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The absolute purity conjecture

Grothendieck’s absolute (cohomological) purity conjecture
(SGA5, Exposé I 3.1.4) is the following statement: if i : Z → X is
a closed immersion between noetherian regular schemes of pure
codimension c, n ∈ O(X )∗ and Λ = Z/nZ, then the étale
cohomology sheaf supported in Z with values in Λ can be
computed as

Hq
Z (Xét,Λ) =

{
i∗ΛZ (−c) if q = 2c

0 else

In other words, i !ΛX = ΛZ (−c)[−2c].
This conjecture has been solved by Gabber.
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Fangzhou Jin joint work with F. Déglise, J. Fasel and A. Khan Absolute purity in motivic homotopy theory



Grothendieck’s absolute purity conjecture
Motivic homotopy theory

The fundamental class
Absolute purity in motivic homotopy theory

A short history of the proof

SGA4: case where both X and Z are smooth over a field

Popescu: equal characteristic case

Gabber(1976): case where dimX 6 2

Thomason(1984): case where all prime divisors of n are
greater or equal to dimX + 2

Uses Atiyah-Hirzebruch spectral sequence of étale K -theory

Gabber(1986): general case (written by Fujiwara)

Based on Thomason’s method + rigidity for algebraic
K -theory
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Importance of the absolute purity conjecture

The absolute purity property, together with resolution of
singularities, is frequently used in cohomological studies of
schemes:

Show that the six functors on the derived category of étale
sheaves preserve constructible objects.

Prove the Grothendieck-Verdier local duality:
S a regular scheme, n ∈ O(S)∗ and Λ = Z/nZ, f : X → S a
separated morphism of finite type, then f !ΛS is a dualizing
object, i.e. DX/S := RHom(·, f !ΛS) satisfies D ◦ D = Id.

Construct Gysin morphisms and establish intersection theory.

Study the coniveau spectral sequence.
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Importance of the absolute purity conjecture

The study of these problems has lead to a great number of
new methods: Deligne, Verdier, Bloch-Ogus, Gabber, Fulton,
...

Our work: study absolute purity in the framework of motivic
homotopy theory.

Main result: the absolute purity in motivic homotopy theory is
satisfied with rational coefficients in mixed characteristic.
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Motivic homotopy theory

The motivic homotopy theory or A1-homotopy theory is
introduced by Morel and Voevodsky (1998) as a framework to
study cohomology theories in algebraic geometry, by importing
tools from algebraic topology

Idea: use the affine line A1 as a substitute of the unit interval
to get an algebraic version of the homotopy theory

Can be used to study cohomology theories such as algebraic
K -theory, Chow groups (motivic cohomology) and many
others

Advantage: has many a lot of structures coming from both
topological and algebraic geometrical sides
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Fangzhou Jin joint work with F. Déglise, J. Fasel and A. Khan Absolute purity in motivic homotopy theory



Grothendieck’s absolute purity conjecture
Motivic homotopy theory

The fundamental class
Absolute purity in motivic homotopy theory

Motivic homotopy theory

The motivic homotopy theory or A1-homotopy theory is
introduced by Morel and Voevodsky (1998) as a framework to
study cohomology theories in algebraic geometry, by importing
tools from algebraic topology

Idea: use the affine line A1 as a substitute of the unit interval
to get an algebraic version of the homotopy theory

Can be used to study cohomology theories such as algebraic
K -theory, Chow groups (motivic cohomology) and many
others

Advantage: has many a lot of structures coming from both
topological and algebraic geometrical sides
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Aspects of applications in various domains

Part of Voevodsky’s proof of the Bloch-Kato conjecture uses
the classification of cohomological operations that can be
studied by means of motivic homotopy theory

K -theory and hermitian K -theory (Riou, Cisinski,
Panin-Walter, Hornbostel, Schlichting-Tripathi)

Euler classes and splitting vector bundles (Murthy,
Barge-Morel, Asok-Fasel)

Computations of homotopy groups of spheres (Isaksen, Wang,
Xu)

A1-enumerative geometry (Hoyois, Levine, Kass-Wickelgren)

Non-commutative geometry and singularity categories
(Tabuada, Blanc-Robalo-Toën-Vezzosi)
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Some topological background

A spectrum E is a sequence (En)n∈N of pointed spaces (e.g.
CW-complexes or simplicial sets) together with continuous
maps σn : S1 ∧ En → En+1 called suspension maps

A morphism of spectra is a sequence of continuous maps on
each degree which commutes with suspension maps

Stable homotopy groups:

πn(E ) = colim
i

πn+i (Ei )

The theory stems from the Freudenthal suspension theorem: if
Ei = X ∧ S i for some X ∈ Top (i.e. E is the suspension
spectrum of X ), then the sequence i 7→ πn+i (Ei ) stabilizes

A morphism of spectra is a stable weak equivalence if it
induces isomorphisms on stable homotopy groups
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Stable homotopy category

The (topological) stable homotopy category SHtop is defined
from spectra by inverting stable weak equivalences

SHtop is a triangulated category, with shift given by
S1-suspension

Every object represents a cohomology theory

En(X ) = [X ,E ∧ Sn]SHtop

Examples: Suspension spectra Σ∞X for X ∈ Top•, in
particular sphere spectrum S ; HA Eilenberg-Mac Lane
spectrum for a ring A; MU complex cobordism spectrum

From an ∞-categorical point of view, the category of spectra
is the stabilization of the category of spaces, and is the
universal stable (triangulated) category
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The unstable motivic homotopy category

For any scheme S , a motivic space is a presheaf of simplicial
sets over the category of smooth S-schemes SmS

The (pointed) unstable motivic homotopy category H(S)
(H•(S)) is obtained from (pointed) motivic spaces by
localizing with respect to the Nisnevich topology and
projections of the form Y × A1 → Y

Bigraded A1-homotopy sheaves: for X ∈ H•(S), πA
1

a,b(X ) is
the Nisnevich sheaf on SmS associated to the presheaf

U 7→ [U ∧ Sa−b ∧Gb
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The stable motivic homotopy category

For any scheme S , a motivic spectrum or P1-spectrum is a
sequence E = (En)n>0 of pointed motivic spaces together with
morphisms σn : P1 ∧ En → En+1

A morphism of motivic spectra is a stable motivic weak
equivalence if it induces isomorphisms on A1-homotopy
sheaves

The stable motivic homotopy category SH(S) is defined
from P1-spectra by inverting stable motivic weak equivalences

Two spheres: P1 ∼A1 S1 ∧Gm

SH(S) is triangulated by S1-suspension

In the classical notation, S1 = 1[1] and Gm = 1(1)[1]

SH(S) is the universal stable ∞-category which satisfies
Nisnevich descent and A1-invariance (Robalo, Drew-Gallauer)
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Motivic spectra

Every object in SH(S) represents a bigraded cohomology theory

Ep,q(U) = [U, (S1)∧(p−q) ∧ (Gm)∧q ∧ E]SH(S)

Motivic Eilenberg-Mac Lane spectrum HZ, represents motivic
cohomology (extend Chow groups for smooth schemes)
Algebraic K-theory spectrum KGL, represents homotopy
K-theory (Voevodsky, Riou)
Algebraic cobordism spectrum MGL, represents algebraic
cobordism (Levine-Morel)
Hermitian K -theory spectrum KQ represents higher
Grothendieck-Witt groups (Schlichting, Panin-Walter,
Hornbostel)
Milnor-Witt spectrum HMWZ represents Milnor-Witt motivic
cohomology/higher Chow-Witt groups (Déglise-Fasel)
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The sphere spectrum

The sphere spectrum 1S = Σ∞P1S+ is the unit object for the
monoidal structure on SH(S) defined by ⊗ = ∧

Its stable homotopy groups/sheaves are hard to compute, and
are related to the open problem of computing stable
homotopy groups of spheres in topology

Morel’s theorem: k field, then πn,n(1k) ' KMW
n is the

Milnor-Witt K-theory sheaf

In particular, End(1k)SH(k) ' GW (k) is the
Grothendieck-Witt groups of symmetric bilinear forms over k

This leads to the theory of A1-enumerative geometry

The 1-line is also computed (Röndigs-Spitzweck-Østvaer):

0→ KM
2−n/24→ πn+1,n(1k)→ πn+1,nf0(KQ)
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0→ KM
2−n/24→ πn+1,n(1k)→ πn+1,nf0(KQ)
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The six functors formalism

Originates from Grothendieck’s theory for l-adic sheaves
(SGA4), and worked out in the motivic setting by Ayoub and
Cisinski-Déglise

For any morphism of schemes f : X → Y , there is a pair of
adjoint functors

f ∗ : SH(Y )
 SH(X ) : f∗

For any separated morphism of finite type f : X → Y , there is
an additional pair of adjoint functors

f! : SH(X )
 SH(Y ) : f !

There is also a pair (⊗,Hom) of adjoint functors inducing a
closed symmetric monoidal structure on SH
They satisfy formal properties axiomatizing important
theorems such as duality, base change and localization.
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For any morphism of schemes f : X → Y , there is a pair of
adjoint functors

f ∗ : SH(Y )
 SH(X ) : f∗

For any separated morphism of finite type f : X → Y , there is
an additional pair of adjoint functors

f! : SH(X )
 SH(Y ) : f !

There is also a pair (⊗,Hom) of adjoint functors inducing a
closed symmetric monoidal structure on SH

They satisfy formal properties axiomatizing important
theorems such as duality, base change and localization.
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Thom spaces and relative purity

If V → X is a vector bundle, then the Thom space
ThX (V ) ∈ H•(X ) is the pointed motivic space V /V − 0

This construction passes through P1-stabilization and defines
a ⊗-invertible object in SH(X ), and the map V 7→ Th(V )
extends to a map K0(X )→ SH(X )

Relative purity (Ayoub): f : X → Y smooth morphism with
tangent bundle Tf , then f ! ' Th(Tf )⊗ f ∗

In the presence of an orientation, we recover the usual relative
purity
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Fangzhou Jin joint work with F. Déglise, J. Fasel and A. Khan Absolute purity in motivic homotopy theory



Grothendieck’s absolute purity conjecture
Motivic homotopy theory

The fundamental class
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Orientations

An absolute motivic spectrum is the data of EX ∈ SH(X )
for every scheme X , together with natural isomorphisms
f ∗EX ' EY for every morphism f : Y → X

Examples: 1, HZ, KGL, MGL, KQ, HMWZ
An orientation of E is the data of isomorphisms
EX ⊗ ThX (V ) ' EX (r)[2r ] for all vector bundles V → X of
rank r , which is compatible with pullbacks and products

This is equivalent to the existence of Chern classes in the
sense of oriented cohomology theories

Examples: HZ, KGL, MGL, or the spectrum representing
étale cohomology

Non-examples: 1, KQ, HMWZ
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Fangzhou Jin joint work with F. Déglise, J. Fasel and A. Khan Absolute purity in motivic homotopy theory



Grothendieck’s absolute purity conjecture
Motivic homotopy theory

The fundamental class
Absolute purity in motivic homotopy theory

Orientations

An absolute motivic spectrum is the data of EX ∈ SH(X )
for every scheme X , together with natural isomorphisms
f ∗EX ' EY for every morphism f : Y → X

Examples: 1, HZ, KGL, MGL, KQ, HMWZ
An orientation of E is the data of isomorphisms
EX ⊗ ThX (V ) ' EX (r)[2r ] for all vector bundles V → X of
rank r , which is compatible with pullbacks and products

This is equivalent to the existence of Chern classes in the
sense of oriented cohomology theories

Examples: HZ, KGL, MGL, or the spectrum representing
étale cohomology

Non-examples: 1, KQ, HMWZ
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The fundamental class
Absolute purity in motivic homotopy theory

Orientations and fundamental classes

The algebraic cobordism spectrum MGL is the universal
oriented absolute spectrum

With an orientation, we have an associated formal group law,
as well as many extra properties such as projective bundle
formula or double point formula (Levine-Pandharipande)

A theory of fundamental classes aims at establishing a
cohomological intersection theory

For oriented spectra, Déglise defined fundamental classes
using Chern classes
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Bivariant groups

For f : X → S be a separated morphism of finite type,
v ∈ K0(X ) and E ∈ SH(S), define the E-bivariant groups
(or Borel-Moore E-homology) as

En(X/S , v) = [f!Th(v)[n],E]SH(S)

If S is a field and E = HZ, then Ei (X/S , v) = CHr (X , i) are
the higher Chow groups, where r is the virtual rank of v

Its intersection theory is motivated by the intersection theory
on Chow groups
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Functoriality of bivariant groups

Base change:

Y
q //

g

��
∆

X

f
��

T
p // S

∆∗ : En(T/S , v)→ En(Y /X , g∗v)

Proper push-forward: f : X → Y proper

f∗ : En(X/S , f ∗v)→ En(Y /S , v)

Product: if E has a ring structure, X
f−→ Y

g−→ S

Em(X/Y ,w)⊗ En(Y /S , v)→ Em+n(X/S ,w + f ∗v)
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The fundamental class (Déglise-J.-Khan)

We say that a morphism of schemes f : X → Y is local
complete intersection (lci) if it factors as a regular closed
immersion followed by a smooth morphism

To such a morphism is associated a virtual tangent bundle
τf ∈ K0(X ), which agrees with the class of the cotangent
complex of f

3 equivalent formulations:
purity transformation f ∗ ⊗ Th(τf )→ f !

fundamental class ηf ∈ E0(X/Y , τf )
Gysin morphisms En(Y /S , v)→ En(X/S , τf + f ∗v)

all compatible with compositions

Morally, these operations contain the information of
“intersecting cycles over X with Y ”

The construction uses the deformation to the normal cone
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Euler class and excess intersection formula

The Euler class of a vector bundle V → X is the map
e(V ) : 1X → Th(V ) induced by the zero section seen as a
monomorphism of vector bundles

Excess intersection formula: for a Cartesian square

Y
q //

g �� ∆

X
f��

T
p // S

where p and q are lci, we have ∆∗ηp = ηq · e(ξ), where ξ is
the excess bundle

Motivic Gauss-Bonnet formula (Levine, Déglise-J.-Khan)
For p : X → S a smooth and proper morphism

χ(X/S) = p∗e(Tp)

where χ(X/S) is the categorical Euler characteristic
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Fangzhou Jin joint work with F. Déglise, J. Fasel and A. Khan Absolute purity in motivic homotopy theory



Grothendieck’s absolute purity conjecture
Motivic homotopy theory

The fundamental class
Absolute purity in motivic homotopy theory

The absolute purity property

We say that an absolute spectrum E satisfies absolute purity
if for any closed immersion i : Z → X between regular
schemes, the purity transformation EZ ⊗Th(τf )→ f !EX is an
isomorphism

Example: the algebraic K -theory spectrum KGL satisfies
absolute purity because K -theory satisfies localization
property (also called dévissage, due to Quillen)

K (Z )→ K (X )→ K (X − Z )

From this property Cisinski-Déglise deduce that the rational
motivic Eilenberg-Mac Lane spectrum HQ also satisfies
absolute purity, mainly because HQ is a direct summand of
KGLQ by the Grothendieck-Riemann-Roch theorem
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The Main result

Theorem (Déglise-Fasel-J.-Khan):
The rational sphere spectrum 1Q satisfies absolute purity.

First reductions:

The “switching factors” endomorphism of P1 ∧ P1 induces a
decomposition of the sphere spectrum 1Q into the direct sum
of the plus-part 1+,Q and the minus-part 1−,Q (Morel)

The +-part 1+,Q agrees with HQ (Cisinski-Déglise)

Therefore it suffices to show that the minus part satisfies
aboslute purity
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The first proof

By a devissage theorem of Schlichting and an argument
similar to the case of KGL, one can show that the Hermitian
K-theory spectrum KQ satisfies aboslute purity

Similar to the Chern character, the Borel character (defined
by Déglise-Fasel) induces a decomposition of KQQ, where
1−,Q can be identified as a direct summand

This proves the absolute purity of 1Q when 2 is invertible on
the base scheme, since KQ is only well-defined in this case
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The second proof

For every scheme X , denote by νX : XQ = X ×Z Q→ X

Key lemma: the functor ν∗X : SH(XQ)−,Q → SH(X )−,Q is an
equivalence of categories

We may assume that X is the spectrum of a field, because the
family of functors i !x for ix : Spec(k(x))→ X for all points x
of X is jointly conservative, i.e. reflects isomorphisms

For X a field of characteristic zero, νX is automatically an
isomorphism; for X a field of positive characteristic,
SH(X )−,Q vanishes by a theorem of Morel/Bachmann

The key lemma then reduces the absolute purity of 1−,Q in
mixed characteristic to the case of Q-schemes, which can be
proved using Popescu’s theorem: a closed immersion of affine
regular schemes over a perfect field is a limit of closed
immersions of smooth schemes
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Some applications

Our method can be used to deduce the following new results
in mixed characteristic:

The six functors preserve constructible objects in the rational
stable motivic homotopy category SH(·,Q)
The Grothendieck-Verdier duality holds for SH(·,Q)
The homotopy t-structure on SH(·,Q) behaves as expected

The rational stable motivic homotopy category has a (unique)
SL-orientation, that is, the Thom space of a vector bundle
only depends on its rank and its determinant

The rational bivariant groups HA1

0 (X/S , v)Q agree with the
rational Chow-Witt groups, and can be computed by the
Gersten complex associated to Milnor-Witt K-theory

Related work: absolute purity of the sphere spectrum over a
Dedekind domain (Frankland-Nguyen-Spitzweck, work in
progress)
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Thank you!
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