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1. Motivation

Background: Reliability engineering, and risk analysis

Problem: supπ P π
i (τB > λ),

• i an initial state

• π is a policy

• B is a given target set

• τB is a first passage time to B

• λ is a threshold value.
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2. Semi-Markov Decision Processes

The model of SMDP:

{S, B, (A(i), i ∈ S), Q(t, j|i, a)}

where

• S : the state space, a denumerable set;

• B: a given target set, a subset of S;

• A(i) : finite set of actions available at i ∈ S;

• Q(t, j|i, a) : semi-Markov kernel, a ∈ A(i), i, j ∈ S;
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Notation:

• Policy π: A sequence π = {πn, n = 0, 1, . . .} of stochastic

kernels πn on the action space A given Hn satisfying

πn(A(in)|(0, i0, λ0, a0, . . . , tn−1, in−1, λn−1, an−1, tn, in) = 1

• Stationary policy: measurable f , f (i, λ) ∈ A(i) for all (i, λ)

• P π
(i,λ): Probability measure on (S × [0,∞)× (∪i∈SA(i)))∞

• Sn, Jn, An: n-th decision epoch, the state and action at the

Sn, respectively.
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Assumption A. There exist δ > 0 and ε > 0 such that

∑

j∈S

Q(δ, j|i, a) ≤ 1− ε, for all (i, a) ∈ K.

Assumption A ⇒ P π
(i,λ)({S∞ = ∞}) = 1

Semi-Markov decision process {(Z(t), A(t), t ≥ 0} :

Z(t) = Jn, A(t) = An, for Sn ≤ t < Sn+1

The first passage time into B, is defied by

τB := inf{t ≥ 0 | Z(t) ∈ B}, (with inf ∅ := ∞),
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3. Optimality Problems

The risk probability:

F π(i, λ) := P π
(i,λ)(τB ≤ λ)

The optimal value:

F∗(i, λ) := inf
π∈Π

F π(i, λ),

Definition 1. A policy π∗ ∈ Π is called optimal if

F π∗(i, λ) = F∗(i, λ) ∀ (i, λ) ∈ S ×R.

• Existence and computation of optimal policies ???
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4. Optimality Equation

For i ∈ Bc, a ∈ A(i), and λ ≥ 0, let

T au(i, λ) := Q(λ,B|i, a) +
∑

j∈Bc

∫ λ

0

Q(dt, j|i, a)u(j, λ− t),

with u ∈ F[0,1] (the set of measurable functions 0 ≤ u ≤ 1),

Q(λ,B|i, a) :=
∑

j∈B

Q(λ, j|i, a), T au(i, λ) := 0 for λ < 0.

Then, define operators T and T f :

Tu(i, λ) := min
a∈A(i)

T au(i, λ); T fu(i, λ) := T f(i,λ)u(i, λ),

for each stationary policy f .
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Theorem 1. Let Under Assumption A, we have

(a) F f = lim
n→∞

uf
n, where uf

n := T fun−1, u
f
−1 := 1;

(b) F f satisfied the equation, u = T fu, for all f ∈ F ;

• Theorem 1 gives an approximation of risk probability F f .

For each (i, λ) ∈ Bc ×R+ and π ∈ Π, let

F π
−1(i, λ) := 1,

F π
n (i, λ) := 1−

n∑
m=0

P π
(i,λ)(Sm ≤ λ < Sm+1, Jk ∈ Bc, 0 ≤ k ≤ m)
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Theorem 2. Let F ∗
n(i, λ) := inf

π
F π

n (i, λ), then

(a) F ∗
n+1 = TF ∗

n for all n ≥ −1, and lim
n→∞

F ∗
n = F∗.

(b) F∗ satisfies the optimality equation: F∗ = TF∗.

(c) F∗ is the maximal fixed point of T in F[0,1].

Remark 1.

• Theorem 2(a) gives a value iteration algorithm for comput-

ing the optimal value function F∗.

• Theorem 2(b) establishes the optimality equation.
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5. Existence of Optimality Policise

To ensure the existence of optimal policies, we introduce the

following condition.

Assumption B. For every (i, λ) ∈ Bc ×R and f ,

P f
(i,λ)(τB < ∞) = 1.

To verify Assumption B, we have a fact below:

Theorem 3. If there exists a constant α > 0 such that
∑

j∈B

Q(∞, j|i, a) ≥ α for all i ∈ Bc, a ∈ A(i),

then Assumption B holds.
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Theorem 4. Under Assumptions A and B, we have

(a) F f and F∗ are the unique solution in F[0,1] to equations

u = T fu and u = Tu, respectively;

(b) any f , such that F∗ = T fF∗, is optimal;

(c) there exists a stationary policy f ∗ satisfying the optimal-

ity equation: F∗ = TF∗ = T f∗F∗, and such policy f ∗ is

optimal.

Remark 2.

• Theorem 4(c) shows the existence of an optimal poliy.
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To give the existence of special optimal policies, let

A∗(i, λ) := {a ∈ A(i) | F ∗(i, λ) = T aF ∗(i, λ)}.
A∗(i) :=

⋂

λ≥0

A∗(i, λ)

Theorem 5. If sup
i∈Bc

sup
a∈A(i)

Q(t, Bc | i, a) < 1 for some

t > 0, and Assumptions A and B hold, then,

(a) for any g ∈ G := {g| g(i) ∈ A(i)∀i ∈ S}, F g is the

unique solution in F[0,1] to the equation: u = T gu;

(b) there exists an optimal policy f ∈ G if and only if

A∗(i) 6= ∅ for all i ∈ Bc.

13



5. Numerable examples

Example 5.1. Let S = {1, 2, 3}, B={3}, where

• state 1: the good state

• state 2: the medium state

• state 3: the failure state

Let A(1) = {a11, a12}, A(2) = {a21, a22}, A(3) = {a31}.
The semi-Markov kernel is of the form:

Q(t, j | i, a) = H(t | i, a)p(j | i, a)
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• H(t | i, a) : the distribution functions of the sojourn time

• p(j | i, a): the transition probabilities.

H(t | 1, a11) :=

{
1/25, t ∈ [0, 25],
1, t > 25;

H(t | 2, a21) :=

{
1/20, t ∈ [0, 20],
1, t > 20;

H(t | 3, a31) := 1− e−0.2t.

H(t | 1, a12) = 1− e−0.08t;

H(t | 2, a22) = 1− e−0.15t;
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p(1 | 1, a11) = 0, p(2 | 1, a11) =
9

20
, p(3 | 1, a11) =

11

20
;

p(1 | 1, a12) = 0, p(2 | 1, a12) =
1

2
, p(3 | 1, a12) =

1

2
;

p(1 | 2, a21) =
1

5
, p(2 | 2, a21) = 0, p(3 | 2, a21) =

4

5
;

p(1 | 2, a22) =
1

4
, p(2 | 2, a22) = 0, p(3 | 2, a22) =

3

4
;

p(3 | 3, a31) = 1.

Using the value iteration algorithm in Theorem 2, we obtain

some computational results as in Figure 1 and Figure 2.
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Figure 1. The functions T aF ∗(i, λ)
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Figure 2. The value function F ∗(i, λ)
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More clearly, we have

F ∗(1, λ) =





T a11F ∗(1, λ), 0 ≤ λ < 21.36,
T a11F ∗(1, λ) = T a12F ∗(1, λ), λ = 21.36,
T a12F ∗(1, λ), 21.36 < λ < 29.3,
T a11F ∗(1, λ) = T a12F ∗(1, λ), λ = 29.3,
T a11F ∗(1, λ)(= 0.7742), λ > 29.3,

F ∗(2, λ) =





T a21F ∗(2, λ), 0 ≤ λ < 18.54,
T a21F ∗(2, λ) = T a22F ∗(2, λ), λ = 18.54,
T a22F ∗(2, λ), 18.54 < λ < 23.82,
T a21F ∗(2, λ) = T a22F ∗(2, λ), λ = 23.82,
T a21F ∗(2, λ)(= 0.8542), λ > 23.82.
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Define a policy f ∗ by

f ∗(1, λ) =





a11, 0 ≤ λ ≤ 21.36,
a12, 21.36 < λ ≤ 29.3,
a11, λ > 29.3,

f ∗(2, λ) =





a21, 0 ≤ λ ≤ 18.54,
a22, 18.54 < λ ≤ 23.82,
a21, λ > 23.82,

Then, we have

• F ∗(i, λ) = T f∗F ∗(i, λ) for i = 1, 2 and all λ ≥ 0,

• f ∗ is an optimal stationary policy.
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A∗(1, λ) =





{a11}, 0 ≤ λ < 21.36,
{a11, a12}, λ = 21.36,
{a12}, 21.36 < λ < 29.3,
{a11, a12}, λ = 29.3,
{a11}, λ > 29.3,

A∗(2, λ) =





{a21}, 0 ≤ λ < 18.54,
{a21, a22}, λ = 18.54,
{a22}, 18.54 < λ < 23.82,
{a21, a22}, λ = 23.82,
{a21}, λ > 23.82,
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Hence,

A∗(1) =
⋂

λ≥0

A∗(1, λ) = ∅, A∗(2) =
⋂

λ≥0

A∗(2, λ) = ∅,

which show there is no optimal policy in G.

Remark 3. This shows that the assumption in the previous

literature is not satisfied for this example !!!
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Example 5.2. Let S = {1, 2}, B={2};
A(1) = {a11, a12}, A(2) = {a21};
Q(t, j | i, a) is given by

Q(t, j | 1, a11) =

{
1/2, if t ≥ 1, j = 1, 2,
0, otherwise;

Q(t, j | 1, a12) =

{
1, if t ≥ 2, j = 2,
0, otherwise;

Q(t, j | 2, a21) =

{
1− e−t, if t ≥ 0, j = 2,
0, otherwise.

Assumptions A and B holds in this example.
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We now define a policy d as follows:

d(1, λ) =

{
a12, 0 ≤ λ ≤ 2,
a11, λ > 2.

Then, by Theorem 1, we have F d(1, λ) = lim
n→∞

F d
n (1, λ),

which yields

F d(1, λ) =





0, 0 ≤ λ < 2,
1, λ = 2,
1/2, 2 < λ < 3.

Hence, F d(1, λ) is not a distribution function of λ.
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Many Thanks !!!


