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Cellular state
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Let   Xi = expression level of gene i,
then the cellular state is the vector

How are the levels of expression maintained ?
What are the gene regulatory mechanisms?

Our task is to formulate these questions 
mathematically and find a way to solve them
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Assume X varies in time according to

The vector field A: Rn → Rn contains detailed 
information on regulatory information, e.g. 

Xj positively regulates Xi ↔   Ai(x1 …xn) ↑ in xj

However, A is too complex to reconstruct from 
experiments based on current technology. 

Dynamical system



A stable cell type can maintain a characteristic 
pattern of gene expression through a gene 
regulatory network.  

Stable cell type

Example:
Mouse embryonic stem cells 
(on 0.1% gelatin, with LIF)



A state μ is an equilibrium state if    A(μ)=0 

The equilibrium is stable if, once the system 
comes close to μ, it will stay close to μ from 
then on.

We identify stable cell types with stable 
equilibrium states of the dynamical system

Equilibrium state

unstable stable



Regulatory network

X(t)-X(0)≈ t A(μ+δ) ≈ t [A(μ) + T δ ] = t T δ

Suppose X(0)= μ+δ , then for small t 

where T is the Jacobian matrix:   Tij=(∂Ai/xj)(μ)

We propose to regard T as the regulatory network 
that maintains the equilibrium μ

Stability imposes a global constraint on the network:
T must be negative definite to ensure stability



An approach to network reconstruction

• Use RNA-interference to knockdown each regulator 
in the stable cell type

• Measure gene expression after the perturbation

• Infer network based on a regression model 

• Incorporate sparsity & stability into the regression

• Incorporate regulator binding data when available



Regression model

• Response:    gene expression changes on I genes 

where 
• Predictor:    perturbation on J regulators

e.g.
• Model:

• Goal:            identify non-zero elements in Tij
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Sparsity

• The true network is likely to be sparse
• Lasso-type regularization with L1 penalty
• Penalized loss function
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here the outer sum is over all perturbation 
experiments



Stability

• Stability imposes useful constraints on T
• Lyapunov stability

choose X(0)-μ to get an necessary condition

• This leads to the optimization of

• Alternative formulations are possible
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Incorporate TF binding location data

• TF association strength (TFAS) integrates the ChIP-
seq peak intensities of TF j in the vicinity of gene i

• Define the TFAS weighting factor

• Penalized loss function
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Simulated data:

Manually constructed  by Chickarmane et al., (2008) PloS One.

2 stable equilibrium states:   
stem cell  & endoderm

Use symbolic solver to get the 
two networks



Perturbation of stem cell state

• Knockdown one of the 
six TFs in each 
experiment

• The TF expression is 
reduced by 50% 
(Nanog) at time t=0

• Simulate evolution of 
expression after 
perturbation



Time evolution after perturbation



Network reconstruction results
True network Inferred from 

data at t=1

Inferred 
t=5

Inferred 
t=5 + prior



Real data



Embryonic stem cell

Regenerative Medicine.
August 2006.



Gene knockdown by RNA interference



Summary of experiments in our lab 
• Identification of key TFs

– Literature
– Expression
– ChIP data availability

• RNAi performed on many TFs but is still on going
– Oct4, Nanog, Sox2, Esrrb, Stat3, Klf4, Myc, Mycn, Zfx, 

Smad1

• Measure gene expression by microarray at day 2



Sample clustering (after batch effect correction)



some details

• Quantile normalization
• Batch effect modeling
• No gene filtering

– All 18138 genes entering into the model fitting
– Perhaps the first attempt on gene regulatory 

network inference at the whole genome level in a 
mammalian cell type



• Network reconstruction with ChIP information 
(ChIP-seq data from Chen et al 2008)

• Cross-validated for choice of λ



TF targets identified

• 3764 targets regulated by 10 TFs

Oct4 Nanog Sox2 Esrrb Stat3 Klf4 Myc Mycn Zfx Smad1

2362 588 461 1169 895 277 0 0 72 163



A subnetwork for important TFs
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