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m Econometric factor models: a brief survey
m Statistical factor models: identification
m Estimation

e expanding white noise space: non-stationary factors

e eigenanalysis: stationary cases
m Asymptotic properties (stationary cases only in this talk)

e fixed p: fast convergence rate for zero-eigenvalues

e p — oco. convergence rates independent of p
m lllustration with real data sets

e temperature data
e implied volatility surfaces

e densities of intraday returns
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Econometric modelling : represent a p x 1 time series y; as

Yt — ft _|_€t7

both f; and &, are unobservable, and

e f;: driven by » common factors, and r << p

e £,: Idiosyncratic components

Basic idea . The dynamical structure of each component of y; IS
driven by the » common factors plus one or a few
idiosyncratic components.

Practical motivation : asset pricing models, yield curves,
portfolio risk management, derivative pricing,
macroeconomic behaviour and forecasting,
consumer theory etc.
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Sargent & Sims (1977) and Geweke (1977): dynamic-factor
models

Chamberlain & Rothschild (1983): approximate and static factor
models

Forni, Hallin, Lippi & Reichlin (2002 — ): generalized dynamic
factor models — combining the above two together

vit = bin(L)ure + -+ + by (L)upe + &, 1=1,2,---, t=0,%1,---,

o uips ~ WN(0,1), k=1,--- ,r, are common (dynamic)
factors, and are uncorrelated with each other,

e &, @re stationary in t, are idiosyncratic noise,
and {u} and {&;;} are uncorrelated.

Only y;; are observable.
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Let &, = (Sue, oo, &pe)™ @Nd ypr = (Y1, -+ 5 Ypt)"

Assumption : As p — oo, It holds almost surely on [—7, «] that all
the eigenvalues of spectral density matrices of £, are uniformly
bounded, and only the r largest eigenvalues of (y,: — &)
converge to oc.

Intuition : The » common factors affect the dynamics of most
component series, while each idiosyncratic noise only affects the
dynamics of a few component series.

Characteristics result . As p — oo, It holds almost surely on
|—m, =| that all the r largest eigenvalues of spectral density
matrices of y,; converge to oo, and the (r + 1)-th largest
eigenvalue is uniformly bounded.

The model is asymptotically identifiable, when the number of
time series (I.e. the number of cross-sectional variables) p — oo !
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e Estimation for GDFM when r Is given — Dynamic principle
component analysis (Brillinger 1981):

i. Obtain an estimator (6) for spectral density matrix of y,
0 |—m,m

ii. Find eigenvalues and eigenvectors of £(6)

lil. Project y; onto the space spanned by the r eigenvectors
corresponding to the r largest eigenvalues:

the projection is defined as the mean square limit of
a Fourier sequence, and

each component of the projection is a sum of r
uncorrelated MA processes.

e Determine r: only identifiable when p — oo!

‘There is no way a slowly diverging sequence can be told from an
eventually bounded sequence’ (Forni et al. 2000).
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Let {y;} be a p x 1 time series defined by

Yt :AXt—i_E:ta
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Let {y;} be a p x 1 time series defined by

Yt :AXt—i_eta

x¢. 7 X 1 unobservable factors, r (< p) unknown

A: p x r unknown constant factor loading matrix
{e,}: vector WN(pe., X.)

no linear combinations of x; are WN.
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Let {y;} be a p x 1 time series defined by

Yt :AXt—i_gta

x¢. 7 X 1 unobservable factors, r (< p) unknown

A: p x r unknown constant factor loading matrix
{e,}: vector WN(pe., X.)

no linear combinations of x; are WN.

Lack of identification: (A, x;) may be replaced by
(AH,H 'x,) for any invertible H.

Therefore, we assume ATA =1,

But factor loading space M(A) is uniquely defined
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Let {y;} be a p x 1 time series defined by

Yt :AXt—i_gta

x¢. 7 X 1 unobservable factors, r (< p) unknown

A: p x r unknown constant factor loading matrix
{e,}: vector WN(pe., X.)

no linear combinations of x; are WN.

Lack of identification: (A, x;) may be replaced by
(AH,H 'x,) for any invertible H.

Therefore, we assume ATA =1,

But factor loading space M(A) is uniquely defined

The model is not new: Pefia & Box (1987).
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What is new?

e No distributional assumption on &;. More significantly, allow
correlation between ¢; and x; 1.

-ps8



What is new?

e No distributional assumption on &;. More significantly, allow
correlation between ¢; and x; 1.

e Factor x;, and therefore also y;, may be nonstationary, not
necessarily driven by unit roots.
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What is new?

e No distributional assumption on &;. More significantly, allow
correlation between ¢; and x; 1.

e Factor x;, and therefore also y;, may be nonstationary, not
necessarily driven by unit roots.

e A new estimation method for stationary cases: an
eigenanalysis, applicable when p >>n
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What is new?

e No distributional assumption on &;. More significantly, allow

Key .

correlation between ¢; and x; 1.

Factor x;, and therefore also y;, may be nonstationary, not
necessarily driven by unit roots.

A new estimation method for stationary cases: an
eigenanalysis, applicable when p >>n

estimate A, or more precisely, M(A).
With available an estimator A, a natural estimator for factor
and the associated residuals are
Xp = ATyt, er = (I, — AKT)yt.
By modelling the lower-dimensional x;, we obtain the

dynamical model for y;: R
y: = AX;.
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Reconciling to econometric models

‘Common factors’ & ‘idiosyncratic noise’. conceptually appealing,
only identifiable when p — oc.

Goal: identify those components of x;, each of them affects
most (or a few) components of y;.

Put A = (ay,---,a,) and x¢ = (z41,- -+, x4)". Then
Yt = a1T¢ + 0+ &rTyyr t E.

Hence the number of non-zero coefficients of a; Is the number of
components of y; which are affected by the factor x;.

To avoid the correlation among the components of x;, apply PCA
to x;, i.e. replace (A,x;) by (AT, I''x;), where T'isan r x r
orthogonal matrix defined in Var(x;) = I’'DI".

Eigenvalues of Var(x;) are different, this representation is unique.

-po



Lemmal. Let Ajz; = Ayzo, Where, for: = 1,2, A; IS p x r matrix
A’A; =1,,and z; = (z;1, -+, zir)" IS r x 1 random vector with
uncorrelated components, and Var(z;;) > --- > Var(Z;,).
Furthermore M(A) = M(Az). Then z;; = £29; for1 < j <r.

In practice, we use the PCA-ed factor x;.
The number of non-zero elements of the j-th column of A is the

number of the components of y; whose dynamics depends on
the j-th factor z;.
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Nonstationary factors

Cl. e, ~ WN(ug, Xe), c¢'x; is not white noise for any
constant ¢ € RP. Furthermore A’A =1,.

Let B = (by,--- ,b,—,) be ap x (p —r) matrix such that

(A,B) Is a p x p orthogonal matrix, 1.e.

B'A=0, B B=I,,.

Since y; = Ax; + gy,
By, = B'gy

l.e. {B7y;, t=0,+£1,---} IS WN.

Therefore

Corr(b;yt,bjy; ) =0 V1<ij<p-—r and k>1.
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Search for mutually orthogonal directions by, bs, - -- one by
one such that the projection of y; on each of those directions
IS a white noise.

Stop the search when such a direction is no longer available,
and take p — k as the estimated value of r, where k is the
number of directions obtained in the search.
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Search for mutually orthogonal directions by, bs, - -- one by
one such that the projection of y; on each of those directions
IS a white noise.

Stop the search when such a direction is no longer available,
and take p — k as the estimated value of r, where k is the
number of directions obtained in the search.

See Pan and Yao (2008) for further detalls, and also some
(preliminary) asymptotic results.
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Stationary models
C2. x; Is stationary, and Cov(xy, &) = 0 for any k£ > 0.

Put Zy(k) = Cov(yitk,Yt), 2az(k) = Cov(Xyqk, Xt),
Yipe(k) = Cov(xyyk, €t). BY yt = Axy + &y,
Zy(k) — AZx(k)A’ + AX, . (k), k>1.

For a prescribed integer kg > 1, define

Then MB = 0, I.e. the columns of B are the eigenvectors of M

corresponding to zero-eigenvalues.
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Hence under C1 and C2,
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Hence under C1 and C2,

The factor loading space M (A) are spanned by the
eigenvectors of M corresponding to its non-zero
eigenvalues, and the number of the non-zero
eigenvalues is r.
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Hence under C1 and C2,

The factor loading space M (A) are spanned by the
eigenvectors of M corresponding to its non-zero
eigenvalues, and the number of the non-zero
eigenvalues Is r.

Let M = 372, 8, (k)% (k), where 5, (k) denotes the sample
covariance matrix of y; at lag k.
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Hence under C1 and C2,

The factor loading space M (A) are spanned by the
eigenvectors of M corresponding to its non-zero
eigenvalues, and the number of the non-zero
eigenvalues Is r.

Let M = 372, 8, (k)% (k), where 5, (k) denotes the sample
covariance matrix of y; at lag k.

r . No. of non-zero eigenvalues of M,

AN

A : 1ts columns are the 7 orthonormal eigenvectors of
M corresponding to its 7 largest eigenvalues.
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Bootstrap test for r

Note that = rg iff the (rg + 1)-th largest eigenvalue of M is 0 and
the ry-th largest eigenvalue is nonzero.

Consider the testing for Hy : A\,11 = 0,

We reject Hy If XTOH > g,

Bootstrap to determine [,:
1. Compute y; with 7 = rg. Let&; = y; — y;.
2. Lety; =y; + &/, where g are drawn independently (with
replacement) from {e,--- ,&,}.

3. Form the operator M* in the same manner as M with {y:+}
replaced by {y;}, compute the (rg + 1)-th largest eigenvalue
Ay, 1 Of M*.

L(N; L 1[{yt}) Is taken as the distribution of /Xr(ﬁ—l under Hy.
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Asymptotics I: n — oo and p fixed

(i) y; is strictly stationary, E||y:||*T° < oo for some § > 0.

(ii) y: is a-mixing satisfying 3°; a(j) < oo.

(i) M has r non-zero eigenvalues Ay > --- > A\, > 0.

Then under condition C1 and C2, the following assertions hold.
(i) X —Aj=Op(n ) fori<j<r
(i) N\ = Op(nt) fort<k<p-—r,
(i) D{M(A), M(A)} = Op(n~Y/2) provided 7 = r a.s.,
where
DIM(A), M(A)} =1 — Str(AATAAT).

r
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Numerical illustration: Ay = 1884, o =X3=X=0(p=4,r=1)
(Simulation replications: 10,000 times)

lambda_1 lambda_2 lamba_3
o
&
8
8 ° ° 8
o
2 8 g ° 8
o g N - H
) - ° g
8 _ o o ° <~ ] 8
- o ° § 8 8 <] °
o o o
8 ° 8 ° 8
° 8 H ° 8 8
§ g °
. & 2 : g
8 E § ° E
° o
8 : ! g E °
° o
™
8 S g
@ | 8
8 S 8
5 ’ :
o | 8
© g o g
§ 8 [ H
(] 8 © _| |
8 8 o ° ' o
b4 1 IS
8 | o o
! ' .
o I
? 8 ° l i B 8 °
° |
o
8 4+ 1 ° S ! \ .
8 | , [] : | H
1 . -5 | °
8 ! ! | ! ! - | 8
- | ! ) | ° | = .
— ! | |
o | 1
& — | | , | , o~ 1 4
! | o |
! 1 \ 1 -
! ' ! 1
T I I | |
!
= = - |
T | !
o 4 _ _ _ . . . g - —_ . . - = -t e g . L 1 E L —t b
T T T T T T T T T T T T T T T T T T T T T T T T
10 20 50 100 200 500 1000 2000 10 20 50 100 200 500 1000 2000 10 20 50 100 200 500 1000 2000

—p17



Histogram of \/n(A; — A1)
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Asymptotics Il: n — oo, p — oo and r fixed

Recall model: y;, = Ax; +¢;,, and Aisp xr
1. Assumptions on Strength of factors:
A =(a,---,a), ||a]?P=p'° i=1,---,r, 0<5<1.
(i) For k =0,1, -, ko, X (k) = Cov(xs4k, X¢) IS full-ranked,
and X, (k) = Cov(xytk,€¢) = O(1) elementwisely.

We call
e factors are strong if 9 = 0,

e factors are weak if 6 > 0.
Standardization ‘A7 A =1, + (i, 1i) Imply:
|20l = P70 < 120 (k) lnin, 1 Zec(B)]] = O(p'—7?),
where a =< b represents a = O(b) & b = O(a), [|A||* = Max(AAT)
and ||A|]?. = min{\(AAT): A\(AAT) > 0}. p20

min




2. Fork=0,1,--- ko,
elementwisely that

S (k)] = o(p'~?), and it holds

~

S(k) = Bu(k) = Op(n™"),  Be(k) — Be(k) = Op(n™"),

~

See(k) = Bac(k) = Op(n~") = B4 (k)
for some constants 0 < I, ¢, < 1/2, and > denotes the
sample version of 3.

3. M has r different non-zero eigenvalues.

Then under condition C1 and C2,
|A — A|| = Op(hy) = Op(n~" + p*/2n7lee 4 pop ),
provided h,, = o(1).

Remark. When all factors are strong (i.e. 6 = 0), the convergence

rate h,, IS independent of the dimension p.
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Our asymptotic theory also shows:

1. Factor model-based estimator for X,:

AN AN AN

fly = Aix;‘\f + f]e, where X, = ;‘;T(fly — A,
cannot improve over the sample covariance estimator Sy.

~—1 .
But the convergence rate for ||, — Ey‘lu IS Independent of
p when all the factors are strong.

2. When the factors are of different levels of strengths, two (or

multiple) step estimation procedure is preferred to estimate
and to remove the stronger factors first.
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Simulation with » = 1 and = 0 (only one strong factor):
rr = 0.924-1 + N(0,4),
etj ~iid N(0,4), and the i-th element of A is 2 Cos(2m'/p).

n=200 | [A—A| | =, -S|
p = 20 ()22( 005) .24(.03) .009(
p = 180 023( 4) 79.8(29.8) .007(
p =400 | .022(.004) - .007(.001
p = 1000 | .023(.004) - 007(.
n=200 | |Z, -, |IZ,-%,
p=20 | 218(165) 218(165)
p = 180 1962(1500) 1963(1500)
p =400 | 4102(3472)  4103(3471)
p = 1000 | 10797(6820) 10800(6818)




lllustration With Real Data

Example 1. The monthly temperature data from 7 cities in
Eastern China in January 1954 — December 1986
n=396, p=7, T=4

Example 2. Daily implied volatility surfaces for IBM, Microsoft

and Dell call options in 2006
n =100, p=130, 7r=1

Example 3. Daily densities of one-minute returns of IBM
stock price in 2006

79

n =251, p=‘“x”, r=2
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Time plots of the monthly
temperature in 1959-1968 of
Nanjing, Dongtai, Huoshan,
Hefei, Shanghal, Anging and
Hangzhow.
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With p = 12, a = 1%, the fitted model is y; = Ax; + e;, 7 = 4,

€t ~ WN(ﬁ,g, Eg),

[ 3.41 \ [ 1.56
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T

x; are PCAed factors: 1st PC accounts for 99% of TV of 4 factors,

and 97.6% of the original 7 series.

~p.26



0 20 40 60

0 1 2 3 4

00 04 -0.6 0.0 0.6

-0.4

Time plots of the 4 estimated factors

20

40

60

80

100

120

20 40 60 80 100 120
20 40 60 80 100 120
20 40 60 80 100 120

—p.27



Sample cross-correlation of the 4 estimated factors
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Sample cross-correlation of the 3 residuals (i.e.

residual 1 residual 1 and residual 2 residual 1 and residual 3
o | S T
— =]
CQ' w0
o n
: Tl
60 = : i |||| ||||'| I'||| ||||||-|
T ] ‘ . |
<
N 3 T
= ?
o 1 |.. L I..| |1| 'l 3
DL e e 2 |
T T T T T T T T T T ? T T T T T
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
residual 2 and residual 1 residual 2 residual 2 and residual 3
o
sl 3 S
o
«©
0 e 8
21 . S
i ° |
60- | | (3 1 |
<O|‘I ‘l || : ] H‘II‘H “l‘
| § frlg’
9 o 1.|. Ll .1|||[
STl o L B
T T T T T T T T T T ? T T T T T
-20 -15 -10 -5 0 0 5 10 15 20 0 5 10 15 20
residual 3 and residual 1 residual 3 and residual 2 residual 3
1 S T o |
o o —
2 ] g =N
o o
© |
I | n | )
wo 1 o | R
N \ UL '\H IRN
Yo} [Te} N
$- ; | J }>
° g |||||II| ||IIII|I.||-
o
i R ERTRRTR S T I IS SN SR
[]

B"y,)

~p.29



60

50

40

30

20

10

Since the first two factors are dominated by periodic
components, we remove them before fitting.
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In the fitted factor model y; = th + ¢4, the AICC selected
VAR(1) for the factor process:

Xt — Ot = SAO() + (I)l(Xt—l — at—l) + Uy,

where o] = (p:1, pe2, 0,0) IS the periodic component, and

(27 —31 72 40 ) [ 14.24 \
. 0l 36 —.04 .04 _ 17 .23
P, — S ,
00 —.01 42 —.02 ~02 .03 .05
\ —00 .03 .03 .48 ) \ 042 .01 —.00 .05

P = (.07,—.02,—.11,.10)".
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e Temperature dynamics in the 7 cities may be modelled in
terms of 4 common factors

e The annual periodic fluctuations may be explained by a
single common factor

e Removing the periodic components, the dynamics of the 4
common factors may be represented by an AR(1) model
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Example 2. Implied volatility surfaces of IBM, Microsoft and Dell
stocks in 2006 (i.e. 251 trading days).

Source of Data: OptionMetrics at WRDS

Observations: for¢ =1, .-, 251, implied volatility w;(u;, v;)
computed from call options at

e time to maturity at 30, 60, 91, 122, 152, 182, 273, 365,
547 & 730 calendar days, denoted by uq,--- , ui9, and

e deltaat 0.2, 0.25, 0.3, 0.35,0.4, ---, 0.8, denoted
by Ul,-+- ,V13.
Total: p = 10 x 13 = 130 time series with the length 251 each.

Take difference w(u;,vj) = we(u;, vj) — wi—1(ui, vj), and vectorize

the matrix (w(u;, v;)) into a 130 x 1 vector process ys;.
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dell ibm microsoft

Average daily implied volatility surfaces over 251 days.
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Fitting a factor model on each of the rolling windows of length
100 days:

Yi: Yi+1,"° ,¥Yi+99, 1 = 17 7150
The estimated number of factors for all 3 stocks across different
windows is always r = 1.

Based on a fitted AR model to the estimated factor process, we
predict the next value z;. 199, denoted by %;.199. It leads to the
one-step ahead prediction for y;_10o:

Vi+100 = AZi+100-

Put

L. .
RMSE; = —||¥i+100 — Yi+100/[, ¢=1,---,150.

VP
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Average of the ordered

eigenvalues of M over
the 150 rolling windows.

3 panels on the left: 10
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Benchmark prediction for y;. 190: the previous value y;. g9

Prediction based on Bai & Ng (2002) — factor-modelling based
on the LSE: (A,%;) is the solution of

minz ly: — Ax¢||*, subjectto ATA/p=1,and X"X/n =1,,
A i

where X = (x1, -+ ,Xp).
dell ibm microsoft
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The cumulative RMSE over the 150 windows. Red dotted — Bai &
Ng (2002), , Black — our method.
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Example 3. IBM stock intra-day prices in 2006

251 trading days, tick by tick prices collected in 9:30 — 16:00
In total 2,786,649 observations (74MB)

For each of 251 trading days, construct the pdf curve of

one-minute log-return using the log-returns in 390 one-minute
Intervals: kernel density estimation with ~ = 0.000025

Treating the 251 pdfs as a high-dimensional time series, apply
the proposed procedure.

The white-noise test rejects Hy : r = 1, but cannot reject
Hoy:r=2.
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Fitting time series  x; = (241, 742)

Since there is little cross correlation between the two component
series, we fit them separately.

For {z;1}, AlIC selected ARMA(1,1) with AIC=4556.76:
Tiy1,1 = 0.985x41 + 4411 — 0.787¢4 1.
For {z42}, AIC selected ARMA(1,1) with AIC=4323.1:

Tiy1,2 = 0.982x49 + €412 — 0.889¢¢ 2.

Allowing nonstationarity — ARIMA(1,1,1):
LTt4+1,1—Tt1 = 0.062(1}51—xt_1,1)+€t+1,1—0.847675)1, (AIC = 4537.13)

LTt4+1,2— T2 = 0.046(513752—51375_1,2)%—8754_172—0.8898,572, (AIC - 4306.08)
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ACF of the residuals from the fitted ARMA(1,1) models

Series residuals(arima(xi[, 1], order = c(1, 0, 1)))

ACF

1.0

0.8

0.6

0.4

0.2

0.0

Series residuals(arima(xi[, 2], order = c(1, 0, 1)))

Lag

—p.46



	
	
	
	
	
	
	{small What is new?}
	small Reconciling to econometric models
	
	small Nonstationary factors
	
	small Stationary models
	
	small Bootstrap test for $r$
	small Asymptotics I: $n	o infty $ and $p$ fixed
	
	
	
	small Asymptotics II: $n 	o infty $, $p 	o infty $ and $r$ fixed
	
	
	
	small Illustration With Real Data
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	small Time series plots of $x_{t1}$ and $x_{t2}$
	small ACF of $(x_{t1}, x_{t2})$
	small PACF of $(x_{t1}, x_{t2})$
	
	small ACF of the residuals from the fitted ARMA(1,1) models

