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1. INTRODUCTION

In 1975, Raghunathan proposed two fundamental conjectures on rigidity of unipotent
actions on homogeneous spaces: Raghunathan’s topological conjecture and measure conjec-
ture. Ratner managed to prove these two conjectures in full generality around 1990 in several
seminal papers [1990, Actal, [1990, Inventiones], [1991, Annals] and [1991, Duke].

According to Ratner’s theorem on measure rigidity, for any homogeneous space G/I" with
a one-parameter unipotent subgroup U = {u(t) : t € R}, any U-invariant and ergodic
probability measure p on G/T" is homogeneous, that is, there exists a periodic orbit Fz
of some analytic subgroup F' C G such that p is induced by the Haar measure up of F.
This implies the following Ratner’s theorems on orbit closure and equidistritbuion: For any
x € G /T, the closure of the orbit Uz is a periodic orbit F'x of some analytic subgroup F' C G,
and the orbit Ux is equidistributed in Fx with respect g in the following sense: For any
compactly supported continuous function f € C.(G/T'),
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lim 1 flu(t)z)dt = fdup.
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Ratner’s theorems have many important applications to number theory, and the ideas
in the proof inspired several important breakthroughs in dynamical systems, such as the
work by Einsiedler-Katok-Lindenstrauss on measure rigidity of higher rank diagonal actions
on homogeneous spaces (Lindenstrauss’ fields medal work), the work by Benoist-Quint on
classifications of stationary measures of random walks on homogeneous spaces, and the
work by Eskin-Mirzakhani on measure classification of SLy(R)-invariant measures on moduli
spaces (Mirzakhani’s fields medal work).

The goal of this short course is to understand Ratner’s proof of measure rigidity for
semisimple G [1990, Acta]. This is the most important and difficult case. The proof contains
most key ideas and techniques.

2. OUTLINE OF THE COURSE

The course is organized as follows:

(1) In the first lecture, we will briefly go through the history around Raghunathan’s
conjecture and Ratner’s theorems, and talk about some important applications of
Ratner’s theorems.

(2) In the second lecture, we will start the proof of Ratner’s measure classification theo-
rem for the case where GG is semisimple. We will prove several important properties
of unipotent actions.

(3) In the third lecture, we will statement the key lemma and start proving it. This will

be the main part of the whole proof.
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(4) In the fourth lecture, we will finish the proof of key lemma and briefly describe how
to deduce the measure rigidity result from the key lemma.

We will closely follow Ratner’s paper [1990, Acta]. The course is self-contained.
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