Optimal Risk Probability for First Passage Models

-in Semi-Markov Decision Processes

Xianping Guo (Coauthor: Yonghui Huang) (Zhongshan University, Guangzhou)

Peking University, July 2010

Outline

- Motivation
- Semi-Markov decision processes
- Optimality problems
- Optimality equation
- Existence of optimal policies
- Numerable examples

1. Motivation

Background: Reliability engineering, and risk analysis Problem: $\sup_{\pi} P_i^{\pi}(\tau_B > \lambda)$,

- i an initial state
- π is a policy
- \bullet *B* is a given target set
- τ_B is a first passage time to B
- λ is a threshold value.

2. Semi-Markov Decision Processes

The model of SMDP:

 $\{S,B,(A(i),i\in S),Q(t,j|i,a)\}$

where

- S : the state space, a denumerable set;
- B: a given target set, a subset of S;
- A(i) : finite set of actions available at $i \in S$;
- Q(t, j | i, a) : semi-Markov kernel, $a \in A(i), i, j \in S$;

Notation:

- Policy π: A sequence π = {π_n, n = 0, 1, ...} of stochastic kernels π_n on the action space A given H_n satisfying
 π_n(A(i_n)|(0, i₀, λ₀, a₀, ..., t_{n-1}, i_{n-1}, λ_{n-1}, a_{n-1}, t_n, i_n) = 1
- Stationary policy: measurable f , $f(i,\lambda)\in A(i)$ for all ($i,\lambda)$
- $P^{\pi}_{(i,\lambda)}$: Probability measure on $(S \times [0,\infty) \times (\cup_{i \in S} A(i)))^{\infty}$
- S_n , J_n , A_n : *n*-th decision epoch, the state and action at the S_n , respectively.

Assumption A. There exist $\delta > 0$ and $\epsilon > 0$ such that

$$\sum_{j \in S} Q(\delta, j | i, a) \le 1 - \epsilon, \text{ for all } (i, a) \in K.$$

Assumption $A \Rightarrow P_{(i,\lambda)}^{\pi}(\{S_{\infty} = \infty\}) = 1$

Semi-Markov decision process $\{(Z(t), A(t), t \ge 0\}$:

$$Z(t) = J_n, A(t) = A_n, \text{ for } S_n \le t < S_{n+1}$$

The first passage time into B, is defied by

 $\tau_B := \inf\{t \ge 0 \mid Z(t) \in B\}, \quad (\text{with } \inf \emptyset := \infty),$

3. Optimality Problems

The risk probability:

$$F^{\pi}(i,\lambda) := P^{\pi}_{(i,\lambda)}(\tau_B \le \lambda)$$

The optimal value:

$$F_*(i,\lambda) := \inf_{\pi \in \Pi} F^{\pi}(i,\lambda),$$

Definition 1. A policy $\pi^* \in \Pi$ is called optimal if

$$F^{\pi^*}(i,\lambda) = F_*(i,\lambda) \quad \forall \ (i,\lambda) \in S \times R.$$

• Existence and computation of optimal policies ???

4. Optimality Equation

For $i\in B^c, a\in A(i),$ and $\lambda\geq 0,$ let

$$T^{a}u(i,\lambda) := Q(\lambda, B|i,a) + \sum_{j \in B^{c}} \int_{0}^{\lambda} Q(dt, j|i,a)u(j,\lambda-t),$$

with $u \in \mathcal{F}_{[0,1]}$ (the set of measurable functions $0 \le u \le 1$),

$$Q(\lambda, B|i, a) := \sum_{j \in B} Q(\lambda, j|i, a), \quad T^a u(i, \lambda) := 0 \text{ for } \lambda < 0.$$

Then, define operators T and T^{f} :

 $Tu(i,\lambda) := \min_{a \in A(i)} T^a u(i,\lambda); \quad T^f u(i,\lambda) := T^{f(i,\lambda)} u(i,\lambda),$

for each stationary policy f.

Theorem 1. Let Under Assumption A, we have

(a)
$$F^f = \lim_{n \to \infty} u_n^f$$
, where $u_n^f := T^f u_{n-1}, u_{-1}^f := 1$;

(b) F^f satisfied the equation, $u = T^f u$, for all $f \in F$;

• Theorem 1 gives an approximation of risk probability F^f . For each $(i, \lambda) \in B^c \times R_+$ and $\pi \in \Pi$, let

$$F_{-1}^{\pi}(i,\lambda) := 1,$$

$$F_{n}^{\pi}(i,\lambda) := 1 - \sum_{m=0}^{n} P_{(i,\lambda)}^{\pi}(S_{m} \le \lambda < S_{m+1}, J_{k} \in B^{c}, 0 \le k \le m)$$

Theorem 2. Let $F_n^*(i, \lambda) := \inf_{\pi} F_n^{\pi}(i, \lambda)$, then

- (a) $F_{n+1}^* = TF_n^*$ for all $n \ge -1$, and $\lim_{n \to \infty} F_n^* = F_*$.
- (b) F_* satisfies the optimality equation: $F_* = TF_*$.
- (c) F_* is the maximal fixed point of T in $\mathcal{F}_{[0,1]}$.

Remark 1.

- Theorem 2(a) gives a value iteration algorithm for computing the optimal value function F_{*}.
- Theorem 2(b) establishes the optimality equation.

5. Existence of Optimality Policise

To ensure the existence of optimal policies, we introduce the following condition.

Assumption B. For every $(i, \lambda) \in B^c \times R$ and f,

$$P^f_{(i,\lambda)}(\tau_B < \infty) = 1.$$

To verify Assumption B, we have a fact below:

Theorem 3. If there exists a constant $\alpha > 0$ such that

$$\sum_{j\in B}Q(\infty,j|i,a)\geq \alpha \ \ \text{for all} \ i\in B^c, a\in A(i),$$

then Assumption B holds.

Theorem 4. Under Assumptions A and B, we have

- (a) F^f and F_* are the unique solution in $\mathcal{F}_{[0,1]}$ to equations $u = T^f u$ and u = T u, respectively;
- (b) any f, such that $F_* = T^f F_*$, is optimal;
- (c) there exists a stationary policy f^* satisfying the optimality equation: $F_* = TF_* = T^{f^*}F_*$, and such policy f^* is optimal.

Remark 2.

• Theorem 4(c) shows the existence of an optimal poliy.

To give the existence of special optimal policies, let

$$\begin{split} A^*(i,\lambda) &:= \{ a \in A(i) \mid F^*(i,\lambda) = T^a F^*(i,\lambda) \}. \\ A^*(i) &:= \bigcap_{\lambda \ge 0} A^*(i,\lambda) \end{split}$$

Theorem 5. If $\sup_{i \in B^c} \sup_{a \in A(i)} Q(t, B^c \mid i, a) < 1$ for some

t > 0, and Assumptions A and B hold, then,

- (a) for any $g \in G := \{g | g(i) \in A(i) \forall i \in S\}$, F^g is the unique solution in $\mathcal{F}_{[0,1]}$ to the equation: $u = T^g u$;
- (b) there exists an optimal policy $f \in G$ if and only if $A^*(i) \neq \emptyset$ for all $i \in B^c$.

5. Numerable examples

Example 5.1. Let $S = \{1, 2, 3\}$, B={3}, where

- state 1: the good state
- state 2: the medium state
- state 3: the failure state

Let $A(1) = \{a_{11}, a_{12}\}, A(2) = \{a_{21}, a_{22}\}, A(3) = \{a_{31}\}.$

The semi-Markov kernel is of the form:

$$Q(t,j \mid i,a) = H(t \mid i,a)p(j \mid i,a)$$

- $\bullet \ H(t \mid i, a)$: the distribution functions of the sojourn time
- $p(j \mid i, a)$: the transition probabilities.

$$\begin{split} H(t \mid 1, a_{11}) &:= \begin{cases} 1/25, \ t \in [0, 25], \\ 1, \quad t > 25; \end{cases} \\ H(t \mid 2, a_{21}) &:= \begin{cases} 1/20, \ t \in [0, 20], \\ 1, \quad t > 20; \end{cases} \\ H(t \mid 3, a_{31}) &:= 1 - e^{-0.2t}. \\ H(t \mid 1, a_{12}) &= 1 - e^{-0.08t}; \\ H(t \mid 2, a_{22}) &= 1 - e^{-0.15t}; \end{split}$$

$$p(1 \mid 1, a_{11}) = 0, \ p(2 \mid 1, a_{11}) = \frac{9}{20}, \ p(3 \mid 1, a_{11}) = \frac{11}{20};$$

$$p(1 \mid 1, a_{12}) = 0, \ p(2 \mid 1, a_{12}) = \frac{1}{2}, \ p(3 \mid 1, a_{12}) = \frac{1}{2};$$

$$p(1 \mid 2, a_{21}) = \frac{1}{5}, \ p(2 \mid 2, a_{21}) = 0, \ p(3 \mid 2, a_{21}) = \frac{4}{5};$$

$$p(1 \mid 2, a_{22}) = \frac{1}{4}, \ p(2 \mid 2, a_{22}) = 0, \ p(3 \mid 2, a_{22}) = \frac{3}{4};$$

$$p(3 \mid 3, a_{31}) = 1.$$

Using the value iteration algorithm in Theorem 2, we obtain some computational results as in Figure 1 and Figure 2.

Figure 2. The value function $F^*(i, \lambda)$

More clearly, we have

$$F^{*}(1,\lambda) = \begin{cases} T^{a_{11}}F^{*}(1,\lambda), & 0 \leq \lambda < 21.36, \\ T^{a_{11}}F^{*}(1,\lambda) = T^{a_{12}}F^{*}(1,\lambda), & \lambda = 21.36, \\ T^{a_{12}}F^{*}(1,\lambda), & 21.36 < \lambda < 29.3, \\ T^{a_{11}}F^{*}(1,\lambda) = T^{a_{12}}F^{*}(1,\lambda), & \lambda = 29.3, \\ T^{a_{11}}F^{*}(1,\lambda)(=0.7742), & \lambda > 29.3, \\ T^{a_{21}}F^{*}(2,\lambda), & 0 \leq \lambda < 18.54, \\ T^{a_{21}}F^{*}(2,\lambda) = T^{a_{22}}F^{*}(2,\lambda), & \lambda = 18.54, \\ T^{a_{22}}F^{*}(2,\lambda), & 18.54 < \lambda < 23.82, \\ T^{a_{21}}F^{*}(2,\lambda) = T^{a_{22}}F^{*}(2,\lambda), & \lambda = 23.82, \\ T^{a_{21}}F^{*}(2,\lambda)(=0.8542), & \lambda > 23.82. \end{cases}$$

Define a policy f^* by

$$f^*(1,\lambda) = \begin{cases} a_{11}, & 0 \le \lambda \le 21.36, \\ a_{12}, & 21.36 < \lambda \le 29.3, \\ a_{11}, & \lambda > 29.3, \end{cases}$$
$$f^*(2,\lambda) = \begin{cases} a_{21}, & 0 \le \lambda \le 18.54, \\ a_{22}, & 18.54 < \lambda \le 23.82, \\ a_{21}, & \lambda > 23.82, \end{cases}$$

Then, we have

- $F^*(i,\lambda) = T^{f^*}F^*(i,\lambda)$ for i = 1,2 and all $\lambda \ge 0$,
- f^* is an optimal stationary policy.

$$A^{*}(1,\lambda) = \begin{cases} \{a_{11}\}, & 0 \leq \lambda < 21.36, \\ \{a_{11}, a_{12}\}, & \lambda = 21.36, \\ \{a_{12}\}, & 21.36 < \lambda < 29.3, \\ \{a_{11}, a_{12}\}, & \lambda = 29.3, \\ \{a_{11}\}, & \lambda > 29.3, \end{cases}$$
$$A^{*}(2,\lambda) = \begin{cases} \{a_{21}\}, & 0 \leq \lambda < 18.54, \\ \{a_{21}, a_{22}\}, & \lambda = 18.54, \\ \{a_{22}\}, & 18.54 < \lambda < 23.82, \\ \{a_{21}\}, & \lambda > 23.82, \\ \{a_{21}\}, & \lambda > 23.82, \end{cases}$$

Hence,

$$A^*(1) = \bigcap_{\lambda \ge 0} A^*(1,\lambda) = \emptyset, A^*(2) = \bigcap_{\lambda \ge 0} A^*(2,\lambda) = \emptyset,$$

which show there is no optimal policy in G.

Remark 3. This shows that the assumption in the previous literature is not satisfied for this example !!!

Example 5.2. Let $S = \{1, 2\}$, $B = \{2\}$;

$$A(1) = \{a_{11}, a_{12}\}, A(2) = \{a_{21}\};$$

$$Q(t, j \mid i, a) \text{ is given by}$$

$$Q(t, j \mid 1, a_{11}) = \begin{cases} 1/2, \text{ if } t \ge 1, j = 1, 2, \\ 0 & \text{otherwise} \end{cases}$$

$$Q(t, j \mid 1, a_{12}) = \begin{cases} 1, \text{ if } t \ge 2, j = 2, \\ 0, \text{ otherwise}; \end{cases}$$
$$Q(t, j \mid 2, a_{21}) = \begin{cases} 1 - e^{-t}, \text{ if } t \ge 0, j = 2, \\ 0, \text{ otherwise}. \end{cases}$$

Assumptions A and B holds in this example.

We now define a policy d as follows:

$$d(1,\lambda) = \begin{cases} a_{12}, & 0 \le \lambda \le 2, \\ a_{11}, & \lambda > 2. \end{cases}$$

Then, by Theorem 1, we have $F^d(1,\lambda) = \lim_{n \to \infty} F^d_n(1,\lambda)$, which yields

$$F^{d}(1,\lambda) = \begin{cases} 0, & 0 \le \lambda < 2, \\ 1, & \lambda = 2, \\ 1/2, & 2 < \lambda < 3. \end{cases}$$

Hence, $F^d(1,\lambda)$ is not a distribution function of λ .

Many Thanks !!!