)T}

, x√
2πσ

∫ T
0 t−

3
2 exp{− (x+µt)2

2σ2t }dt
}
,

τπx = inf
{

t ≥ 0 : Rπ
t = 0

}
.

If the company’s preferred risk level is ε(≤ ε0), i.e.,

P[τ
π∗b0
x ≤ T ] ≤ ε, (6)

then the company has to reject the policy π∗b0
because it

does not meet safety requirement (6) by (5), and the
insurance company is a business affected with a public
interest,
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The best way to the company with the model (1)

and insureds and policy-holders should be protected against
insurer insolvencies. So the best policy π∗b(b ≥ b0) of the
company should meet the following

The safety standard (6)

The cost for safety standard (6) being minimal

We establish setting to solve the problems above as follows.
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General setting optimal control problem for the model (1)with
solvency constraints

For a given admissible policy π the performance function

J(x , π) = E
{∫ τπx

0
e−ctdLπt

}
(7)

The optimal return function

V (x) = sup
b∈B
{V (x ,b)} (8)

where V (x ,b) = supπ∈Πb
{J(x , π)}, solvency constraint set

B :=
{

b : P[τπb
b ≤ T ] ≤ ε, J(x , πb) = V (x ,b) and πb ∈ Πb

}
,

Πb = {π ∈ Π :
∫∞

0 I{s:Rπ(s)<b}dLπs = 0} with property:
Π = Π0 and b1 > b2 ⇒ Πb1 ⊂ Πb2 .
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Main goal

Finding value function V (x), an optimal dividend policy π∗b∗ and
the optimal dividend level b∗ to solve the sub-optimal control
problem (7) and ( 8), i.e., J(x , π∗b∗) = V (x).

Our main results are the following
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Main Results

Theorem

Assume that transaction cost λ− µ > 0. Let level of risk
ε ∈ (0,1) and time horizon T be given.

(i) If P[τ
π∗b0
b0
≤ T ] ≤ ε, then we find f (x) such that the value

function V (x) of the company is f (x), and
V (x) = V (x ,b0) = J(x , π∗b0

) = V (x ,0) = f (x). The optimal

policy associated with V (x) is π∗bo
= {A∗b0

(R
π∗bo
· ),L

π∗bo
· }, where

(R
π∗b0
t ,L

π∗b0
t ) is uniquely determined by the following SDE with

reflection boundary:
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Main Results

Theorem(continue)



dR
π∗bo
t = (µ− (1− A∗b0

(R
π∗bo
t ))λ)dt + σA∗b0

(R
π∗bo
t )dWt − dL

π∗bo
t ,

R
π∗bo
0 = x ,

0 ≤ R
π∗bo
t ≤ b0,∫∞

0 I
{t :R

π∗bo
t <b0}

(t)dL
π∗bo
t = 0

(9)

and τ
π∗b0
x = inf{t : R

π∗b0
t = 0}. The optimal dividend level is b0.

The solvency of the company is bigger than 1− ε.
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Main Results

Theorem(continue)

(ii) If P[τ
π∗b0
b0
≤ T ] > ε, then there is a unique b∗ > b0 satisfying

P[τ
π∗b∗
b∗ ≤ T ] = ε and find g(x) such that g(x) is the value

function of the company, that is,

g(x) = sup
b∈B
{V (x ,b)} = V (x ,b∗) = J(x , π∗b∗) (10)

and

b∗ ∈ B, (11)

where

B :=
{

b : P[τπb
b ≤ T ] ≤ ε, J(x , πb) = V (x ,b) and πb ∈ Πb

}
.
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Main Results

Theorem(continue)
The optimal policy associated with g(x) is
π∗b∗ = {A∗b∗(R

π∗b∗
· ),L

π∗b∗
· }, where (R

π∗b∗
· ,L

π∗b∗
· }) is uniquely

determined by the following SDE with reflection boundary:
dR

π∗b∗
t = (µ− (1− A∗b∗(R

π∗b∗
t ))λ)dt + σA∗b∗(R

π∗b∗
t )dWt − dL

π∗b∗
t ,

R
π∗b∗
0 = x ,

0 ≤ R
π∗b∗
t ≤ b∗,∫∞

0 I
{t :R

π∗b∗
t <b∗}

(t)dL
π∗b∗
t = 0

(12)

and τπ
∗
b

x = inf{t : Rπ∗b
t = 0}. The optimal dividend level is b∗.

The optimal dividend policy π∗b∗ and the optimal dividend b∗

ensure that the solvency of the company is 1− ε.
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Main Results

Theorem(continue)
(iii)

g(x ,b∗)
g(x ,b0)

≤ 1. (13)

(iv) Given risk level ε risk-based capital standard x = x(ε) to
ensure the capital requirement of can cover the total given risk
is determined by ϕb∗(T , x(ε)) = 1− ε, where ϕb(T , y) satisfies

ϕb
t (t , y) = 1

2 [A∗b(y)]2σ2ϕb
yy (t , y) + (λA∗b(y)− δ)ϕb

y (t , y),

ϕb(0, y) = 1, for 0 < y ≤ b,
ϕb(t ,0) = 0, ϕb

y (t ,b) = 0, for t > 0.
(14)
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Main Results

Theorem(continue)
where f (x) is defined as follows: If λ ≥ 2µ, then

f (x) =

{
f1(x ,b0) = C0(b0)(eζ1x − eζ2x ), x ≤ b0,

f2(x ,b0) = C0(b0)(eζ1b0 − eζ2b0) + x − b0, x ≥ b0.
(15)

If µ < λ < 2µ, then

f (x) =



f3(x ,b0) =
∫ x

0 X−1(y)dy , x ≤ m,
f4(x ,b0) = C1(b0)

ζ1
exp (ζ1(x −m)) + C2(b0)

ζ2
exp (ζ2(x −m)),

m < x < b0,

f5(x ,b0) = C1(b0)
ζ1

exp (ζ1(b0 −m)) + C2(b0)
ζ2

exp{ζ2(b0 −m)}
+x − b0, x ≥ b0.

(16)
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Main Results

Theorem(continue)
g(x) is defined as follows: If λ ≥ 2µ, then

g(x) =

{
f1(x ,b), x ≤ b,
f2(x ,b), x ≥ b.

(17)

If µ < λ < 2µ, then

g(x) =


f3(x ,b), x ≤ m(b),
f4(x ,b), m(b) < x < b,
f5(x ,b), x ≥ b.

(18)
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Main Results

Theorem(continue)
A∗(x) is defined as follows: If λ ≥ 2µ, then A∗(x) = 1 for x ≥ 0.
If µ < λ < 2µ, then

A∗(x) = A(x ,b0) :=

{
− λ
σ2 (X−1(x))X

′
(X−1(x)), x ≤ m,

1, x > m,
(19)

where X−1 denotes the inverse function of X (z), and

X (z) = C3(b0)z−1−c/α+C4(b0)−λ− µ
α + c

ln z, ∀z > 0, m(b0) = X (z1)
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Main Results

Theorem(continue)

ζ1 =
−µ+

√
µ2 + 2σ2c
σ2 , ζ2 =

−µ−
√
µ2 + 2σ2c
σ2 ,

b0 = 2
ln |ζ2/ζ1|
ζ2 − ζ1

, C0(b0) =
1

ζ1eζ1b0 − ζ2eζ2b0
,∆ = b0 −m,

z1 = z1(b0) =
ζ1 − ζ2

(−ζ2 − λ/σ2)eζ1∆ + (ζ1 + λ/σ2)eζ2∆
,

C1(b0) = z1
−ζ2 − (λ/σ2)

ζ1 − ζ2
, C2(b0) = z1

ζ1 + (λ/σ2)

ζ1 − ζ2
,

C3(b0) = z1+c/α
1

λ(c + α(2µ/λ− 1))

2(α + c)2 , α =
λ2

2σ2 ,

C4(b0) = −(λ− µ)c
(α + c)2 +

(λ− µ)α

(α + c)2 ln C3(b0) +
(λ− µ)α

(α + c)2 ln
(α + c)2

(λ− µ)c
.
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Economic and financial explanation

For a given level of risk and time horizon, if probability of
bankruptcy is less than the level of risk, the optimal control
problem of (7) and (8) is the traditional (3) and (4), the
company has higher solvency, so it will have good
reputation. The solvency constraints here do not work.
This is a trivial case.
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Economic and financial explanation

If probability of bankruptcy is large than the level of risk ε,
the traditional optimal policy will not meet the standard of
security and solvency, the company needs to find a
sub-optimal policy π∗b∗ to improve its solvency. The

sub-optimal reserve process R
π∗b∗
t is a diffusion process

reflected at b∗, the process L
π∗b∗
t is the process which

ensures the reflection. The sub-optimal action is to pay out
everything in excess of b∗ as dividend and pay no dividend
when the reserve is below b∗, and A∗(b∗, x) is the
sub-optimal feedback control function. The solvency
probability is 1− ε.
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Economic and financial explanation

We proved that the value function is decreasing w.r.t b and
the bankrupt probability is decreasing w.r.t. b, so π∗b∗ will
reduce the company’s profit, on the other hand, in view of
P[τ

π∗b∗
b∗ ≤ T ] = ε, the cost of improving solvency is minimal

and is g(x ,b0)− g(x ,b∗). Therefore the policy π∗b∗ is the
best equilibrium action between making profit and
improving solvency.

The risk-based capital x(ε,b∗) to ensure the capital
requirement of can cover the total risk ε can be determined
by numerical solution of 1− ϕb∗(x ,b∗) = ε based on (14).
The risk-based capital x(ε,b∗) decreases with risk ε, i.e.,
x(ε,b∗) increases with solvency , so does risk-based
dividend level b∗(ε).
The premium rate will increase the company’s profit.Higher
risk will get higher return
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8 steps to get solution

Step 1: Prove the inequality (5) by Girsanov
theorem,comparison theorem on SDE,B-D-G inequality.

Step 2: Prove

Lemma 1

Assume that δ = λ− µ > 0 and define (Rπ∗b ,b
t ,Lπ

∗
b

t ) by the
following SDE:

dRπ∗b ,b
t = (µ− (1− A∗b(Rπ∗b ,b

t ))λ)dt + σA∗b(Rπ∗b ,b
t )dWt − dLπ

∗
b

t ,

Rπ∗b ,b
0 = b,

0 ≤ Rπ∗b ,b
t ≤ b,∫∞

0 I
{t :R

π∗b ,b
t <b}

(t)dLπ
∗
b

t = 0.

Then limb→∞ P[τ
π∗b
b ≤ T ] = 0.
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8 steps to get solution

Step 3: Solving HJB equation to determine the value
function g(x ,b)

Step 4: Prove value function g(x ,b) is strictly decreasing
w.r.t. b

Step 5: Prove the probability of bankruptcy P[τb
b ≤ T ] is a

strictly decreasing function of b by Girsanov
theorem,comparison theorem on SDE,B-D-G inequality
and strong Markov property.

Step 6: Prove the probability of bankruptcy
ψb(T ,b) = P

{
τ
π∗b
b ≤ T

}
is continuous function of b by

energy inequality approach used in PDE theory.

Step 7: Economical analysis

Step 8: Numerical analysis of PDE by matlab and
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