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Introduction

The classification problem

Classify a subject to class 1 or class 2 based on an observed vector
X~ Np(l”’a 2)

Np(ue, X): the p-dimensional normal distribution with mean vector
u= i, k =1,2, and covariance matrix X
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Introduction

The classification problem
Classify a subject to class 1 or class 2 based on an observed vector
X~ Np(/"’v %)

Np(ue, X): the p-dimensional normal distribution with mean vector
n=py, k=12, and covariance matrix X

| \

The dimension of x
In traditional applications, p is small (a few variables)

Modern technologies: a large p (many variables)
@ genetic and microarray data
@ data from biomedical imaging
@ data from signal processing
@ climate data

@ high-frequency financial data.
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Example: Classifying human acute leukemias into two types

@ Gene expression microarray (Golub et al., 1999)
@ Two types of human acute leukemias

@ acute myeloid leukemia (AML)
@ acute lymphoblastic leukemia (ALL)

Distinguishing ALL from AML is crucial for successful treatment
Classification based solely on gene expression monitoring
p=7,129 genes

A training data set

o 47 ALL
o 25 AML
@ N=47+25=72

@ p is much larger than the sample size
p/n~ 100

(7
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When the distribution of x is known (p and X are known)

@ An optimal classification rule exists, which classifies x to class 1 if
and only if
dx Y x—m >0
0 =pa—p2, = (p1+p2)/2
@ It minimizes the average misclassification rate
@ The optimal misclassification rate is

®: the standard normal distribution function

@ This rule is the Bayes rule with equal prior probabilities for two
classes

@ The dimension p: the larger, the better

lim Ropr = 0, lim Ropr = 1/2
Ap—0

Ap—>oo

Jun Shao (ECNU and UW-Madison) Sparse Linear Discriminant Analysis July, 2010



When p and X are unknown
® We have a training sample X = {xyj,i =1,...,nx,k = 1,2}
@ Xyi ~ Np(pk, %), k=1,2
@n=n;+ny

@ All xi’s are independent and X is independent of x
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When @ and X are unknown

® We have a training sample X = {xyj,i =1,...,nx,k = 1,2}
@ Xyi ~ Np(pk, %), k=1,2

@n=ny;+ny

@ All xi’s are independent and X is independent of x

Statistical issue

How to use the training sample to construct a rule having a
misclassification rate close to Ropr

| \
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When @ and X are unknown

® We have a training sample X = {xyj,i =1,...,nx,k = 1,2}
@ Xyi ~ Np(pk, %), k=1,2

@n=ny;+ny

@ All xi’s are independent and X is independent of x

Statistical issue
How to use the training sample to construct a rule having a
misclassification rate close to Ropr

Traditional application: small-p-large-n

The well known linear discriminant analysis (LDA) replaces unknown
0, and X by 6 =X1 —Xo, g =X = (X1 +X2)/2, and X~ = S~1 where

. 1 Nk 2 Nk . _
Xk = n—ki;in, k=12, S= ﬁk;i;(xki — Xk ) (Xki — Xk)

are the maximum likelihood estimators
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Modern application: large-p-small-n (large-p-not-so-large-n)

@ How do we construct a rule when p > n?

@ The LDA needs an estimator of ¥~ (a generalized inverse S—?)
@ The larger p, the better?
)

A larger p results in more information , but produces more

uncertainty when the distribution of x is unknown

A greater challenge for data analysis since the training sample

size n cannot increase as fast as p

@ Bickel and Levina (2004) showed that the LDA is as bad as
random guessing when p/n — o

@ In some studies researchers found that it is better to ignore some
information (such as the correlation among the p components of x)
Domingos and Pazzani (1997), Lewis (1998), Dudoit et al. (2002).

©
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Modern application: large-p-small-n (large-p-not-so-large-n)

@ How do we construct a rule when p > n?

@ The LDA needs an estimator of ¥~ (a generalized inverse S—?)
@ The larger p, the better?
)

A larger p results in more information , but produces more

uncertainty when the distribution of x is unknown

A greater challenge for data analysis since the training sample

size n cannot increase as fast as p

@ Bickel and Levina (2004) showed that the LDA is as bad as
random guessing when p/n — o

@ In some studies researchers found that it is better to ignore some
information (such as the correlation among the p components of x)
Domingos and Pazzani (1997), Lewis (1998), Dudoit et al. (2002).

To construct a nearly optimal rule for large dimension data

©
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Linear discriminant analysis and asymptotic results

Regularity conditions
There is a constant ¢cq (not depending on p or n) such that
@ ¢, ! < all eigenvalues of X < cg

@ ot < maxj<p 32 < ¢
g is the jth component of §
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Linear discriminant analysis and asymptotic results

Regularity conditions
There is a constant ¢cq (not depending on p or n) such that
-] co‘1 < all eigenvalues of 3 < cg

@ ot < maxj<p 32 < ¢
g is the jth component of §

Consequences

@ Ap>cyt, Ap=VEE18
@ Ropr < ®(—(2c0) 1) <1/2
@ A7 =0(]|4][%) and [|4]|> = O(AF)
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Linear discriminant analysis and asymptotic results

Regularity conditions
There is a constant ¢cq (not depending on p or n) such that
o co‘1 < all eigenvalues of 3 < cg
@ ot < maxj<p 32 < ¢
g is the jth component of §

Consequences
@ Ap>cyt, Ap = VX168
® Ropr < ®(—(2c) 1) < 1/2
® A =0(||4]*) and [|5]> = O(Af)

Asymptotic setting

@ n=n;+ny n/n—ce(0,0)asn— o

@ pisafunction ofn, p/n —b € [0,0] as n — o
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Conditional and uncoditional misclassification rate
T: a classification rule

@ Rt (X): the average of the conditional probabilities of making two
types of misclassification, where the conditional probabilities are
with respect to x, given the training sample X

® Rt = E[Rr(X)]: unconditional misclassification rate of T
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Conditional and uncoditional misclassification rate
T: a classification rule

@ Rt (X): the average of the conditional probabilities of making two
types of misclassification, where the conditional probabilities are
with respect to x, given the training sample X

® Rt = E[Rr(X)]: unconditional misclassification rate of T

Asymptotic optimality (n — o)

@ T is asymptotically optimal if Rt (X)/Ropr — 1
@ T is asymptotically sub-optimal if Ry (X) — Ropr —, 0
@ T is asymptotically worst if Ry (X) —, 1/2
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Conditional and uncoditional misclassification rate

T: a classification rule
@ Rt (X): the average of the conditional probabilities of making two
types of misclassification, where the conditional probabilities are
with respect to x, given the training sample X
® Rt = E[Rr(X)]: unconditional misclassification rate of T

|

Asymptotic optimality (n — o)
@ T is asymptotically optimal if Rt (X)/Ropr — 1
@ T is asymptotically sub-optimal if Ry (X) — Ropr —, 0
@ T is asymptotically worst if Ry (X) —, 1/2

|

Note
@ If Ropr /0 (i.e., Ap = V4’314 is bounded), then the asymptotic
sub-optimality is the same as the asymptotic optimality.

@ If Ropr — 0, however, we hope not only Ry (X) —, O in probability,
but also Rt (X) and Ropr have the same convergence rate.

9/28
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Linear discriminant analysis (p < n)

For what kind of p (which may diverge to «), the LDA is asymptotically
optimal or sub-optimal?
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Linear discriminant analysis (p < n)

For what kind of p (which may diverge to «), the LDA is asymptotically
optimal or sub-optimal?
Suppose that s, = py/logp/v/n — 0.

(i) The conditional misclassification rate of the LDA is equal to

Ripa(X) = ®(—[1+Op(sn)]Ap/2).

(ii) If Ap =Vé’2-14 is bounded, then the LDA is asymptotically
optimal and
RLpa(X)
Ropr
(i) If Ap — oo, then the LDA is asymptotically sub-optimal.

(iv) If Ap — o and snA2 (p+y/logp/+/n) A2 — 0, then the LDA is
asymptotically optlmal

—-1= Op(Sn).
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Linear discriminant analysis (p > n)

When p > n, S~! does not exist.
But the estimation of 1 is not the only problem

Even if ¥~ is known (so that the LDA can use the prefect “estimator”
of £71), the performance of the LDA may still be bad
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Linear discriminant analysis (p > n)

When p > n, S~! does not exist.
But the estimation of 1 is not the only problem

Even if ¥~ is known (so that the LDA can use the prefect “estimator”
of £71), the performance of the LDA may still be bad

Theorem 2

Suppose that p/n — « and that X is known so that the LDA classmes X
to class 1 if and only if Fbom Yx — p) >0, where 5= X1—Xp,and p X.

(i) If A2 o/+/P/n — 0 (which is true when Ap = V8'X-14 is bounded),
then RLDA(X) =g 1/2

(i) If A3/+/p/n— c with 0 < ¢ < =, then R pa(X) — <I>< c/(2\/§))
and RLDA(X)/ROPT —p 0.

(III) If A2 /\/ n — o0, then RLDA(X) =p 0 but RLDA(X)/ROPT —p .
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Linear discriminant analysis (p > n)
Reason for bad performance of the LDA when p > n
@ Too many parameters in é to be estimated, even if X is known

@ Similarly, too many parameters in X to be estimated, even if py is
known
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Linear discriminant analysis (p > n)
Reason for bad performance of the LDA when p > n
@ Too many parameters in é to be estimated, even if X is known

@ Similarly, too many parameters in X to be estimated, even if py is
known

A reasonable classification rule can be obtained if both § and X are

sparse
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Linear discriminant analysis (p > n)
Reason for bad performance of the LDA when p > n
@ Too many parameters in é to be estimated, even if X is known

@ Similarly, too many parameters in X to be estimated, even if py is
known

Solutions?
A reasonable classification rule can be obtained if both § and X are
sparse

| A\

Sparsity
@ Many elements of § are 0 or very small
@ Many off-diagonal elements of X are 0 or very small
@ Both are true in many applications

N
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Sparse linear discriminant analysis and asymptotic

results

Sparsity measure for X

Bickel and Levina (2008) considered the following sparsity measure for
pi

p
Chp=max y |oy|"
8 i<p |Zl| J |

oy is the (j,1)th element of 3
h is a constant not dependingonp,0<h<1
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Sparse linear discriminant analysis and asymptotic
results

Sparsity measure for X

Bickel and Levina (2008) considered the following sparsity measure for
pi

p
Chp=max y |oy|"
8 i<p |Zl| J |

oy is the (j,1)th element of 3
h is a constant not dependingonp,0<h<1

Special case of h=0
Co,p is the maximum of the numbers of nonzero elements of rows of &
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Sparse linear discriminant analysis and asymptotic
results

Sparsity measure for X

Bickel and Levina (2008) considered the following sparsity measure for
pi

p
Chp = max (o]]] i
8 i<p |Z | J |

oy is the (j,1)th element of 3
h is a constant not dependingonp,0<h<1

Special case of h=0
Co,p Is the maximum of the numbers of nonzero elements of rows of X

Sparsity on X
@ Not sparse: C,, = O(p)
@ Sparse: Cyp = O(logp) or Chp =O(nP), 0< B <1
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Bickel and Levina’s thresholding estimator of X
S: sample covariance matrix

> is S thresholded at t, = Mi+/logp/+/n (My is a constant)

i.e., the (j,1)th element of X is G;1(|Gj| > tn)

gj is the (j,1)th element of S, and I(A) is the indicator function of the
set A
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Bickel and Levina’s thresholding estimator of X
S: sample covariance matrix

> is S thresholded at t, = Mi+/logp/+/n (My is a constant)

i.e., the (j,1)th element of X is G;1(|Gj| > tn)

gj is the (j,1)th element of S, and I(A) is the indicator function of the
set A

| A\

Consistency of >

(1-h)/2
Ioﬂ —0 and dn = Ch,p (%) —0

then _ _
|Z-%||=0p(dy) and [[Z7'—%"1 =0p(dn)

||A]]: the maximum of all eigenvalues of A
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Sparsity on §
A large ||d|| results in a large difference between Np(u;,3) and
NP(HZ?E)

But it also results in a more difficult task of constructing a good
classification rule, since 4 has to be estimated based on the training
sample X of a size that is much smaller than p.
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Sparsity on §
A large ||d|| results in a large difference between Np(u;,3) and
NP(IJZ?E)

But it also results in a more difficult task of constructing a good
classification rule, since é has to be estimated based on the training
sample X of a size that is much smaller than p.

Sparsity measure for &

We consider the following sparsity measure for 4:

g is the jth component of §
g is a constant not dependingonp,0<g<1

0 is sparse if Dg p is much smaller than p

N

Jun Shao (ECNU and UW-Madison) Sparse Linear Discriminant Analysis July, 2010



Sparse estimator of §

d: & thresholded at

an =M <Iogp> with constants M, >0 and a € (0,1/2)

i.e., the jth component of 4 is al(@ > ap)
g is the jth component of 5
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Sparse estimator of §
4: 0 thresholded at

!
)

=M, <Iogp> with constants M, >0 and a € (0,1/2)

i.e., the jth component of 4 is al(@ > ap)
g is the jth component of 5

A useful result

| \

If
then R

P (\m <an, j=1,..pwith |§| < an/r) 1
and

P (@ >an, j=1,...,p with |§| >ran) -1
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Sparse linear discriminant analysis (SLDA) for high dimension

data
Classify x to class 1 if and only if % 1(x —X) >0
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Sparse linear discriminant analysis (SLDA) for high dimension

data
Classify x to class 1 if and only if % 1(x —X) >0

Theorem 3
Assume (logp)/n — 0 and

1-g
a, /D vC
b, = max {dn, n 9P hpSn } -0

A, Apyn

| \

a (1-h)/2
Np=Vo'S15, an= <'°%> . dn=Chp <'°%>

p p
2
Chp=maxy [gy", Dgp=Y &9,
Isp &= =1

On = #{J : [§] > an/r}
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Theorem 3 (continued)

(i) The conditional misclassification rate of the SLDA is equal to
Rspa(X) = @ (—[1+Op(bn)]Ap/2).
(i) If A, is bounded, then the SLDA is asymptotically optimal and

RsLpa(X)

Ropr —1= OP(bn)'

(i) If Ap — oo, then the SLDA is asymptotically sub-optimal.

(iv) If Ap — e and by A2 — 0, then the SLDA is asymptotically optimal.
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Situations where the SLDA is asymptotically optimal

There are two constants ¢; and ¢, such that 0 < ¢; <[] < ¢, for any
nonzero §

an is exactly the number of nonzero §’s

Af, and Dg , have exactly the order qp.

@ If g, is bounded (e.qg., there are only finitely many nonzero §’s),
then Ap is bounded and the result in Theorem 3 holds if
dn = Chp(n~tlogp)-M/2 — 0
@ When g, — « (Ap — ), we assume that g, = O(n") and
Chp =O(nY) withn € (0,1) and y € [0,1).
Choose a =(1—h)/4
o If p=0(n¥) for a k > 1, then the result in Theorem 3 holds when
n+y<(@-h)/2and n <(1+h)/2
o Ifp=0(e B) fora 3 € (0,1), then the result in Theorem 3 holds if
n+y<(-h)(1-p)/2andn <1—(1-h)(1-p)/2
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Situations where the SLDA is asymptotically optimal

@ Consider the case where C, , = O(logp), Dgp = O(logp), and
p=0(e")foraB e (0,1)

o If Ap is bounded, dy = O(nP+B-1A-M/2) _, 0, j.e., the SLDA is
asymptotically optimal, if 8 < (1 —h)/(3—h)

o If Ap — o, then the largest divergence rate of Ag is
O(logp) = O(n?) and Agdn — 0, i.e., the SLDA is asymptotically
optimal, when 3 < (1—h)/(5—h).
When h =0, this means 8 < 1/5.

@ If p=0(n*) for a k > 1 and max{Cp,Dgp} =cn¥forayc (0,1)
and a positive constant c, then logp = O(logn) diverges to « at a
rate slower than nY.

Assume that Af, = O(nPY) with a p € [0,1] (p =0 corresponds to a
bounded Ay).

The SLDA is asymptotically optimal if (14 p)y < (1—h)/2 and
(1+p)y/[2(1-9)] <a <[1—(1+p)yl/[2(1-9)]
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Choosing constants in thresholding: A cross-validation

procedure

Xxi: the data set with x,; deleted
Tyi: the SLDA rule based on Xy, i =1,...,n,, k =1,2.
The cross-validation estimator of Rg pa is

Y 2 ng
Rspa=— > > T
K=1i=1
rqi is the indicator function of whether Ty; classifies xy; incorrectly
If Rs.pa = R(n1,ny),

~ 2 Mk E(ri) mR(ng—1,n2)+n2R(ng,ny—1)
E(R = Y= ’ ’
(RsLpa) E E n =

k=1i=1

~ Rs_pa

FA?su)A(Ml, M,): the cross-validation estimator when (M1, M) is used
Minimize Rs pa(M71,M3) over a suitable range of (M1, M)
The resulting Rs pa can also be used as an estimate of Rg pa
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Application and Simulation

Applying the SLDA to human acute leukemias classification

p=7,129 genes
ng=47,n, =25n=72

Plot of the cumulative proportions of 512
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Plot of off-diagonal elements of S

(0.45% values are above the blue line)
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Cross-validation selection of M; and M,
a=0.3

M; = 107, M, = 300

2,492 nonzero g

(35% of 7,129)
227,083 nonzero dj 04

(0.45% of 25,407,756)
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Cross validation estimates

@ Cross validation for SLDA
@ misclassification rate is 0.0278
@ 1 of 47 cases in class 1 are misclassified
@ 1 of 25 cases in class 2 are misclassified
@ Cross validation for LDA
@ misclassification rate is 0.0972
@ 2 of 47 cases in class 1 are misclassified
@ 5 of 25 cases in class 2 are misclassified
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Cross validation estimates

@ Cross validation for SLDA
@ misclassification rate is 0.0278
@ 1 of 47 cases in class 1 are misclassified
@ 1 of 25 cases in class 2 are misclassified
@ Cross validation for LDA
@ misclassification rate is 0.0972
@ 2 of 47 cases in class 1 are misclassified
@ 5 of 25 cases in class 2 are misclassified

Simulation

Data are generated from N (i1, ) and N(fiz, )
n,=47,n,=25p=1,714
Misclassification rates of

@ LDA =0.152 (0.006)

@ SLDA =0.069 (0.005)

@ optimal rule = 0.03
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Boxplots of conditional misclassification rates of LDA and SLDA
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Two-way plot of conditional misclassification rates: LDA vs SLDA
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Conclusion and Discussion

The ordinary linear discriminant analysis is OK if p = o(y/n)

@ When p/n — oo, the linear discriminant analysis may be
asymptotically as bad as random guessing

@ When p is much larger than n, asymptotically optimal
classification can be made if both the mean signal 6 = p11 — p»
and covariance matrix X are sparse

@ A sparse linear discriminant analysis (SLDA) is proposed, and it is
asymptotically optimal under some conditions

@ SLDA is different from variable selection for 6+ LDA

@ Correlation among variables have to be considered

@ SLDA does not require the number of nonzero a's to be smaller
than n

©

@ Extension to non-normal data

@ Extension to unequal covariance matrices: quadratic discriminant
analysis
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