An approach to infer the gene
regulatory network of a stable
cell type



Cellular state

Let X = expression level of gene |,
then the cellular state is the vector
X = (X, Xy, Xgperey X )

How are the levels of expression maintained ?
What are the gene regulatory mechanisms?

Our task is to formulate these questions
mathematically and find a way to solve them



Dynamical system

Assume X varies in time according to
dX (1)
dt
The vector field A: R" - R" contains detailed
information on regulatory information, e.g.

= A(X(D))

X; positively regulates X; <> A(x;..x,) T inx

However, A is too complex to reconstruct from
experiments based on current technology.



Stable cell type

A stable cell type can maintain a characteristic
pattern of gene expression through a gene
regulatory network.

Example:
Mouse embryonic stem cells
(on 0.1% gelatin, with LIF)




Equilibrium state

A state pu is an equilibrium state if A(u)=0

The equilibrium is stable if, once the system

comes close to u, it will stay close to u from
then on.

We identify stable cell types with stable
equilibrium states of the dynamical system

unstable stable

C/ZAINO)



Regulatory network
Suppose X(0)= u+6, then for small t
X(t)-X(0)=t A(u+6) =t [A(u) + TS ] =t TS

where T is the Jacobian matrix: T,j=(dA/xj)(u)

We propose to regard T as the regulatory network
that maintains the equilibrium u

Stability imposes a global constraint on the network:
T must be negative definite to ensure stability




An approach to network reconstruction

Use RNA-interference to knockdown each regulator
in the stable cell type

Measure gene expression after the perturbation
Infer network based on a regression model
Incorporate sparsity & stability into the regression

Incorporate regulator binding data when available



Response:

Predictor:

Model:

Goal:

Regression model

gene eXpreSSiOn Changes on I genes
Y = {Y1’Y2 ----- YI}

where Y; = X;(t)-X;(0)
perturbation on J regulators

e.g. Z =((0.9)4,0,0,...0)
J

E(Y,)=)T,Z, fori=1..1
j=1

I

identify non-zero elements in T;



Sparsity

e The true network is likely to be sparse
* Lasso-type regularization with L, penalty

e Penalized loss function
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here the outer sum is over all perturbation
experiments



Stability

Stability imposes useful constraintson T
Lyapunov stability

X ) -4 =1 +T)XO) - ) <[ X (©) 44
choose X(0)-u to get an necessary condition
T, <0; H(‘”TjHi <1, forj=1,.,J

This leads to the optimization of

J J _
LT 2)=F > ZT.J J %Q\TJ—L%EH“’)TJL

Alternative formulations are possible




Incorporate TF binding location data

e TF association strength (TFAS) integrates the ChIP-
seq peak intensities of TF j in the vicinity of gene i
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 Define the TFAS weighting factor
cijzllaij

e Penalized loss function
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Simulated data:

Manually constructed by Chickarmane et al., (2008) PloS One.
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2 stable equilibrium states:
stem cell & endoderm

Use symbolic solver to get the
two networks
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Stem cell expression

0 perturbed expression

t

Perturbation of stem cell state
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6_

Cdx2
Nanog
Oct4
Sox2

e Knockdown one of the

six TFs in each
experiment

e The TF expression is

reduced by 50%
(Nanog) at time t=0

Simulate evolution of
expression after
perturbation



Time evolution after perturbation
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Network reconstruction results

Inferred from
data at t=1

True network

Inferred Inferred

t=5




Real data



Embryonic stem cell

1. Origin:
Derived from pre-implantation Blastocyst
or peri-implantation embryo
\\\"‘_, | Stem cell

2. Self-Renewal: - / \

The cells can divide to make

copies of themselves for a - - ) - ‘;’
prolonged period of time
without differentiating. / \ F X

3. Pluripotency:
Embryonic stem cells can give rise to
cells from all three embryonic germ
layers even after being grown
in culture for a long time.

The three germ layers and one example of a cell type derived from each layer:

Ectoderm Mesoderm Endoderm

oy

// Neuron Blood cells Liver cell
Regenerative Medicine.
Ectoderm gives rise to: Mesoderm gives rise to: Endoderm gives rise to: August 2006
brain, spinal cord, nerve muscles, blood, blood vessels, the gut (pancreas, stomach, '
cells, hair, skin, teeth, connective tissues, and the liver, etc.), lungs, bladder,
sensory cells of eyes, ears heart. and germ cells (eggs or sperm)

nose, and mouth, and
pigment cells.



Gene knockdown by RNA interference
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Summary of experiments in our lab

e |dentification of key TFs
— Literature

— Expression
— ChIP data availability

 RNAI performed on many TFs but is still on going

— Oct4, Nanog, Sox2, Esrrb, Stat3, KlIf4, Myc, Mycn, Zfx,
Smadl

 Measure gene expression by microarray at day 2



Sample clustering (after batch effect correction)
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some details

e Quantile normalization
e Batch effect modeling
* No gene filtering
— All 18138 genes entering into the model fitting

— Perhaps the first attempt on gene regulatory
network inference at the whole genome level in a
mammalian cell type



e Network reconstruction with ChIP information
(ChIP-seq data from Chen et al 2008)

 Cross-validated for choice of A



e 3764 targets regulated by 10 TFs

TF targets identified

Oct4

Nanog

Sox?2

Esrrb

Stat3

Klf4

Myc

Mycn

Zfx

Smadl

2362

588

461

1169

895

277

72

163




A subnetwork for important TFs
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