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Preface
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1 Introduction

1 Introduction

1.1 Overview

With recent advancements in algorithms and computational hardware, deep learning [LBH15]
has risen to the pinnacle of many practical applications, including image analysis, natural
language processing and game playing, etc. However, on the theoretical side, we are only at
the nascent stages of exploration. In a sense, deep learning is about learning representations,
yet the way it does so is quite peculiar: it relies on repeated transformations through the deep
layers of a neural network to disentangle features and learn very complex representations.
Mathematically, these transformations act together via compositions, which connects this to the
classical �eld of study known as dynamical systems [Bir27]. How does this connection help us
to unveil certain aspects of deep learning?

These notes presents an pedagogical overview of the connection between dynamical systems
and machine learning. Here, the theory of optimal control acts as a bridge between calculus of
variations on the one hand, and training deep networks on the other. Hence, we will use the �rst
half of the notes to introduce the basic theory of optimal control, including the central results of
Pontryagin and Bellman. This lays the basic theoretical groundwork for its applications to deep
learning research. As there are many references to these topics, the focus here is not to present
the theory in its utmost generality. Instead, we will sacri�ce generality (and sometimes, a bit
of rigor) in favor of simplicity and transparency. Nevertheless, where relevant further reading
references will be provided for readers interested in the general theory of calculus of variations
and optimal control.

In the second part of these notes, we will discuss some applications of the dynamical sys-
tems viewpoint on deep learning, including mathematical formulations, optimality conditions,
learning algorithms and model architectures. The content in this part is fairly new and our
understanding is still far from complete. Hence, the goal of this part is to survey recent research
in this direction, as well as point out the limitations and a host of future research directions
that one may pursue.

The reader is assumed to have a basic familiarity with linear algebra, calculus/analysis and
probability. Knowledge of machine learning, di�erential equations, numerical analysis and
optimization is highly desirable, but the relevant ideas will be introduced along the way, with
reference provided for further reading or review.
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1 Introduction

1.2 Supervised Learning and Neural Networks

We start by giving a quick review of supervised learning and neural networks. The discussion
is rather brief and the reader is referred to [BO06, MRT18] (and for deep learning, [GBC16]) for
a more thorough introduction.

1.2.1 The Basic Supervised Learning Problem

We begin with a brief introduction of the problem statement of supervised learning. Supervised
learning is perhaps the most basic class of machine learning problems. Here, we are given a
dataset D = {xi ,yi }Ni=1 consisting of inputs xi with their corresponding labels yi and N is the
size of the data. The underlying assumption is that each yi is determined by xi through some
target function F ∗, i.e. yi = F ∗(xi ). In classi�cation problems, the function F ∗ is sometimes
called the oracle, carrying the meaning that it can determine perfectly the label of any sample
presented to it. More generally, one can take into account of noise and uncertainties by assuming
that given xi , yi is a sample from some “target” conditional distribution yi ∼ p∗(·|xi ). The most
common model for this case is when yi = F ∗(xi ) + ϵi with ϵi representing some random noise
term. For the sake of simplicity, for now we shall discuss supervised learning in the deterministic
context. When the labels yi take values in a continuum, say in R, we say that this is a regression
problem. Otherwise, if yi take discrete values, we say that this is a classi�cation problem.

The target F ∗ is unknown to us except from the information contained in the dataset D =
{xi ,yi = F ∗(xi )}

N
i=1. As such, the over-arching goal of supervised learning is to construct, using

D, a good approximation of the target. The word supervised means that in our dataset D, the
correct label is provided to us as a form of supervision by F ∗ in our learning process.

So, how can we go about constructing such a predictive model? Notice that without explicit
knowledge of F ∗ and from mere observations ofD, it is not clear how we can even represent F ∗,
say on a computer. Consequently, this motivates the following approach: we take a collection of
functions that we can represent on a computer or even a piece of paper; From this collection we
pick one F that “best approximates” F ∗ in some sense – F is then taken as our learned predictive
model. This collection of functions, which is our job to decide, is called the hypothesis space
and we will denote it byH .

What is missing from the above discussion is how we pick a particular function F to approximate
F ∗. Clearly, it relies on a precise de�nition of “best approximation”. This is where the concept of
loss functions comes in. In abstract terms, we want to have a notion of how close any candidate
F is to the target F ∗. For classi�cation problems, a reasonable measure of the closeness of
another classi�er F to the target F ∗ is

R(F ) =
1
N

N∑
i=1

1F (xi ),F ∗(xi ), (1.1)

where 1c is the indicator function which equals 1 if condition c is true and 0 otherwise. Thus,
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1 Introduction

R(F ) is the accuracy of f on the training dataset D. In statistical language, R(F ) is also called
an empirical risk associated with the predictor F .

More generally, the closeness of F to F ∗ can be de�ned by a suitable loss function Φ, so that

R(F ) =
1
N

N∑
i=1

L(F (xi ), F
∗(xi )) =

1
N

N∑
i=1

Φ(F (xi ),yi ) (1.2)

and we want Φ(y ′,y) to decrease as y and y ′ becomes closer. For the example given in (1.1),
we have Φ(y ′,y) = 1y,y′ and this is known as the zero-one loss. For various reasons which will
become clear, the zero-one loss is not often used, and we will consider a variety of other loss
functions in both classi�cation and regression problems. For example, a commonly used loss
for regression is the square loss Φ(y ′,y) = 1

2 ‖y
′ − y‖2.

Once a suitable loss function (and hence a notion of distance) is de�ned, the supervised learning
problem can now be formalized as an optimization problem

min
F ∈H

R(F ), (1.3)

and if we can solve this problem, a minimizer F̂ ∈ H of (1.3) is then our obtained predictive
model. The process of �nding F̂ by minimizing R(F ) (which depends on the data D) is called
training, and F̂ is called a trained model. Hopefully, F̂ performs our task of predicting label
from inputs adequately, in which case we have succeeded at this supervised learning task.

Empirical Risk Minimization vs Population Risk Minimization. The preceding discus-
sion, in particular Eq. (1.3) appears to suggest that machine learning is in some sense equivalent
to an optimization problem. However, this is not so. In fact, Eq. (1.3) is not the actual problem
we want to solve. To see this, simply observe that we can easily come up with a F̂ that minimizes
the zero-one loss in the digit recognition problem – we simply memorize the label associated
with each image xi , i = 1, 2, . . . ,N found in the training data, i.e.

F̂ (x) =

{
yi x = xi for some i = 1, 2, . . . ,N
anything otherwise

. (1.4)

Obviously, R(F̂ ) = 0 but F̂ is not what we want. What we really want is F̂ to perform well
on new examples not found in, but distributed identically as, the original training dataset. In
mathematical terms, what we really want to solve is the population risk minimization problem

min
F ∈H

Rpop(F ) = Ex∼µL(F (x), F
∗(x)), (1.5)

where µ denotes the probability distribution from which the samples {xi }Ni=1 are sampled from.
More generally, µ is used to denote a joint distribution of the input and label, and so we have

min
F ∈H

Rpop(F ) = E(x,y)∼µL(F (x),y), (1.6)
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1 Introduction

which includes (1.5) as a special case if µ(x ,y) → µ(x)δF ∗(x )=y , but also includes more general
cases where the label can depend stochastically on the input.

In contrast, (1.3) is an empirical risk minimization problem, which we can rewrite as

min
F ∈H

Remp(F ) =
1
N

N∑
i=1

L(F (xi ), F
∗(xi )) xi

i.i.d.
∼ µ . (1.7)

However, in practice we cannot represent the sample distribution µ, and hence we often resort
to solving (1.7) in place of (1.5). Nevertheless, it must be stressed that a good solution of (1.5) is
what we are really after. The di�erence between the solutions of these problems is the study of
generalization, which sets learning problems apart from pure optimization problems.

Three Paradigms of Supervised Learning. Now that we have formalized the basic problem
of supervised learning, it is natural to discuss what sort of questions can we ask in machine
learning theory and practice. In a sense, these questions can be grouped into three large
categories: approximation, optimization and generalization. Below we list some central questions
in each of these aspects.

1. Approximation – How large is our hypothesis spaceH?. In particular, does it include, or
at least contain functions that are very close to our target F ∗? This is in fact the study of
approximation theory and some of harmonic analysis [DP07, Mal09], although there are
also many modern developments, particularly in the area of deep learning.

2. Optimization –How can we �nd or get close to an approximation F̂ of F ∗?. This is indeed the
empirical risk minimization problem, and questions include the design of large-scale opti-
mization algorithms, their convergence analysis and their e�cient implementation. Many
methods are extensions of classical methods in convex optimization [Nes04]. See [BCN18]
for a modern review. This will be the primary way optimal control theory comes into the
picture.

3. Generalization – Can the F̂ found generalize to unseen examples? This concerns the
fundamental interaction between the size of the data and the complexity of our hypothesis
space. In fact, this question is the focus of classical statistical learning theory [FHT01].

Figure 1.1 gives an illustration of these questions. Of course, some of these concepts also apply
beyond supervised learning framework.

1.2.2 Example: Linear Models

To illustrate supervised learning, it is useful to introduce the simplest case of linear models or
linear basis models. Consider the dataset D = {xi ,yi }Ni=1 where each input xi ∈ Rd is a vector
in d dimensions and scalar label yi ∈ R. Consider the hypothesis space

H =

{
F : F (x) =

M−1∑
j=0

w jϕ j (x)

}
(1.8)
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1 Introduction

Figure 1.1: A schematic showing the three theoretical paradigms of supervised learning. Ap-
proximation studies the distance between the best approximator F̂ in our hypothesis
spaceH and the target F ∗. Optimization studies the process at which you arrive at
or close to F̂ , by using the training dataset D and starting from some initial guess f0.
Generalization problems arise because the dataset is �nite and so the optimization
on training set �nds not F̂ but some other f̃ , and we must quantify the distance
between them. In fact, what we are really interested in is the distance between F̂
and F ∗ when it comes to generalization.

where each ϕ j is a function from Rd to R. These are called basis functions or sometimes feature
maps, for the reason that their role is to extract some feature from the input data x that is useful
for predicting y. We have freedom to de�ne what functions {ϕ j } we use.

Observe that this is includes linear regression, if we set ϕ0(x) = 1, ϕi (x) = xi for i = 1, . . . ,d ,
but it also includes other more general spaces. In fact, there are many choices of ϕ j ’s, and we
give some examples below in the d = 1 case:

Polynomial basis ϕ j (x) = x j (1.9)

Gaussian basis ϕ j (x) = exp
(
−
(x −mj )

2

2s2

)
(1.10)

Sigmoid basis ϕ j (x) = σ
(x −mj

s

)
σ (b) =

1
1 + e−b

(1.11)

There are in fact many more choices, include splines [DBRDB78], fourier basis, wavelet ba-
sis [Mal09] and many more – even neural networks as we will encounter later on.

9



1 Introduction

Ordinary Least Squares. Recall that the empirical risk minimization problem we want to
solve here is

min
w0, ...,wM−1

Remp(w0, . . . ,wM−1) =
1
2N

N∑
i=1

(
M−1∑
j=0

w jϕ j (xi ) − yi

)2
. (1.12)

We can write the above much more compactly as

min
w ∈RM

Remp(w) =
1
2N ‖Ψw − y‖

2, (1.13)

where we have de�ned

w =

©­­­­«
w0
w1
...

wM−1

ª®®®®¬
, y =

©­­­­«
y1
y2
...

yN

ª®®®®¬
, Ψ =

©­­­­«
ϕ0(x1) ϕ1(x1) · · · ϕM−1(x1)
ϕ0(x2) ϕ1(x2) · · · ϕM−1(x2)
...

...
. . .

...

ϕ0(xN ) ϕ1(xN ) · · · ϕM−1(xN )

ª®®®®¬
, (1.14)

and ‖ · ‖ denotes the usual Euclidean norm. This allows us to derive the ordinary least squares
formula by solving ∇Remp(ŵ) = 0 for ŵ .

Proposition 1.1: Ordinary Least Squares Formula

Suppose Ψ>Ψ is invertible, then the solution of (1.13) is

ŵ = (Ψ>Ψ)−1Ψ>y. (1.15)

Proof: We have ∇Remp(ŵ) =
1
N Ψ>(Ψŵ − y). Setting the right hand side to 0 gives

Ψ>Ψŵ = Ψ>y. Solving for ŵ gives the required solution. �

The OLS formula (1.15) can be seen as a necessary condition for optimality for the empirical
risk Remp. Here, it turns out to also be su�cient. This is because the function w 7→ Remp(w) is
smooth and convex, and hence all stationary points are automatically global minima.

Singular Case and Regularization. Proposition 1.1 requires Ψ>Ψ to be invertible, but what
happens if this is not the case? Note that Ψ is a N ×M matrix whose rank is at most max(N ,M).
Suppose N ≥ M , which is the case when the number of samples is greater than or equal to the
number of features, or equivalently, the “complexity” of our hypothesis class. Since Ψ>Ψ is a
M ×M matrix, it is invertible as long as the columns of Ψ are linearly independent, which we
should be able to satisfy by appropriate choices of the ϕ j ’s. What happens if N < M? In this
case the rank of Ψ>Ψ is at most N which is smaller M and so it is non-invertible, or singular.

So, what is the solution of the least squares problem now? It turns out that there is not one, but
an in�nite number of solutions. They are given by

{ŵ(u) : u ∈ RM } where ŵ(u) = Ψ†y + (I − Ψ†Ψ)u . (1.16)
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1 Introduction

The matrix Ψ† denotes the Moore–Penrose pseudoinverse [GVL96] of Ψ. Moreover, for any of
these solutions, we have Remp(ŵ(u)) = 0, i.e. our training data is perfectly �t. This may not be
good in machine learning scenarios.

Exercise 1.2

Show that if Ψ>Ψ is invertible then ŵ(u) from (1.16) reduces to the ordinary least squares
solution (1.15) for any u. (Hint: recall that for a matrix A, if A>A is invertible then
A† = (A>A)−1A>. If you do not remember this, review the basics of pseudoinverse in any
linear algebra reference, e.g. [GVL96]).

The fact that we have an in�nite number of solutions is often not good as we typically need to
pick one to perform our predictions. Which one do we pick? One choice is to pick one that has
the smallest norm ‖ŵ(u)‖, which is ŵ(0) = Ψ†y. More generally, we can consider adding to the
empirical risk minimization problem a regularization term

min
w ∈RM

1
2N ‖Ψw − y‖

2 + λC(w) (1.17)

where C : RM → R+ is the regularization function and λ > 0 controls its strength. If we pick
C(w) = ‖w ‖2 (`2 regularization), then we get the unique solution ŵ = Ψ†y if Ψ>Ψ is singular.
This is also known as ridge regression. However, we can also use other types of regularization,
such as C(w) = ‖w ‖1 (`1 regularization). In this case, we actually �nd a sparse solution, i.e.
many of entries ŵ are 0. This is called lasso [FHT01] in the statistics literature and is also related
to the �eld of compressed sensing [Don06], which has many interesting applications, including
fast Magnetic Resonance Imaging (MRI) [LDP07]. Moreover, regularization can also reduce
over�tting, as the following example shows.

1.2.3 The Neural Network Hypothesis Space

Contrary to the linear models, neural networks constitutes a class of adaptive basis models, in
which the basis functions are �tted according to data. The term "neural networks" originated
from the fact that these models were �rst developed as an attempt to model, in a mathematically
precise way, neural interactions in the human brain [MP43, WH60]. However, it became clear
quickly that such models are over-simpli�ed and lack complexity required to understand human
physiology. Nevertheless, they form a class of powerful machine learning models that admit
unique properties that are worth studying. In the following, we start with the basics of shallow
neural networks.
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Shallow Neural Networks. A shallow neural network corresponds to the following hypoth-
esis space

HM =

{
F : F (x) =

M∑
j=1

vjσ (w
>
j x + bj ),w j ∈ R

d ,vj ∈ R,bj ∈ R

}
(1.18)

Let us now introduce some nomenclature that is customary in the study of neural networks.
The function σ : R→ R is called an activation function. Popular choices include

ReLU (Recti�ed Linear Unit) σ (z) = max(0, z) (1.19)
Leaky ReLU σ (z) = max(0, z) + δ min(0, z) (1.20)
Tanh σ (z) = tanh(z) (1.21)

Sigmoid σ (z) =
1

1 + e−z (1.22)

Soft-plus σ (z) = log(1 + ez ) (1.23)

but this list is of course not exhaustive. Next, the parameters w j are often called weights and bj
are called biases. Recall that in linear models, we tend to combine them by appending “1” to the
input state x . However, here we will write out the bias term explicitly to conform with popular
notation. We will refer to vj as coe�cients, but in deeper models they can also be regarded as
weights. Finally, the number M is the dimensional of the hidden layer and this controls the
complexity of the model. Often, we refer to hj = w

>
j x + bj as the value on the jth hidden node.

Thus, M is the number of hidden nodes in the neural network.

Universal Approximation Theorem. We now discuss a foundational result in the approxi-
mation theory of neural networks. This is known as the universal approximation theorem. In
words, it says that given enough hidden nodes, a neural network can approximate any function
to arbitrary accuracy. Let us give the precise statement of this result below.

Theorem 1.3: Universal Approximation Theorem for Neural Networks

Let K ⊂ Rd be closed and bounded and F ∗ : K → R be continuous. Assume that the activa-
tion function σ is sigmoidal, i.e. σ is continuous and limz→∞ σ (z) = 1, limz→−∞ σ (z) = 0.
Then, for every ϵ > 0 there exists F ∈ ∪M ≥1HM such that

‖F − F ∗‖C(K ) = max
x ∈K
|F (x) − F ∗(x)| < ϵ (1.24)

A general proof of Theorem 1.3 follows from an application of the Hahn-Banach theorem and the
Riesz-Markov representation theorem, together with an argument based on the non-degenerate
properties of σ [Cyb89], although there are also many other proofs using di�erent techniques.
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1.2.4 Optimizing Neural Networks

The universal approximation theorem (Theorem 1.3) ensures that a neural network can be built
to approximate any continuous function F ∗ on a compact domain. However, it does not tell us
how to build it. In other words, while the approximation problem is settled, the optimization
problem remains. In this section, we shall discuss the gradient descent method for optimizing
machine learning models, including but not limited to neural networks.

As demonstrated in many previous cases, in practice the empirical risk minimization problem
can be written as an optimization problem over certain trainable parameters. In other words, we
assume that the Hypothesis space admits a parameterization, so thatH = {F : F (x) = Fθ (x) :
θ ∈ Θ}. The set Θ is the allowed set of trainable parameters. For example, in the case of shallow
neural networks (1.18), θ = (v,w,b) ∈ Θ = R(2+d )M . In most applications we can let Θ = Rp be
a Euclidean space, but there of course exists important exceptions (e.g. quantized networks). In
the following, we will assume Θ = Rp . Consequently, the empirical risk minimization can be
written as

min
F ∈H

Remp(F ) = min
θ ∈∈Rp

Remp(θ ) = min
θ ∈∈Rp

1
N

N∑
i=1

Φ(Fθ (xi ),yi ). (1.25)

Recall that Φ is the loss function.

To introduce optimization methods, it is convenient to abuse notations and simply write

1
N

N∑
i=1

Φ(Fθ (xi ),yi ) → Φ(θ ) (1.26)

Then, the empirical risk minimization problem aims to solve minθ ∈Θ Φ(θ ).

Gradient Descent. Except for simple cases (e.g. least squares), minimizing Φ(θ ) does not
admit an explicit solution, and we often resort to iterative approximation methods that are
implementable on a computer. We now introduce the simplest of them all, the gradient descent
(GD) algorithm. Notice that the gradient vector ∇Φ(θ ) always points in the steepest ascent
direction on the surface de�ned by z = Φ(θ ), and hence to decrease Φ(θ ) we should go in the
opposite direction, the steepest descent direction given by −∇Φ(θ ) (Figure 1.2). How long a step
should we take? This is controlled by a parameter called the learning rate or step size, η > 0. It
is typically taken to be small to ensure stability of the algorithm. The algorithm is summarized
in 1 and also illustrated on Figure 1.2.

It can be shown that if Φ is su�ciently well-behaved, e.g. if ∇Φ is globally Lipschitz, then
‖∇Φ(θk )‖ → 0 as k → ∞ for η su�ciently small [Nes04]. In other words, there is at least
a subsequence of GD iterates that converge to a stationary point. However, we want to to
minimize Φ and not just �nd a stationary point. Does GD converge to a minimum? To discuss
this question, we need to di�erentiate between two kinds of minima: local and global.
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Figure 1.2: Illustration of gradient descent for function minimization. Left: ∇Φ always points in
the steepest descent direction. Right: the path of the gradient descent algorithm.

Algorithm 1: Gradient Descent
Hyperparameters: K (# iterations), η (learning rate)
Initialize: θ0 ∈ Rp

for k = 0, 1, . . . ,K − 1 do
θk+1 = θk − η∇Φ(θk )

end
return θK

Local vs Global Minima. We begin with concrete de�nitions.

De�nition 1.4: Local and Global Minima

Let Φ : Rp → R be a function. We say that θ ∗ is local minimum of Φ if there exists δ > 0
such that

Φ(θ ∗) ≤ Φ(θ ) for all θ ∈ Rp satisfying ‖θ − θ ∗‖ ≤ δ . (1.27)

We say that it is a global minimum if

Φ(θ ∗) ≤ Φ(θ ) for all θ ∈ Rp . (1.28)

It turns out that under general conditions, one can show that gradient descent almost always
converges to a local minimum. However, in general it does not converge to a global minimum
unless we assume additional conditions on the function Φ. Let us give an example of such a
condition that is commonly encountered in machine learning.
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De�nition 1.5: Convex Functions

We say that a function Φ : Rp → R is convex if

Φ(λθ + (1 − λ)θ ′) ≤ λΦ(θ ) + (1 − λ)Φ(θ ′) (1.29)

for all θ ,θ ′ ∈ Rp and λ ∈ [0, 1].

It turns out that if Φ is convex, then one can show that all local minima are automatically global
minima. We state and prove this result in Proposition 1.6.

Proposition 1.6

Let Φ : Rp → R be convex. Suppose θ ∗ is a local minimum of Φ, then it is a global
minimum of Φ.
Proof. Without loss of generality we assume Φ(θ ∗) = 0 (otherwise just replace Φ(θ ) by
Φ(θ ) − Φ(θ ∗)). Suppose for the sake of contradiction that exists s ∈ Rp such that Φ(s) < 0.
De�ne u(λ) = λs + (1 − λ)θ ∗ for λ ∈ [0, 1]. By the de�nition of convexity (1.29), we have

Φ(u(λ)) ≤ λΦ(s) + (1 − λ)Φ(θ ∗) = λΦ(s), (1.30)

or Φ(s) ≥ Φ(u(λ))/λ for all λ ∈ (0, 1]. But, ‖u(λ) − θ ∗‖ = λ‖s − θ ∗‖. Picking λ =
min(1,δ/‖s − θ ∗‖) gives ‖u(λ) − θ ∗‖ ≤ δ . By de�nition of local minimum, Φ(u(λ)) ≥ 0
and so Φ(s) ≥ Φ(u(λ))/λ ≥ 0, contradicting our premise that Φ(s) < 0.

Consequently, as long as Φ is convex, GD can solve the empirical risk minimization problem.
Furthermore, for convex functions one can actually give a rate at which GD converges: to reach
an error of ϵ in the function value, we roughly require at most O(ϵ−1) GD iterations. If stronger
conditions are assumed on Φ (e.g. strong convexity), then this rate can be faster.
Remark. Very often, when the sample size is large we employ the stochastic version of GD, where
at each iteration only a subset of all training samples are selected to compute the gradient. This is
known as stochastic gradient descent (SGD).Wewill omit this issue in these notes, but see [BCN18].

1.2.5 Deep Neural Networks

So far, we have introduced shallow neural networks and discussed their optimization and
approximation properties. In this section, we discuss the extension of shallow neural networks
to deep neural networks (DNN), forming the basis of the deep learning revolution we are
witnessing today.

The simplest type of DNN are the so-called deep fully-connected networks, where we simply
iterate the structure of shallow neural networks K times. K is the depth of the DNN. Concretely,
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deep neural networks make up the following hypothesis space

H =
{
F : F (x) = v>x(K),v ∈ RdK

}
where
x(k + 1) = σ (W (k)x(k) + b(k)), W (k) ∈ Rdk+1×dk , b(k) ∈ Rdk+1 , k = 0, . . . ,K − 1
with d0 = d, x(0) = x .

(1.31)

The trainable parameters are the weights {W (0), . . . ,W (K − 1)}, biases {b(0), . . . ,b(K − 1)} and
the �nal combination (�nal layer) weights v . The activation function is applied element-wise to
each vector, i.e. σ (z)i = σ (zi ).

Residual Networks. The deep network architecture proved to be tremendously successful
at learning relationships between inputs and outputs. The hypothesis space (1.31) is only the
simplest example, and there are many variants. In these notes, we will focus on a particular
variant known as residual networks [HZRS15], which is among the state of the art architectures
for deep learning. ResNet is not a particular architecture but a class of architectures that has a
residual connection. For example, the residual version of (1.31) is obtained when we replace

x(k + 1) = σ (W (k)x(k) + b(k)) → x(k + 1) = x(k)+σ (W (k)x(k) + b(k)). (1.32)

Note that this necessitates the fact that dk = d for all k = 0, . . . ,K . More generally, a residual
network has the form

x(k + 1) = x(k) + f (k,x(k),θ (k)), (1.33)

where θ (k) ∈ Θ are the trainable parameters at layer k . Readers familiar with ordinary di�eren-
tial equations will immediately recognize the form of (1.33) resembles a Euler discretization –
this observation is in fact the central viewpoint of the work on the dynamical system viewpoint
of deep learning, which is the focal point of these notes. Hence, let us now complete the
background material by introducing some basics of di�erential equations.

Back-propagation Algorithm. Just like shallow networks, DNNs can be trained using GD
(or SGD). The only complication is, since there are many trainable parameters linked in a
deep network, can we have a e�cient way to compute the gradient? The well-known back-
propagation algorithm precisely handles this. Since we are going to introduce an mathematical
equivalent way to view back-propagation, we will postpone detailed discussion of this algorithm
to later chapters.

1.3 Ordinary Di�erential Equations

In this section, we introduce some basics of ordinary di�erential equations that will be useful to
us for later chapters. We will not present any proofs since they can be found in any standard
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introductory text (e.g. [Arn12, Cod12]) the readers are assumed to have some familiarity with
the topic, but we will state without proof a few useful properties and illustrate some relevant
phenomenon with examples.

1.3.1 Basic Definitions

We will work in Rd . An ordinary di�erential equation (ODE) is the equation

Ûx(t) = f (x(t)), x(0) = x0 ∈ R
d , (1.34)

where Ûx denotes the time derivative, f : Rd → Rd is a function or vector �eld and x0 is the
initial condition. This called a time homogeneous ODE since the vector �eld on the right does
not depend explicitly on time t . On the other hand, a time-inhomogeneous ODE is given by

Ûx(t) = f (t ,x(t)), x(0) = x0 ∈ R
d . (1.35)

We note that minus technical conditions, these two equations are equivalent. First, obvi-
ously (1.35) includes (1.34). For the reverse direction, we de�ne an auxiliary variable x0 ∈ R
such that Ûx0(t) = 1, x0(0) = 0 so that x0(t) = t . Then, we can rewrite (1.35) by de�ning
x̃ = (x0,x), f̃ (x̃) = (1, f (x0,x)) exactly in the form of (1.34). Hence, for convenience we will
work with either (1.34) and (1.35), keeping in mind that they are e�ectively equivalent for most
purposes.

By a solution of an ODE on [0,T ] we mean a function x : [0,T ] → Rd with x := {x(t) : t ∈
[0,T ]} that satis�es (1.35).

Example 1.7: Linear ODEs

Let d = 1 and f (x) = ax with a ∈ R. Then, check that

x(t) = eatx0, (1.36)

is the solution to (1.34). More generally, consider d ≥ 1 and f (x) = Ax where A ∈ Rd×d .
Then,

x(t) = etAx0, (1.37)

is the solution to (1.34). Here eC :=
∑

i C
i/i! denotes the usual matrix exponential.

The de�nition of solution requires x to be di�erentiable on (0,T ). But we remark that it is
possible to relax this by considering integral forms. For example, we can write (1.35) as

x(t) = x0 +

∫ t

0
f (s,x(s))ds . (1.38)
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The advantage here is that we can consider less regular x to be solutions of ODEs, e.g. here
it is only required for x to be absolutely continuous, meaning that x satis�es (1.35) for almost
every t . One of the most basic results concerns when a solution to (1.35) (or (1.38)) exists. The
following result gives su�cient conditions, and we will hereafter always assume that a unique
solution exists to whichever ODE we deal with.

Theorem 1.8: Picard–Lindelöf Theorem

Let f be continuous in t and uniformly Lipschitz in x , i.e. there exists a constant C such
that ‖ f (t ,x) − f (t ,x ′)‖ ≤ C‖x − x ′‖ for all x ,x ′ ∈ Rd and t ∈ [0,T ]. Then, there exists a
unique solution to (1.35) on [0,T ].

1.3.2 Flow Map and Dependence on Initial Condition

One way to look at ODEs is to look at its solution trajectories given initial condition. Alterna-
tively, we can also look at what the solution does to a set of initial conditions at a �xed terminal
time. In other words, we de�ne the �ow or the �ow map φt : Rd → Rd

φt (x) := x(t) where Ûx(s) = f (s,x(s)), s ∈ [0, t], x(0) = x (1.39)

In fact, the setΦ := {φt : t ∈ R} forms a one-parameter continuous group of transformations
on Rd , under the binary operation of function composition. Analyzing the setΦ can be seen as
an alternative way to understand ODEs, and is of particular relevance when we connect with
the realm of deep learning.

The following properties are well-known and easy to check:

• φt is continuous for each t

• φ0 is the identity mapping, φ0(x) = x for all x

• If f does not depend on t , then φt ◦ φs = φt+s , i.e. t → φt is a homomorphism.

One can also ask how sensitive does the terminal state of the ODE is to the initial condition.
This can be captured by the jacobian of φt , [∇φt (x)]i j = ∂jφt,i (x). The following result will be
useful to us later.
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Theorem 1.9: Dependence on Initial Condition

Let f be continuously di�erentiable in x , and Lipschitz in x uniformly in t . Let x be
the solution of the ODE (1.35) with �ow map φt and v be the solution to the linear
time-inhomogeneous ODE

Ûv(s) = ∇x f (s,x(s))v(s), s ∈ [0, t], v(0) = v0. (1.40)

Then, we have

lim
ε→0+





φt (x0 + εv0) − φt (x0)ε
−v(t)





→ 0, (1.41)

uniformly in t ∈ [0,T ] for ‖v0‖ ≤ 1.

Corollary 1.10

Under the same conditions as in Theorem 1.9, the Jacobian J (t) := ∇xφt (x0) satis�es the
linear equation

ÛJ (t) = ∇x f (t ,x(t))J (t), J (0) = I . (1.42)

Equation (1.40) is called the variational equation associated with the ODE (1.35). It describes
the propagation of variations of the initial condition along the evolution in time, hence its name.
We will refer back to these results in our discussion of optimal control theory.

Example 1.11: Flow Map and Variational Equations for Linear Systems

Recall the linear system in Example 1.7. In this case, the �ow map is a linear function

φt (x) = etAx0, (1.43)

with Jacobian J (t) = etA (in this case, the Jacobian does not depend on x0). Check that
J (t) satis�es the variational equation

ÛJ (t) = AJ (t), J (0) = I , (1.44)

as shown in the above corollary.

1.3.3 Numerical Solution of ODEs

Often, ODEs do not admit explicit solutions and we have to compute a solution numerically.
There are many methods for doing so and it is not the purpose here to give a thorough intro-
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duction. Pertaining to the topic discussed in these notes, it is su�cient to �rst introduce the
simplest possible method, the forward Euler method.

In this method, we construct a solution to (1.35) by discretizing time and setting

x̂(k + 1) = x̂(k) + ∆t f (k∆t , x̂(k)), x̂(0) = x0, (1.45)

which can be seen as a �rst-order Taylor expansion of the integral form of the ODE (1.38) for
small ∆t . The latter is called the step size. We expect that this approximation to get better as
the step size ∆t becomes small. This is made precise in the following result.

Theorem 1.12: Global Truncation Error of Forward Euler Method

Let f be Lipschitz in x uniformly in t and continuous in t . Let x be a solution of the
ODE (1.35) with initial condition x0 and x̂ be the iterates de�ned in (1.45), then for each
K > 0 there exists a constant C > 0 such that

max
k≤K
‖x̂(k) − x(k∆t)‖ ≤ C∆t . (1.46)
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2 Optimal Control Theory

2 Optimal Control Theory

The study of optimal control theory originates from the classical theory of the calculus of varia-
tions, beginning with the seminal work of Euler and Lagrange in the 1700s. These culminated in
the so-called Lagrangian mechanics that reformulate Newtonian mechanics in terms of extremal
principles. In a nut shell, the calculus of variations studies optimization over “curves”, which
one can picture as an in�nite dimensional extension of traditional optimization problems.

Optimal control theory is a nontrivial extension of the classical theory of calculus of variations
in two main directions: to dynamical and non-smooth settings. This builds on important
contributions of Weierstrass and others and led in two inter-related directions: the Pontryagin’s
maximum principle and the Hamilton-Jacobi-Bellman theory. An interesting historical account
of the developments can be found in [Lib12].

In this section, we give a minimal introduction of the problem formulation of optimal control
problems, paying particular attention to the so-called Bolza problems which are most relevant
to deep learning. The reader is referred to comprehensive texts on optimal control theory for a
more complete account [AF13, Lib12, BP07].

2.1 From Calculus of Variations to Optimal Control

2.1.1 A Motivating Example

Finite-dimensional optimization problems are of the form

inf
x ∈X

Φ(x), Φ : X → R, (2.1)

where X is usually a subset of a Euclidean space. On the other hand, a calculus of variations
problem minimizes some functional J over some in�nite dimensional space X, i.e.

inf
x∈X

J [x] J : X → R. (2.2)

There are many possible forms of the functional J and the space X. For example, one may
encounter functionals in the form of an integral, where the argument x = {x(u) : u ∈ [a,b]} is
a function of a scalar variable u, i.e.

J [x] =

∫ b

a
L(u,x(u),x ′(u))du (2.3)
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Let us consider motivating example problem of this nature that is also of substantial historical
importance.

Example 2.1: Rolling a Ball Down a Ramp

Let a < b be two points on a horizontal plane, and our goal is to build a ramp such that
when we release the ball from point a, it can arrive at a point directly under point b in the
shortest time possible. See �gure below. We will assume that there is no friction.

What shape of the ramp will achieve this task? It turns out that we can phrase this as a
calculus of variations problem. Let s(u) be the instantaneous speed of the ball when its
horizontal coordinate is atu, and let {x(u)} denote the shape of the ramp and that x(a) = 0.
By conservation of energy we �nd that

1
2ms(u)2 =mдx(u) ⇒ s(u) =

√
2дx(u) (2.4)

Hence, the total time taken from a to b is the integral of the arc-length divided speed, i.e.

Total time = J [x] =
∫ b

a

√
1 + x ′(u)√
2дx(u)

du, (2.5)

which is of the form (2.3) where L(u,x ,v) =
√
1 +v/

√
2дx .

The problem in Example 2.1 is known as the Brachistochrone1 problem, and is �rst posed by
Johann Bernoulli in 1696. One can see from the example above that to solve this problem, it is
needed to solve optimization problems over curves. A classical result due to Euler and Lagrange
gives a necessary condition for optimality that allows us to solve this problem.

1In Greek, “Brachistochrone” is literally “shortest time”.
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Theorem 2.2: Euler-Lagrange Equations

Let x ∈ C1([a,b],R) be an extremum of J as de�ned in (2.3). Then, x satis�es the Euler-
Lagrange Equations

∂xL (u,x(u),x
′(u)) =

d

du
∂x ′L (u,x(u),x

′(u)) , u ∈ [a,b]. (2.6)

We have deliberately left several notions rather unde�ned, such as the meaning of an extremum.
We will revisit this slightly subtle issue in the next part. Here, we will not present a proof of the
Euler-Lagrange equations, since it is not required for the rest of our discussions. A proof can be
found in any standard texts on the subject of calculus of variations, say [GS00, Lib12].

Exercise 2.3: Brachistochrone Solution

Consider the Brachistochrone problem in Example 2.1. By choosing appropriate units one
can set д = 1/2. Show that the optimal ramp shapes are cycloids whose parametric forms
are

u(θ ) = a + c(θ − sinθ )
x(θ ) = c(1 − cosθ )

θ ∈ [0, 2π ], c > 0. (2.7)

2.1.2 The Problem of Optimal Control

In passing to optimal control, we consider additionally two aspects of the problem, namely the
type of extrema studied, as well as the setting in which such calculus of variations problems are
phrased.

Throughout these notes, the word “extrema” refers to either a minimum or a maximum in the
function/functional under consideration. Since maximization is just equivalent to minimization
by replacing the objective function(al) with its negation, we will hereafter only discuss minima,
unless otherwise stated.

We start with distinguishing di�erent types of minima.

2.1.3 Weak vs Strong Minima

In �nite-dimensional optimization, it is easy to de�ne the notion of local and global minima.
Let Φ : Rd → R be a function.

• We say that x∗ is a local minimum of Φ if there exists a δ > 0 such that Φ(x∗) ≤ Φ(x) for
all ‖x − x∗‖ ≤ δ .
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2 Optimal Control Theory

• We say that x∗ is a global minimum of Φ if Φ(x∗) ≤ Φ(x) for all x ∈ Rd .

Hence, all global minima are automatically local minima. If Φ is di�erentiable, then a necessary
condition for a local minima is that ∇Φ(x∗) = 0. We have seen this in the least squares
formula (1.15).

In extending these ideas to in�nite dimensions, one needs to be slightly more careful. Notice
that the de�nition of minima (local or global) depends on the norm ‖ · ‖ which gives us a sense
of closeness. We did not specify what norm we used in the �nite dimensional case above, since
all of them are equivalent2.

In the in�nite dimensional case of minimization of functionals, the norm we choose will a�ect
our results, and some curve x may be a local minimum of J under one norm but not under
another.

We now distinguish between two notions of minima – weak and strong minima – commonly
encountered in calculus of variations and optimal control.

Let us consider for the moment that our curve x is C1. Moreover, let us simplify things and
consider one spatial dimension, so that x(u) ∈ R for u ∈ [a,b]. Now there are two natural
choices of norm that we can use

• 0-Norm: ‖x‖0 = supx ∈[a,b] |x(u)|.

• 1-Norm: ‖x‖1 = ‖x‖0 + supx ∈(a,b) |x ′(u)|.

Each of these norms then allows us de�ne the notion of minimum.

De�nition 2.4: Strong and Weak Minima

Let J : C1([a,b],R) → R be a functional and x∗ ∈ C1([a,b],R). We say that x∗ is a strong
local minimum if there exists a δ > 0 such that J [x∗] ≤ J [x] for all ‖x−x∗‖0 ≤ δ . We say
that x∗ is a weak local minimum if we place the norm ‖ · ‖0 by ‖ · ‖1. The global versions
are de�ned similarly.

Now, it is easy to see that any strong minima must be a weak minima, but the converse is not
true. Moreover, observe that the Euler-Lagrange equations (Thm. 2.2) apply to weak minima,
whereas we need more advanced tools to handle strong minima. We now consider a simple
example below where a weak minima simply do not exist – but we will see later that this does
not prevent the existence of a strong minima. All of these reasons motivate us to go past the
setting of Euler and Lagrange and into the realm of optimal control.

Example 2.5: Piece-wise C1 Minimizer

2Let ‖ · ‖A and ‖ · ‖B be two norms on Rd , then there exists c ∈ (0, 1] such that c ‖x ‖A ≤ ‖x ‖B ≤ 1
c ‖x ‖ for all

x ∈ Rd .
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Consider the problem of minimizing the functional

J [x] =

∫ 1

−1
[x(u)]2[x ′(u) − 1]2du, (2.8)

subject to the boundary conditions x(−1) = 0 and x(1) = 1. Clearly, for all x ∈ C1 we have
J [x] > 0. But the curve

x(u) =

{
0 −1 ≤ u < 0
x 0 ≤ u ≤ 1

(2.9)

achieves J [x] = 0, but is only piece-wise C1. In fact, C1 curves can get closer and closer to
x(u) with lower and lower cost, thus a C1 global minimizer does not exist.

2.1.4 A Dynamical View on the Calculus of Variations

Optimal control is another way to look at calculus of variations problems, in that we view
things in a dynamical nature. Concretely, we may re-parameterize the curves x(u) considered
via in�nitesimal changes in it, in the form of a control. Let us motivate this approach in the
context of the Brachistochrone problem.

Example 2.6: Control Formulation of Brachistochrone

Consider the Brachistochrone problem 2.1, but this time we parameterize the ramp by a
parametric form from the outset, i.e. (u(t),x(t)) where t is time. Then, the speed at time t
is s(u(t)) = s(t) =

√
Ûu(t)2 + Ûx(t)2. Then, conservation of energy leads to

2дx(t) = Ûx(t)2 + Ûu(t)2. (2.10)

Now, we imagine the reverse scenario treating the velocities Ûx , Ûu as controls, by setting

θ1(t) = Ûu(t)/
√
2дx(t) θ2(t) = Ûx(t)/

√
2дx(t). (2.11)

Then, we end up with a control system that de�nes the equation of the ramp

Ûu(t) = θ1(t)
√
2дx(t)

Ûx(t) = θ2(t)
√
2дx(t)

θ1(t)
2 + θ2(t)

2 = 1
(u(t0),x(t0)) = (a, 0), u(t1) = b

(2.12)

The cost function in this case is the time taken, so J =
∫ t1
t0

1dt = t1 − t0.
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It is worth noting that by formulating the original calculus of variations problem as a control
problem, we actually gained some generality:

• It is no longer assumed that x can be written as a function of u

• It is not necessary for x to be di�erentiable with respect to u

2.1.5 The Optimal Control Formulation

Now, let us formulate precisely the optimal control problem in the general setting.

The Dynamics. Consider the ordinary di�erential equation

Ûx(t) = f (t ,x(t),θ (t)), t ∈ [t0, t1], x(t0) = x0. (2.13)

Here x(t) ∈ Rd is the state, θ (t) ∈ Θ ⊂ Rm is the control, with Θ the control set. We will assume
that the control set is closed (but it need not be bounded).

We will assume that the following conditions on f holds, unless otherwise stated:

• f (t ,x ,θ ) is continuous in t and θ for all x

• f (t ,x ,θ ) is continuously di�erentiable in x for all t ,θ

These conditions are su�cient to ensure that (2.13) is well-posed by a similar result as in
Theorem 1.8. See [BP07].
Remark. The conditions outlined above are certainly not the weakest possible to imply local
well-posedness of solutions, and they can be weakened in various ways (See e.g. [BP07] Ch.2).

We also emphasize two crucial points not assumed

• We did not assume that f is di�erentiable with respect to θ

• We did not assume that t 7→ θ (t) is regular. In fact, in the general case we can consider θ to
be a essentially bounded function of t

The Cost Functional Let us now de�ne the objective functionals. We will consider function-
als of the form

J [θ] =

∫ t1

t0
L(t ,x(t),θ (t))dt + Φ(t1,x(t1)) (2.14)

• L : R × Rd × Θ→ R is called the running cost

• Φ : R × Rd → R is called the terminal cost
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The Bolza Problem of Optimal Control Now, we state the Bolza problem of optimal con-
trol, which will be the primary object of analysis in these notes.

inf
θ
J [θ] =

∫ t1

t0
L(t ,x(t),θ (t))dt + Φ(t1,x(t1))

subject to
Ûx(t) = f (t ,x(t),θ (t)), t ∈ [t0, t1], x(t0) = x0.

(2.15)

For historical reasons, the case where Φ = 0 (no terminal cost) is called a Lagrange problem,
where as the case with L = 0 (no running cost) is called a Mayer problem. In optimal control
theory, we often consider x0 (initial condition) and t0 (initial time) to be �xed. However, the
terminal time t1 can either be �xed or it can vary. Moreover, there can be a constraint set placed
on the terminal state x(t1). We will mostly consider the case where the �nal time t1 is �xed (so
that we can neglect the t1 dependence of Φ), and there is no constraint on the terminal state,
and we will discuss how the various results may change if we consider the general case.

As with classical optimization problems, the primary object of study is optimality conditions.
One di�erentiates between necessary and su�cient conditions for optimality. The former asks
what conditions must any local/global optimum satisfy, and the latter concerns a condition that
is enough to guarantee optimality. In the following sections, we will investigate each of these
aspects in turn.

2.2 Pontryagin’s Maximum Principle

In this section, we discuss a necessary condition for optimality – the Pontryagin’s Maximum
Principle (PMP) – that is a hallmark result in optimal control theory and the calculus of variations.
It greatly generalizes the Euler Lagrange equations in highly nontrivial ways, and forms a natural
bridge between optimal control theory and deep learning, as we will subsequently investigate.

We will present the proof of the PMP in the case of �xed end time, without constraints on the
terminal state. In this case, the problem is

inf
θ
J [θ] =

∫ t1

t0
L(t ,x(t),θ (t))dt + Φ(x(t1))

subject to
Ûx(t) = f (t ,x(t),θ (t)), t ∈ [t0, t1], x(t0) = x0.

(2.16)

The proof of the PMP for this case is quite accessible, and hence we will present it in full. We
will discuss the PMP for other variants of the basic formulation, but we will omit the proofs as
they can be signi�cantly more involved.
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2.2.1 The Maximum Principle

To state the Pontryagin’s maximum principle, we need some de�nitions. Let us de�ne the
Hamiltonian

H : R × Rd × Rd × Θ→ R,
H (t ,x ,p,θ ) = p> f (t ,x ,θ ) − L(t ,x ,θ ).

(2.17)

For a control θ = {θ (t) : t ∈ [t0, t1]}, we say it is admissable if θ (t) ∈ Θ for all t ∈ [t0, t1].

Theorem 2.7: Pontryagin’s Maximum Principle

Let θ∗ be a bounded, measurable and admissable control that optimizes (2.16), and x∗ be
its corresponding state trajectory. Then, there exists an absolutely continuous process
p = {p(t) : t ∈ [t0, t1]} such that

Ûx∗(t) = ∇pH (t ,x
∗(t),p∗(t),θ ∗(t)), x∗(t0) = x0 (2.18)

Ûp∗(t) = −∇xH (t ,x
∗(t),p∗(t),θ ∗(t)), p∗(t1) = −∇xΦ(x

∗(t1)) (2.19)
H (t ,x∗(t),p∗(t),θ ∗(t)) ≥ H (t ,x∗(t),p∗(t),θ )

∀θ ∈ Θ and a.e . t ∈ [t0, t1]
(2.20)

Proof 2.7: Proof of the PMP (Theorem 2.7)

The proof proceeds in several steps. To make the proof instructive, we will �rst assume
that the function t 7→ θ ∗(t) is continuous, and we will relax this assumption at the end.

Step 1: Convert to Mayer Problem. De�ne an auxiliary scalar variable x0(t), with

Ûx0(t) = L(t ,x(t),θ (t)), x0(t0) = 0. (2.21)

Then, by going one dimension higher and setting x̃ = (x0,x), f̃ = (L, f ), and Φ̃(x̃) =
Φ(x) + x0 we can rewrite (2.16) as one without running cost in the new augmented
coordinates. Hence, we will hereafter drop the tildes and assume without loss of generality
that L ≡ 0.

Step 2: Needle Perturbation. Fix τ > 0 and an admissible s ∈ Θ. De�ne the needle
perturbation to the optimal control

θε (t) =

{
s if t ∈ [τ − ε,τ ]

θ ∗(t) otherwise (2.22)
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Let xε be the corresponding controlled trajectory, i.e. the solution of

Ûxε (t) = f (t ,xε (t),θε (t)), xε (t0) = x0. (2.23)

Our goal is to derive necessary conditions for which any such needle perturbation will
be sub-optimal, thus resulting in a necessary condition for a strong minima in the cost
functional.

Step 3: Variational Equation It is clear that xε (t) = x∗(t) for t ≤ τ − ε . Let us de�ne
for t ≥ τ

v(t) := lim
ε→0+

xε (t) − x
∗(t)

ϵ
. (2.24)

This measures the propagation of the e�ect of the needle perturbation as time increases.
In particular, at t = τ , v(τ ) is the tangent vector of the curve ϵ 7→ xε (τ ), given by

v(τ ) = lim
ε→0+

{
1
ε

∫ τ

τ−ε
f (t ,xε (t), s)dt −

1
ε

∫ τ

τ−ε
f (t ,x∗(t),θ ∗(t))dt

}
= f (τ ,x∗(τ ), s) − f (τ ,x∗(τ ),θ ∗(τ )) .

(2.25)

For the remaining time t ∈ [τ ,T ], xε follows the same ODE (2.23). Thus, by Theorem 1.9
v(t) is well-de�ned and solves the linear variational equation

Ûv(t) = ∇x f (t ,x
∗(t),θ ∗(t))v(t), t ∈ [τ , t1], (2.26)

with initial condition given by (2.25). In particular, the vector v(t1) describes the variation
in the end point xε (t1) due to the needle perturbation.

Step 4: Optimality Condition at End Point. By our assumption, the control θ∗ is
optimal, hence we must have

Φ(x∗(t1)) ≤ Φ(xε (t1)). (2.27)

Thus, we have

0 ≤ lim
ε→0+

Φ (xε (t1)) − Φ (x
∗(t1))

ε
=

d

dε
Φ (xε (t1))

����
ε=0+
= ∇Φ (x∗(t1)) · v(t1) (2.28)

In fact, the inequality (2.28) holds for any τ and s that characterizes the needle perturbation.
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Step 5: The Adjoint Equation and the Maximum Principle. The idea is now to
derive consequence that the end-point optimality condition have on each τ . To this end,
we de�ne p∗(t) as the solution of the backward Cauchy problem

Ûp∗(t) = −∇x f (t ,x
∗(t),θ ∗(t))>p∗(t), p∗(t1) = −∇Φ(x

∗(t1)). (2.29)

Then, observe that we indeed have

d

dt
[p∗(t)>v(t)] = 0 ∀t ∈ [τ , t1] ⇒ p∗(τ )>v(τ ) = p∗(t1)

>v(t1) ≤ 0, (2.30)

which implies that for any τ ∈ (t0, t1] we have

[p∗(τ )]> f (τ ,x∗(τ ),θ ∗(τ )) ≥ [p∗(τ )]> f (τ ,x∗(τ ), s) (2.31)

for any s ∈ Θ. By continuity this also holds for t = t0.

By undoing the conversion in in Step 1, we can back to a general Bolza problem by sending
p∗ → (p0,p∗). In particular, observe that Ûp0(t) = 0 and p0(t1) = −1. Hence, p0(t) ≡ −1.
Hence, we get from the optimality condition (2.31) that

p∗(τ )> f (τ ,x∗(τ ),θ ∗(τ )) − L(τ ,x∗(τ ),θ ∗(τ ))︸                                                   ︷︷                                                   ︸
H (τ ,x ∗(τ ),p∗(τ ),θ ∗(τ ))

≥ p∗(τ )> f (τ ,x∗(τ ), s) − L(τ ,x∗(τ ), s)︸                                       ︷︷                                       ︸
H (τ ,x ∗(τ ),p∗(τ ),s)

, (2.32)

where p∗ satis�es the adjoint equation

Ûp∗(t) = −∇xH (t ,x
∗(t),p∗(t),θ ∗(t)), p∗(t1) = −∇Φ(x

∗(t1)). (2.33)

Step 6: Extending to Measurable Controls. The last step is purely of technical in-
terest, where we relax the assumption that t 7→ θ ∗(t) is continuous. By the Lebesgue
di�erentiation theorem, we have for almost every τ ∈ (t0, t1),

lim
ε→0+

1
ε

∫ τ+ε

τ−ε
| f (t ,x∗(t),θ ∗(t)) − f (τ ,x∗(τ ),θ ∗(τ ))| dt = 0, (2.34)

that is, the measurable function t 7→ f (t ,x∗(t),θ ∗(t)) is quasi-continuous. Hence, the proof
steps 1-5 proceeds exactly as before, only that τ is required to be a Lebesgue point, and
hence the solutions of the state and adjoint equations are now only absolutely continuous,
and the maximization condition (2.32) now only holds at Lebesgue points, which is almost
every t ∈ [t0, t1]. This concludes the proof of the maximum principle. �

Let us make some remarks on the maximum principle.

• The equation (2.18) is called the state equation, and it is simply

Ûx∗(t) = f (t ,x∗(t),θ ∗(t)), (2.35)
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and it describes the evolution of the state under the optimal control.

• The equation (2.19) is called the co-state equation, with p∗ being the co-state. As evidenced
in the proof of the PMP, the role of the co-state equation is to propagate back the optimality
condition and is the adjoint of the variational equation. In fact, one can also connect p∗
formally to a Lagrange multiplier enforcing the constraint of the ODE. However, this
approach can only derive the weaker optimality condition that H is stationary at the
optimum.

• The maximization condition (2.20) is the heart of the maximum principle. It says that
an optimal control must globally maximize the Hamiltonian. One can regard this as
a nontrivial generalization of the Euler-Lagrange equations to handle strong extrema
(See [BP07], Theorem 6.5.2), as well as a generalization of the KKT conditions to non-
smooth settings.

2.2.2 Other Forms of the Maximum Principle

The reason why we called the result (2.7) a maximum principle is to emphasize that it is not
just one result, but a class of results of similar nature. Indeed, there are many variants of the
maximum principle, and we state one of them below, which is for a �xed-end-point variant of
the Bolza problem (variation highlighted)

inf
θ
J [θ] =

∫ t1

t0
L(t ,x(t),θ (t))dt+Φ(x(t1))

subject to
Ûx(t) = f (t ,x(t),θ (t)), t ∈ [t0, t1], x(t0) = x0, x(t1) = x1.

(2.36)

In this case, the maximum principle now reads

Ûx∗(t) = ∇pH (t ,x
∗(t),p∗(t),θ ∗(t)), x∗(t0) = x0 x∗(t1) = x1 (2.37)

Ûp∗(t) = −∇xH (t ,x
∗(t),p∗(t),θ ∗(t)), p∗(t1) = −∇xΦ(x

∗(t1)) (2.38)
H (t ,x∗(t),p∗(t),θ ∗(t)) ≥ H (t ,x∗(t),p∗(t),θ )

∀θ ∈ Θ and a.e . t ∈ [t0, t1]
(2.39)

Example 2.8: Piece-wise C1 Minimizer Revisted

Let us consider the problem in Example 2.5 and we now show that the piece-wise C1

minimizer satis�es the PMP (2.37). Notice that we can convert the problem into a �xed-
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end-point problem

min
θ

∫ 1

−1
x(t)2(θ (t) − 1)2dt

subject to
Ûx(t) = θ (t), t ∈ [−1, 1], x(−1) = 0, x(1) = 1.

(2.40)

That is, f (t ,x ,θ ) = θ and running cost is L(t ,x ,θ ) = x2(θ − 1)2. Writing out the PMP
equations for an optimal θ∗, we get H (t ,x ,p,θ ) = pθ − x2(1 − θ )2

Ûx∗(t) = θ ∗(t), x∗(−1) = 0, x∗(1) = 1, (2.41)
Ûp∗(t) = 2x∗(t)(1 − θ ∗(t))2, (2.42)
θ ∗(t) ∈ argmax

θ ∈R
{p∗(t)θ − [x∗(t)]2(1 − θ 2)}. (2.43)

One can then check that the control

θ ∗(t) =

{
0 −1 ≤ t < 0
1 0 ≤ t ≤ 1

(2.44)

satis�es the PMP above with x∗(t) given by (2.9) and p∗(t) = 0.

Example 2.9: Driving a Car

Suppose we are driving a car on a straight road for t ∈ [0,T ]. Let x(t) denote the position
of the car at time t . We suppose that we are initially at rest at the origin, and we want
to drive forwards on the road. We have control over an accelerator, which we can use
to accelerate or brake, but acceleration costs fuel. The problem statement is, suppose we
want to drive far yet save fuel, how should we drive?

This problem can be formulated as a Bolza problem with �xed end time and free end
point (2.16) as follows:

inf
θ
J [θ] =

∫ T

0

1
2 max(0,θ (t))2dt − x(T )

subject to
Ûx(t) = v(t), x(0) = 0,
Ûv(t) = θ (t), v(0) = 0,
θ (t) ∈ [−1, 1] for all t .

(2.45)

Here, the fuel cost is related to the acceleration by 1
2 max(0,θ )2 (braking spends no fuel).
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Let us now apply the PMP (2.7) to derive a solution. In this case, the Hamiltonian is

H (t ,x ,v,px ,pv ,θ ) = pxv + pvθ −
1
2 max(0,θ )2. (2.46)

Thus, the PMP equations are

Ûx∗(t) = v∗(t), x∗(0) = 0, (2.47)
Ûv∗(t) = θ ∗(t), v∗(0) = 0, (2.48)
Ûp∗x (t) = 0, p∗x (T ) = 1, (2.49)
Ûp∗v (t) = −p

∗
x (t), p∗v (T ) = 0, (2.50)

and hence p∗x (t) = 1, p∗v (t) = T − t . Therefore, the optimal control is found by maximizing
the Hamiltonian:

θ ∗(t) ∈ argmax
θ ∈[−1,1]

H (t ,x∗(t),v∗(t),p∗x (t),p
∗
v (t),θ

∗(t))

∈ argmax
θ ∈[−1,1]

v∗(t) + (T − t)θ −
1
2 max(0,θ )2

= min(T − t , 1).

(2.51)

Thus, we should drive at maximum acceleration, and then ease o� on the accelerator
linearly.

Exercise 2.10: Driving a Better Car

As an extension of Example 2.9, we can consider the following scenario: the car has been
upgraded so that the fuel cost now scales linearly with acceleration, i.e. the running cost
is now max(0,θ ) instead of max(0,θ )2. What is the optimal way to drive in this case?

2.2.3 Further Reading

Besides the basic �xed end time setting considered in the previous part, other variants of the
PMP can be derived for di�erent scenarios, including: variable end time, general set constraints
on initial and �nal states. The proofs of these results are more involved than what is proposed
above, requiring some machinery from functional analysis. For the purpose of the application
cases in these notes, the previous formulation is enough. However, the interested reader is
encouraged to consult optimal control references for various generalizations, or proofs under
weaker assumptions e.g. [Lib12, BP07].
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2.3 Hamilton-Jacobi-Bellman Equations

As a key alternative to the maximum principle, we now discuss another line of work that
establishes necessary and su�cient conditions for optimality for optimal control problems. This
presents another approach to optimal control theory that is important in its own right, as it
depends on the very general idea of dynamic programming [Bel66].

2.3.1 Motivating Example of Dynamic Programming

Example 2.11: A Toy Maze

Consider the following maze where we want to get to the orange circle while maximizing
the reward obtained along the way. When we cross each arrow, we gain a reward equal
to the number attached to that arrow. The red path shows an example path with a �nal
reward of 4.

Suppose that there are N circles to choose from per step and T steps in total. Then, the
total number of paths is NT and grows exponentially with T . This is known as the curse
of dimensionality.

Instead of a brute force search over all paths, we can use the principle of dynamic programming
to �nd a solution much more e�ciently. To do this, let us introduce some notation. We will
index each time step in the maze by t = 0, 1, . . . ,T . Also, we denote by St the circle we step on
at the t th step, and Rt the reward we obtain at the t th step.

De�ne the function

V (t ,x) = max
{

T∑
s=t+1

Rs : St = x

}
. (2.52)

In other words, V (t ,x) is the best possible reward we can get starting from state x at time t .
Then, we can work backwards easily!

34



2 Optimal Control Theory

Let us just consider the case in Example 2.11, where St = 1 or 2 for t = 1, 2, 3. Here, St = 1
denotes the top circle and St = 2 is the bottom circle. The initial state is S0 = 0. Then, clearly
we have

V (3, 1) = +3, V (3, 2) = −3, (2.53)

since both cases we only have one choice – and this is the best we can do. Now, let us consider
t = 2. Given we are at S2 = 1, then there are two choices, either we go to S3 = 1 or S3 = −1.
If we go to S3 = 1 we get a reward of −1 and then, the best we can do from there would be
V (3, 1) = +3. Similarly, if we take S3 = 2 then we get +4 reward and the best we can do from
S3 = 2 is V (3, 2) = −3. Hence,

V (2, 1) = max{−1 +V (3, 1),+4 +V (3, 2)} = +2. (2.54)

A similar calculation shows thatV (2, 2) = +1. Once we know these values we can then compute
V (1, ·) and so on. This allows us to calculate backwards to obtain V (0, 0) = +6. This is the best
possible reward we can get, and we have obtained it without resorting to brute force search
over all the paths! Moreover, once we have solved for V (t ,x) for all t ,x , we can also easily �nd
the optimal policy to navigate this maze. We simply proceed greedily with respect to the value
function: at time t we always go the circle in the next step with the highest V (t ,x) plus the
immediate reward.

In fact, the above methodology is known as dynamic programming [Bel66]. Let us look at the
computational complexity of dynamic programming versus a brute force search, which takes
NT steps. In dynamic programming, we simply have to traverse the time steps once, starting
the from the end. For each time step, we have to compute N values ofV (t ,x), each depends on a
linear combination ofV (t + 1, s). Hence, for each time step we incur a computation overhead of
N 2. Therefore, the entire dynamical programming procedure solves the problem in N 2T steps.
This is much less than NT !.

The key idea behind dynamic programming is de�ning the so called cost-to-go V (t ,x) (2.52),
which allows us to derive a recursion in V (t ,x) that gives a solution to our original problem.
The function V (t ,x) is also known as the value function, emphasizing the fact that it represents
the “value” of a given state. This understanding will motivate the alternative approach we
present next on optimal control.

2.3.2 The Dynamic Programming Principle

Now, let us state and prove the dynamic programming principle as applied to optimal control
problems. We recall the Bolza problem with �xed end time:

inf
θ
J [θ] =

∫ t1

t0
L(t ,x(t),θ (t))dt + Φ(x(t1))

subject to
Ûx(t) = f (t ,x(t),θ (t)), t ∈ [t0, t1], x(t0) = x0.

(2.55)
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Following the idea of dynamic programming, we embed this problem in a bigger class of
problems:

V (s, z) := inf
θ

∫ t1

s
L(t ,x(t),θ (t))dt + Φ(x(t1))

subject to
Ûx(t) = f (t ,x(t),θ (t)), t ∈ [s, t1], x(s) = z.

(2.56)

The function V : [t0, t1] × Rd → R is called the value function. In words, it is the minimum cost
attaininable starting from the initial condition z at time t . Observe that V (t0,x0) is the optimal
cost of (2.55).

It may appear that we have made the problem more di�cult, since we are not considering a much
larger class of optimal control problems. However, it turns out that we can derive a recursion
on V in terms of a partial di�erential equation, thereby deriving an elegant characterization of
optimal controls.

Now, let us state and prove the dynamic programming principle concerning the value function
for the optimal control problem.

Theorem 2.12: Dynamic Programming Principle

For every τ , s ∈ [t0, t1], s ≤ τ , and z ∈ Rd , we have

V (s, z) = inf
θ

{∫ τ

s
L(t ,x(t),θ (t))dt +V (τ ,x(τ ))

}
, (2.57)

where on the right hand side, x solves Ûx(t) = f (t ,x(t),θ (t)) on t ∈ [s,τ ] with x(s) = z.

The meaning of the dynamic programming principle is that the optimization problem de�ning
V (s, z) can be split into two parts:

• First, solve the optimization problem on [τ , t1] with the usual running cost L and terminal
cost Φ, but for all initial conditions z ′ ∈ Rd . This gives us the value function V (τ , ·)

• Next, we solve the optimization problem on [s,τ ] with running cost L and terminal cost
V (τ , ·) given by the step before.

Proof 2.12: Dynamic Programming Principle

Let us denote the right hand side of (2.57) as J τ . We �rst show that J τ ≤ V (s, z). We �x
ε > 0 and choose a control θ : [s, t1] → Θ such that

J [θ] ≤ V (s, z) + ε . (2.58)

This θ always exists sinceV (s, z) is de�ned as the in�mum of such J [θ]. Under this control,
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we have again by the de�nition of the value function

V (τ ,x(τ )) ≤

∫ t1

τ
L(t ,x(t),θ (t))dt + Φ(x(t1)). (2.59)

Then, we have

J τ ≤

∫ τ

s
L(t ,x(t),θ (t))dt +V (τ ,x(τ )) (2.60)

≤

∫ t1

s
L(t ,x(t),θ (t))dt + Φ(x(t1)) (2.61)

= J [θ] ≤ V (s, z) + ε . (2.62)

Since ε > 0 is arbitrary, we have J τ ≤ V (s, z).

Next, we show the reverse inequality. Fix ε > 0. Then, there exists a control θ1 : [s,τ ] → Θ
such that ∫ τ

s
L(t ,x(t),θ1(t))dt +V (τ ,x(τ )) ≤ Jτ + ε . (2.63)

Now, similarly there exists a control θ2 : [τ , t1] → Θ such that∫ t1

τ
L(t ,x(t),θ2(t))dt + Φ(x(t1)) ≤ V (τ ,x(τ )) + ε . (2.64)

This allows us to concatenate the two controls together to de�ne

θ (t) =

{
θ1(t) t ∈ [s,τ ],

θ2(t) t ∈ (τ , t1].
(2.65)

Then, combining (2.63) and (2.65) we have

V (s, z) ≤ J [θ] ≤ J τ + 2ε, (2.66)

and since ε > 0 is arbitrary, we obtain the desired result. �

2.3.3 Hamilton-Jacobi-Bellman Equations

In this section, we will derive the key result from the dynamic programming approach to optimal
control problems, which establishes connections with partial di�erential equations, in particular
the Hamilton-Jacobi equations. As de�ning the right sort of solutions for these equations turns
out to be a slightly involved problem, we will proceed mostly formally in this section, but we
will discuss at the end the key ideas in making these steps rigorous.

The basic motivation here is to derive an in�nitesimal version of the dynamic programming
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principle (Theorem 2.12). To this end, we will make extensive use of Taylor expansions by as-
suming that τ = s +∆s with ∆s � 1 in Eq. (2.57), giving the in�nitesimal dynamic programming
principle

V (s, z) = inf
θ

{∫ s+∆s

s
L(t ,x(t),θ (t))dt +V (s + ∆s,x(s + ∆s))

}
, (2.67)

where again on the right hand side x follows the ODE

Ûx(t) = f (t ,x(t),θ (t)), t ∈ [s, s + ∆s], x(s) = z. (2.68)

Applying Taylor’s expansion on the ODE, we have

x(s + ∆s) = z +

∫ s+∆s

s
f (t ,x(t),θ (t))dt = z + f (s, z,θ (s))∆s + o(∆s), (2.69)

Furthermore, assuming that V is su�ciently regular, we have

V (s + ∆s,x(s + ∆s)) = V (s, z) + ∂sV (s, z)∆s + [∇zV (s, z)]
> f (s, z,θ (s))∆s + o(∆s). (2.70)

Similarly, we can also expand the running cost∫ s+∆s

s
L(t ,x(t),θ (t))dt = L(s, z,θ (s))∆s + o(∆s). (2.71)

Combining (2.67), (2.70) and (2.71), we have

V (s, z) = inf
θ

{
L(s, z,θ (s))∆s +V (s, z) + ∂sV (s, z)∆s + [∇zV (s, z)]

> f (s, z,θ (s))∆s + o(∆s)
}
.

(2.72)

Cancelling the term V (s, z) on both sides and taking the limit ∆s → 0, the in�mum over paths
θ on t ∈ [s, s + ∆s] becomes an in�mum over a scalar θ = θ (s) ∈ Θ, thus we obtain:

∂sV (s, z) + inf
θ ∈Θ
{L(s, z,θ ) + [∇zV (s, z)]

> f (s, z,θ )} = 0. (2.73)

This is known as the Hamilton-Jacobi-Bellman (HJB) equation for the value function. It remains
to specify the boundary conditions. One can quickly observe that at time s = t1, we in fact have
by de�nition, V (t1, z) = Φ(z).

Now, we note that the derivations above are purely formal for at least two reasons:

• We do not know if V (s, z) is su�ciently regular to admit Taylor expansions.

• We do not know if the partial di�erential equation (2.73) is well-posed, i.e. whether it
admits a unique solution, and in what sense should a solution be de�ned.

This is a common di�culty faced by many nonlinear partial di�erential equations. In this case,
the Hamilton-Jacobi structure allows one to use the concept of viscosity solutions [CL83] as
an appropriate notion of solution. Loosely speaking, viscosity solutions are a class of weak
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solutions to nonlinear PDEs de�ned by being some sense of an extremum of a sequence of
smooth functions that satisfy an inequality corresponding to the PDE. One can also see them
as limits of solutions of the original PDE regularized with a di�usive term (hence the term
“viscosity”). For more information on viscosity solutions, the reader is referred to [FS06]. With
the notion of viscosity solutions, we in fact can put the HJB equations on a rigorous footing. Let
us now state the main theorem in this section, whose proof we omit (but see [BP07], Theorem
8.7.1). For convenience we will replace (s, z) by (t ,x) in the following.

Theorem 2.13: Hamilton-Jacobi-Bellman Equation

Let V : [t0, t1] × Rd → R be the value function de�ned by (2.56). Then, V is the unique
viscosity solution of the Hamilton-Jacobi-Bellman equation

∂tV (t ,x) + inf
θ ∈Θ

{
L(t ,x ,θ ) + [∇xV (t ,x)]

> f (t ,x ,θ )
}

(t ,x) ∈ (t0, t1) × R
d

V (t1,x) = Φ(x)
(2.74)

2.3.4 Implications for Optimal Control

Recall that we have the correspondence

V (t0,x0) = inf
θ
J [θ], (2.75)

hence the solution of the HJB equations will give us the optimal cost that we can obtain for the
Bolza problem. In fact, we will see that this gives us much more.

A Necessary Condition. It should be clear from our discussions so far that what we have
formally derived is that the HJB constitutes a necessary condition for global optimality. Indeed,
suppose we have a family of optimal controls {θ∗s,z : s ∈ [t0, t1], z ∈ Rd } and de�ne

V̂ (s, z) = Φ(x∗s,z (t1)) +

∫ t1

s
L(t ,x∗s,z (t),θ

∗
s,z (t))dt ,

where Ûx∗s,z (t) = f (t ,x∗s,z (t),θ
∗
s,z (t)), t ∈ [s, t1], x∗s,z (s) = z.

(2.76)

Then, by Theorem 2.13 V̂ ≡ V satis�es the HJB equation.

In fact, let us �x s,τ ∈ [t0, t1) and z ∈ Rd . By the assumption of global optimality we can rewrite
the dynamic programming principle (2.57) as

V (s, z) = inf
θ

{∫ τ

s
L(t ,x(t),θ (t))dt +V (τ ,x(τ ))

}
=

∫ τ

s
L(t ,x∗s,z (t),θ

∗
s,z (t))dt +V (τ ,x

∗
s,z (τ )).

(2.77)
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We may now proceed as before using Taylor expansions to derive an in�nitesimal version
of the above. Let us call θ∗ = θ∗t0,x0 the optimal control for our original problem, and x∗ is
corresponding controlled state trajectory. Then, Taylor expanding and comparing with the
usual dynamic programming principle we obtain the equality

−∂sV (s,x
∗(t)) = min

θ ∈Θ

{
L(t ,x∗(t),θ (t)) + [∇xV (t ,x

∗(t))]> f (t ,x∗(t),θ )
}
,

= L(t ,x∗(t),θ ∗(t)) + [∇xV (t ,x
∗(t))]> f (t ,x∗(t),θ ∗(t)),

(2.78)

which we can rewrite as

H (t ,x∗(t),−∇xV (t ,x
∗(t)),θ ∗(t)) = max

θ ∈Θ
H (t ,x∗(t),−∇xV (t ,x

∗(t)),θ ) (2.79)

where the Hamiltonian is de�ned exactly as in the case of the PMP (2.17)

H (t ,x ,p,θ ) = p> f (t ,x ,θ ) − L(t ,x ,θ ). (2.80)

Thus, this is similar to the statement of the PMP, except that the co-state p∗(t) is now replaced
by −∇xV (t ,x∗(t)). However, there is a nontrivial di�erence in that now, this is also a su�cient
condition for global optimality, as we now show.

A Su�icient Condition. Let us now assume that a continuously di�erentiable function V
satis�es the HJB (2.74) and moreover that a control θ̂ : [t0, t1] → Θ satis�es

H (t , x̂(t),−∇xV (t , x̂(t)), θ̂ (t)) = max
θ ∈Θ

H (t , x̂(t),−∇xV (t , x̂(t)),θ ), (2.81)

for all t ∈ [t0, t1], where x̂ is the state process corresponding to the control θ̂, then θ̂ is a globally
optimal control that solves (2.55) with optimal cost V (t0,x0).

To show this, observe that if we set x = x̂(t) in the HJB equation forV , noting the condition (2.81),
we have

∂tV (t , x̂(t)) + [∇xV (t , x̂(t))]
> f (t , x̂(t), θ̂ (t)) + L(t , x̂(t), θ̂ (t)) = 0, (2.82)

which means

d

dt
V (t , x̂(t)) + L(t , x̂(t), θ̂ (t)) = 0. (2.83)

Integrating from t0 to t1 and using the boundary condition V (t1,x) = Φ(x), we have

V (t0,x0) =

∫ t1

t0
L(t , x̂(t), θ̂ (t))dt + Φ(x̂(t1)) = J [θ̂]. (2.84)

On the other hand, if θ be any other control whose trajectory is x, we would have

∂tV (t ,x(t)) + [∇xV (t ,x(t))]
> f (t ,x(t),θ (t)) + L(t ,x(t),θ (t)) ≥ 0, (2.85)

40



2 Optimal Control Theory

which yields

0 ≤
∫ t1

t0
L(t ,x(t),θ (t))dt +V (t1,x(t1))︸                                       ︷︷                                       ︸
J [θ], since V (t1,x (t1))=Φ(x (t1))

−V (t0,x0), (2.86)

or

J [θ̂] = V (t0,x0) ≤ J [θ]. (2.87)

This shows that θ̂ is globally optimal, with cost V (t0,x0).

Example 2.14: Nondi�erentiable Value Function ([Lib12], Example 5.2.1)

Consider the scalar control system

Ûx(t) = x(t)θ (t), t ∈ [0,T ], x(0) = x0 ∈ R, θ (t) ∈ Θ ≡ [−1, 1]. (2.88)

We set running cost L ≡ 0 and terminal cost Φ(x) = x . The optimal control is just −Sign(x0)
if x0 , 0, and if x0 = 0 the cost is always 0. Hence, the value function is simply

V (t ,x) =


e−(T−t )x if x > 0
eT−tx if x < 0
0 if x = 0

(2.89)

Observe that it is not di�erentiable at x = 0.

Let us now check that the value function satis�es the HJB, which is now

∂tV (t ,x) − |x∂xV (t ,x)| = 0, V (T ,x) = x . (2.90)

Clearly, this is the case. In fact, we can derive the value function from the HJB by applying
the method of characteristics (See [Eva98], Ch. 3).

Remark. We end this section with a remark on the HJB solution. Recall that we can write the
optimal control as

θ ∗(t) = u(t ,x∗(t)) := min
θ
{L(t ,x∗(t),θ ) + [∇xV (t ,x

∗(t))]> f (t ,x∗(t),θ )}. (2.91)

In other words, provided we can solve the HJB, the optimal control solution is of feed-back or
closed-loop form, meaning that it tells how to steer the system by just observing the state trajectory
x∗. We can contrast with the PMP, where we obtain open-loop controls that are pre-computed
(since it also depends on the co-state) and cannot be applied on-the-�y. This is an important
distinction.
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2.3.5 Further Reading

The principle of optimality has been referenced in di�erent manners throughout the development
of calculus of variations, dating back to the solution of the Brachistochrone problem of Jacob
Bernoulli in 1697. The building of the Hamilton-Jacobi-Bellman theory for optimal control
rests on important works of Carathéodory, Bellman and Kalman in the early 1900s. The theory
is �rst put on rigorous footing via the introduction of viscosity solutions by Crandall and
Lions [CL83]. See also [FS06] for a general exposition of viscosity solutions. Here we also
omitted the interesting topic of how the HJB and the PMP are related. In fact, they can be
related via the method of characteristics ([Eva98] Ch. 3): the PMP equations can be interpreted,
at least formally, as characteristic equations associated with the HJB. See [Lib12], Ch. 5.2.
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3 Dynamical Systems Meets Deep Learning

In this chapter, we enter the main application topic of these notes, which is the connections
between dynamical systems and deep learning, �rst proposed in [E17]. The key connecting
piece turns out to be the theory of optimal control that we spent a signi�cant amount of
time introducing. We will �rst start with the formulation of the training problem in deep
residual networks as a variant of the classical optimal control problem. We will go on to discuss
some applications of these ideas, including novel algorithms, model architectures and other
mathematical results.

3.1 A Mean-field Optimal Control Formulation of Deep
Learning

Review: Supervised Learning with Residual Networks. We start by reviewing the basic
residual network architecture. Let x denote the input data and y its corresponding label. Let us
recall the form of the deep residual networks that transforms the input x via

x(k + 1) = x(k) + f (x(k),θ (k)), k = 0, . . . ,K − 1 x(0) = x , θ (k) ∈ Θ,

ŷ = д(x(K)).
(3.1)

where we got rid of explicit k dependence in f via the usual trick, and xK is �nal output of the
network, which is then transformed by another function д : Rd → Rm (the latter being the
space of outputs/labels). The goal of learning is to minimize the distance between the true label
y and the predicted label ŷ = д(x(K)). This is usually measured through some loss function
Φ(д(x(K)),y). When discussing optimization problems, we will simplify things by absorbing д
into Φ (by rede�ning Φ if necessary) so that the loss is Φ(x(K),y). Otherwise, we can consider
the case where д ∈ G, the latter a family of “terminal” functions.

Here, technically the parameter set Θ can vary with k , but usually these sets just Euclidean
spaces so one can embed them into a common one of the largest dimension. Recall also from
Sec. 1.2 that the input-output pair (x ,y) is not a �xed value, but rather drawn according to
a distribution µ. Hence, putting things together, the supervised learning problem seeks the
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solution of the following problem

inf
(θ (0), ...,θ (K−1))∈ΘK

E(x,y)∼µ

[
Φ(x(K),y) +

K−1∑
k=0

L(x(k),θ (k))

]
subject to
x(k + 1) = x(k) + f (x(k),θ (k)), k = 0, . . . ,K − 1, x(0) = x .

(3.2)

Here, we have introduced a regularization term L : Rd × Θ → R. For example, a simple `2
regularizer often applied in practice translates to L(x ,θ ) = λ‖θ ‖2, but we will consider the
general case of potentially complicated regularizers.

The key di�culty in analyzing (3.2) is the repeated compositional structure present in the
di�erence equation. The main idea in circumventing this is to introduce the dynamical systems
viewpoint, where we replace the discrete dynamics (3.1) by a continuous dynamical system.

The Continuous-time Idealization and Mean-field Optimal Control Problem. The
central approach in these notes is the continuous-time (or continuum) idealization of the discrete
dynamical system represented by (1.33). In other words, we replace it with a continuous-time
dynamics

Ûx(t) = f (x(t),θ (t)), t ∈ [0,T ], x(0) = x . (3.3)

This approximation is of conceptual importance, as it passes from studying the intricate issues
in a deep neural network to the study of continuous-time dynamical systems. For the latter,
there are many more tools available to us.

From the approximation viewpoint, the current hypothesis is built from �ow maps. An interest-
ing problem of approximation is when this hypothesis space has the universal approximation
property. We will revisit this point later in Sec. 3.5.1, but for now we will focus on the optimiza-
tion problem.

The bridge that connects (3.1) and (3.3) is the forward Euler method for numerically solving
ODEs, as we introduced in Sec. 1.3.3. Here, a factor of ∆t is missing, but this can be justi�ed by
observing that in a trained deep ResNet, the transformation in each residual block is close to
the identity [VWB16].

Hence, in the continuous-time case, we may replace the original problem (3.2) by (absorbing
the �nal layer д into Φ)

inf
θ∈L∞([0,T ],Θ)

E(x,y)∼µ

[
Φ(x(T ),y) +

∫ T

0
L(x(t),θ (t))dt

]
subject to
Ûx(t) = f (x(t),θ (t)), t ∈ [0,T ], x(0) = x .

(3.4)

This is almost like a standard Bolza problem (2.16), except for the following:
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• Initial condition to the ODE is random

• Dependence of Φ on y (random)

• Expectation over µ in the cost

We call (3.4) a mean-�eld optimal control problem. The choice of name in fact requires justi�ca-
tion, as there is no explicit mean-�eld dynamics (c.f. Mckean-Vlasov systems [Szn91]) involved
here. Rather, we call it mean-�eld to emphasize the fact that we seek an optimal control that is
shared with all input-label pairs (x ,y) that are jointly distributed according to µ.

Going from (3.2) to (3.4), we can see that the dynamical systems and control viewpoint highlights
one important aspect of deep learning: whereas the learning problem for shallow models can
be framed as an optimization problem, the learning problem for deep residual networks can be
viewed as an optimal control problem.

3.2 Optimality Conditions

As with usual calculus of variations problems, we can ask for the optimality conditions associated
with the deep learning problem recast as mean-�eld optimal control (3.4). In this section, we
will state two recent results in this direction, entirely analogous to the development of classical
optimal control.

3.2.1 Mean-field Pontryagin’s Maximum Principle

We start with a result analogous to the Pontryagin’s maximum principle (Thm. 2.7) gives general
necessary conditions for optimality for our problem (3.4).

Theorem 3.1: Mean-�eld Pontryagin’s Maximum Principle

Let f be bounded, f ,L be continuous in θ , and f ,L,Φ be continuously di�erentiable with
respect to x . Assume further that µ has bounded support in Rd × Rm . Suppose θ∗ ∈
L∞([0,T ],Θ) be an optimal control. Then, there exists absolutely continuous stochastic
processes x∗,p∗ such that

Ûx∗(t) = f (x∗(t),θ ∗(t)), x∗(t) = x , (3.5)
Ûp∗(t) = −∇xH (x

∗(t),p∗(t),θ ∗(t)), p∗T = −∇xΦ(x
∗(T ),y), (3.6)

EµH (x
∗(t),p∗(t),θ ∗(t)) ≥ EµH (x

∗(t),p∗(t),θ ), ∀θ ∈ Θ, a.e . t ∈ [0,T ], (3.7)
(x ,y) ∼ µ

The proof of this results follows closely that of Theorem 2.7, and hence we omit here. The proof
can be found in [EHL19]. This result has algorithmic implications and is intricately connected
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with back-propagation, as we will see later.

3.2.2 Mean-field Hamilton-Jacobi-Bellman Equations

Just like the PMP, the HJB also has a natural extension to the mean-�eld case. In this case, we
may obtain a necessary and su�cient condition for optimality, which is not something that has
been well explored in a machine learning context. The statement and a proof of the result is
slightly more involved, and we will try to state its key elements here.

• First, one needs to de�ne a value function. This should not be hard as we simply adapt
the usual cost to go

V (s, ρ) = inf
θ
E(x,y)∼ρ

[∫ T

t
L(x(t),θ (t))dt + Φ(x(T ),y)

]
subject to
Ûx(t) = f (x(t),θ (t)), t ∈ [s,T ], x(s) = x .

(3.8)

• Next, recall in (2.74) that we need to take the gradient with respect to the state. Here
the state is ρ, a probability measure, so we need to de�ne a notion of derivative. It turns
out a convenient technique to use is lifting [Car10]. Concretely, let u(ρ) be a real-valued
function(al) on the space of square-integrable measures (say on Rd ). We can lift it to a
function on square-integrable random variables

u(ρ) = U (Z ) where PZ = ρ (PZ denotes the law of Z ) . (3.9)

Now,U (Z ) is a functional on a Hilbert space, and hence we can de�ne its Fréchet derivative
DU (Z ). One can further show that DU (Z )’s law only depends on the law of Z and not on
Z itself. Thus we can view X 7→ DU (X ) a mapping from Rd to Rd . Therefore, we may
simply de�ne ∂ρu(ρ) to be the function x 7→ DU (x).

Theorem 3.2: Mean-�eld Hamilton-Jacobi-Bellman Equation

The value function (3.8) is the unique viscosity solutiona to the following mean-�eld
Hamilton-Jacobi-Bellman equation

∂tV (t , ρ) + inf
θ ∈Θ

∫
Rd+m

L(x ,θ ) + [∂ρV (t , ρ)(x ,y)]
>[f (x ,θ ), 0]dρ(x ,y) = 0,

V (T , ρ) =

∫
Rd+m

Φ(x ,y)dρ(x ,y).

(3.10)

aThis is a natural extension of the classical de�nition of viscosity solution

The proof of Theorem 3.2 and auxiliary results can be found in [EHL19].
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3.3 Control Inspired Learning Algorithms

Recall that the mean-�eld Pontryagin’s maximum principle is a general necessary condition
of optimality for mean-�eld optimal formulation of deep learning. Hence, it should give rise
to training algorithms just like how the condition ∇Φ(θ ∗) = 0 gives rise to gradient descent.
Moreover, the dynamical structure of the problem also hints at adapting other methodologies in
numerical analysis of di�erential equations to deep learning. In this section, we survey some
work in this direction. For simplicity of presentation, we will only consider empirical risk (and
often we will only consider the 1-sample case for ease of writing). In this case, the mean-�eld
PMP reduces to its classical counter-part 2.7.

3.3.1 Method of Successive Approximations

The �rst is the so-called method of successive approximations (MSA) [CL82] or the sweeping
method, which is perhaps the simplest method for �nding a solution of the PMP equations. The
PMP equations are 3 coupled equations in 3 unknowns x∗,p∗,θ∗. Moreover, given any two
of them, computing the third is straightforward, at least conceptually. Hence, the basic MSA
method proceeds as follows.

We start with an initial guess θ0 for the optimal control. At the nth iteration we solve

Ûxn(t) = f (xn(t),θn(t)) xn(0) = x (3.11)
Ûpn(t) = −∇xH (x

n(t),pn(t),θn(t)) pn(T ) = −∇xΦ(x
n(T ),y) (3.12)

θn+1(t) = argmax
θ ∈Θ

H (xn(t),pn(t),θ ). (3.13)

If (xn ,pn ,θn) converges, then the limit must be a solution of the PMP. In the N -sample case,
according to the mean-�eld formulation (with µ the empirical measure), we would then solve
the MSA

Ûxni (t) = f (xni (t),θ
n(t)) xni (0) = xi (3.14)

Ûpni (t) = −∇xH (x
n
i (t),p

n
i (t),θ

n(t)) pni (T ) = −∇xΦ(x
n
i (T ),yi ) (3.15)

i = 1, . . . ,N

θn+1(t) = argmax
θ ∈Θ

1
N

N∑
i=1

H (xni (t),p
n
i (t),θ ). (3.16)

We now show that this method includes as a special case the classical back-propagation algorithm
for deep learning by a discretization argument.

MSA and Back-propagation. Consider for simplicity L ≡ 0. We will drop the superscript
n, assume the sample size N = 1, and let x be the state under some control θ. Let us now
discretize (3.11) in time using a forward Euler discretization to obtain

x̂(k + 1) = x̂(k) + ∆t f (x̂(k), θ̂ (k)), k = 0, . . . ,K − 1 (K∆t = T ) (3.17)
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Now �x k < K and regard x̂(K) as a function of x̂(k), we have by the chain rule (D denotes total
derivative)

Dx̂ (k )Φ(x̂(K)) = [Dx̂ (k )x(k + 1)]>Dx (k+1)Φ(x̂(K))

= [I + ∆t∇x f (x̂(k), θ̂ (k))]
>Dx (k+1)Φ(x̂(K)).

(3.18)

Letting p̂(k) := −Dx̂ (k )Φ(x̂(K)), we see that

p̂k+1 = p̂k − ∆t[∇x f (x̂(k), θ̂ (k))]
>p̂k+1, k = 0, . . . ,K − 2, p̂K = −∇Φ(x̂(K)), (3.19)

which one recognizes as the (backward) Euler discretization of the co-state equation. In other
words, the costate here tells us the sensitivity of the loss function with respect to the state.

A further application of chain rule shows that

−Dθ̂ (k )Φ(x̂(K)) = ∇θH (x̂(k), p̂(k + 1), θ̂ (k)). (3.20)

Thus, we have shown that applying gradient descent on the loss function Φ is equivalent to
performing gradient ascent on H , i.e. we are approximately maximizing H when we perform
gradient descent.

Thus, back-propagation with gradient descent is equivalent to the MSA if we replace the
step (3.13) by

θn+1(t) = θn(t) + η∇θH (x
n(t),pn(t),θ ). (3.21)

In other words, we can view MSA as a generalization of the back-propagation algorithm. This
leads to the question of whether we can derive other algorithms from the MSA directly, without
replacing this step. It turns out that this is possible [LCTE17], and furthermore one can derive
algorithms to train quantized neural networks owing to the property that the PMP generally
applies to arbitrary parameter sets Θ [LH18]. Other applications of the MSA/adjoint method
includes adversarial training [ZZL+19] and generative models [CRBD19].

3.3.2 Layer Parallel Training Algorithms

Besides the Hamiltonian maximization property which leads to di�erent types of algorithms to
GD/SGD, there is another aspect of the PMP that leads to other algorithmic innovations, namely
layer-parallel training. This refers to learning algorithms that can use many processors to train
a deep neural network in parallel, not in terms of data splitting but layer splitting.

One way to motivate such methods is to look at the PMP equations, which consist of two
components:

1. Solving the dynamical equations for x∗ and p∗

2. Solving the Hamiltonian maximization problem for θ∗
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A crucial observation is that given component 1, component 2 can be computed in parallel
for all t , i.e. this step is naturally layer-parallel and each layer need not talk to one another.
Thus, to achieve full layer parallelism, it is enough to make the solution of x∗ and p∗ parallel.
There are at least two may ways of doing so, each relying on di�erent aspects of the Hamilton’s
equations.

Exploiting the Two-Point BVP Form. Notice that given θ, the equations

Ûx(t) = f (x(t),θ (t)) x(0) = x (3.22)
Ûp(t) = −∇xH (x(t),p(t),θ (t)) p(T ) = −∇xΦ(x(T ),y) (3.23)

constitute a two-point boundary value problem (2P-BVP), in that the equation for x has a initial
condition whereas the equation for p has a terminal condition. Hence, one can think of breaking
this down into two sub-problems: let S = T /2 and consider

P1 (t ∈ [0, S]) :
Ûpn(t) = −∇xH (x

n−1(t),pn(t),θn(t)) pn(S) = pn−1(S)

Ûxn(t) = f (xn(t),θn(t)) xn(0) = x
(3.24)

P2 (t ∈ [S,T ]) :
Ûxn(t) = f (xn(t),θn(t)) xn(S) = xn−1(S)

Ûpn(t) = −∇xH (x
n(t),pn(t),θn(t)) pn(T ) = −∇xΦ(x

n(T ),y)
(3.25)

The two problems P1 and P2 can now be run in parallel on two processors, and at the end of
each run the boundary values are passed between them in a communication round. This the
main idea of the algorithm proposed in [PM19], but there are additional correction steps that
we do not discuss here in detail. We remark here that the method here requires synchronization
between P1 and P2, and extension to more than two processors requires additional work.

Exploiting Continuity in time. An alternative approach is the multi-grid approach directly
on the state and co-state ODEs. This is based on the multi-grid in time idea in numerical
analysis [FFK+14], which is an adaptation of the classical spatial (non-linear) multi-grid method
for solving boundary-value problems.

The basic observation in this case is that for a discretized (say forward Euler) ODE (we absorbed
θ̂ (k) and k∆t into the de�nition of f )

x̂(k + 1) = x̂(k) + ∆t f (k, x̂(k)), k = 0, . . . ,K − 1, x̂(0) = x0, (3.26)

we can de�ne a vector X and a vector-valued function A so that

X :=
©­­­­«
x̂(0)
x̂(1)
...

x̂(K)

ª®®®®¬
, A(X ) :=

©­­­­«
X0 − x0

X1 − f (0,X0)
...

XK − f (K − 1,XK−1)

ª®®®®¬
. (3.27)
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Then, we can write (3.26) as

A(X ) = 0. (3.28)

The feed-forward method (3.26) solves (3.28) by sequential substitution, since A(X ) has a “lower
triangular” form, in the sense that the k th row of its output does not depend on Xk+1, . . . ,XK .

Alternatively, one can also attempt to solve (3.28) iteratively, say by minimizing minX ‖A(X )‖2.
In this case, one can start with initial guess X 0 and re�ne this guess – and the crucial point is
that the relaxation is now no longer sequential in time and can be parallelized. The multi-grid
method builds on this idea, where instead of solving this minimization problem in one go, it
solves it by iterating a sequence of grids of varying sizes, and transferring the information of
the solution across the grids.

For this to be sensible, one should expect some regularity in time in the solution X , so that
restriction/interpolation operations between grids of di�erent resolution give meaningful ini-
tializations for their respective temporal scales. This is ensured by the ODE structure of the
dynamics that naturally builds temporal regularity in the states and co-states. Recent work
based on this approach include [CMH+18b, GRS+20].

3.3.3 Summary and Outlook

Let us summarize the discussion so far on control inspired learning algorithm. From the big
picture, they are all derived by picturing the original learning problem in terms of a control
problem of a dynamical system. By appealing to the form of the maximum principle, new
optimization algorithms can be developed. On the other hand, by appealing to the dynamical
evolution of forward and adjoint equations, one can derive layer-parallel methods based on
traditional numerical analysis.

There are many future avenues for development when it comes to numerical algorithms for
deep learning from the control viewpoint. Here we motivate some possible directions that has
not been thoroughly explored

1. Some important methods from numerical optimal control has not been tested on deep
learning. Notable examples include collocation methods (See survey [Rao10]) and multi-
scale needle-perturbation type of methods [CL82].

2. The training methods developed so far are generic, in the sense that it tries to apply to
all forms of the dynamics modelling the network architecture. It is plausible to ask, can
we get more e�cient training method if we change the feed-forward dynamics? This
is partially explored in [LH18], and this topic is also related to the work that relies on
building architectures that we will discuss later

3. It should be apparent from the discussion that none of these algorithm relies on the
Hamilton-Jacobi-Bellman approach. Numerical algorithms based on the HJB is an inter-
esting point of exploration
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4. Lastly, the reverse question is also meaningful. Since learning and control can be con-
nected, it is possible to go the reverse direction and ask what learning algorithms we
have can help solve control, or PDEs. This has been pursued in many recent works and
further developments are expected

3.4 Control Inspired Architectures

Besides training algorithms, the connection between continuous-time dynamical systems and
deep learning also gives rise to novel model architectures. Classical numerical analysis now
acts as the bridge between dynamics and architectures. Indeed, recall from Sec. 1.2.5 that the
ResNet architecture is a forward Euler discretization of the ODE

Ûx(t) = f (x(t),θ (t)) → x̂(k + 1) = x̂(k) + ∆t f (x̂(k), θ̂ (k)). (3.29)

Of course, one do not have to restrict to such a discretization and can consider general schemes.
In the following we will regard x̂(k) as the iterates in a general �nite-di�erence discretization
scheme – each of which will correspond to a deep ResNet architecture.

Finite-di�erence discretization of di�erential equations is a well-studied topic in numerical
analysis. There, one is interested in several types of questions:

1. Stability: Do the iterates x̂(k) evolve stably? Do perturbations to the state get ampli�ed
or damped as it proceeds?

2. Consistency: Does the continuous time solution satisfy the discretized equation to leading
order?

3. Convergence: Do we have ‖x̂(k) − x(k∆t)‖ → 0? Does it converge uniformly? What is
the convergence rate?

Since each discretization scheme corresponds to an architecture, our knowledge on these
questions can lead to novel ways to build neural networks. Let us now discuss some works in
these directions.

3.4.1 Constraining Weights to Guarantee Stability

We �rst discuss the issue of stability. We start with a motivating example.

Example 3.3: Stability of Linear Systems

Consider the simple linear ODE

Ûx(t) = Ax(t), x(0) = x0 ⇒ x(t) = etAx0. (3.30)

Let xε (t) = etAxε , i.e. solution of the ODE with a di�erent initial condition xε where
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‖xε − x0‖ ≤ ε . Now, suppose that A is diagonalizable with eigenvalues λ1, . . . , λd ∈ C and
corresponding unit eigenvectors v1, . . . ,vd ∈ Cd . Moreover, suppose x0 =

∑d
i=1 αivi and

xε =
∑d

i=1 βivi . Then,

x(t) − xε (t) =
d∑
i=1
(αi − βi )e

λi t . (3.31)

One can see that: 1) If<(λi ) ≤ 0 for all i then ‖x(t)−xε (t)‖ is bounded; and 2) If<(λi ) > 0
for some i and αi , βi then ‖x(t) − xε (t)‖ → ∞ as t →∞.

From the example above we see that not all ODE solutions are stable to small perturbations. We
have not de�ned what stability means precisely. The following is a simple de�nition, but we
note that there are many other de�nitions of stability depending on the application scenario.

De�nition 3.4: Stability of ODE

Let x be the solution of a well-posed initial value problem Ûx(t) = f (t ,x(t)), x(0) = x0. We
say that it is stable if for every ε > 0 and every xϵ which is a solution of the same problem
with initial condition xε such that ‖xε − x0‖ ≤ ε , we have a δ > 0 such that

‖x(t) − xε (t)‖ ≤ δ for all t ≥ 0. (3.32)

Example 3.3 gives conditions for a linear system to be stable. For nonlinear systems, a similar
condition of stability can be derived, at least locally around some reference point, by replacing
A with the jacobian J = ∇x f . In this case the local stability condition will become

<[λi (J )] ≤ 0 for all i = 1, . . . ,d . (3.33)

Finally, for the discrete iterations a similar notion of and condition for stability can be de�ned.

Why do we want stability in neural networks? Recall that the dynamical system (continuous
or discrete) is there to transform the input x to a �nal form x(T ) so as to match some output
y. A basic requirement for such a network is continuity: if we vary the input by a very small
amount, the output should only vary by a small amount as well. This is necessary for the model
to be robust to noise, e.g. sampling noise due to �nite training sample. This can be directly
related to the issue of generalization.

With this observation in mind, one can then construct neural network architectures that have
stability guarantees. For example, suppose that A is skew-symmetric, i.e. AT = −A. Then, one
can show that its eigenvalues must have zero real part. One can thus guarantee the stability of
a linear system by forcing A to be skew-symmetric. A simple way to do so is to write

A = B − B> (3.34)
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where B is an unconstrained matrix. One can check that A> = −A for any B. Hence, one can
reparameterize the neural network in a similar way:

Ûx(t) = σ (W (t)x(t) + b(t)) → Ûx(t) = σ ([V (t) −V (t)>]x(t) + b(t)). (3.35)

Note that in the nonlinear case the skew-symmetry of the Jacobian does not strictly hold, unless
Diag

[
σ ′

(
([V (t) −V (t)>]x(t) + b(t))

) ]
commutes with V (t) −V (t)>. This approach is explored

in [HR17], where the authors also explored other means to ensure stability, including symplectic
integration, giving rise to yet another type of architecture based on Hamiltonian dynamics.
These ideas are also applied to recurrent networks [CCHC19].

In a di�erent vein, [ZS19] considers the post-activation form of the ResNet, which is

x̂(k + 1) = σ2
(
x̂(k) + τŴ2(k)σ1(Ŵ1(k)x̂(k) + b̂1(k)) + τ b̂2(k)

)
(3.36)

Assuming that σ2(z) = max(0, z), one can then show that (3.36) is a consistent discretization of
the di�erential inclusion

− Ûx(t) +W2(t)σ (W1(t)x(t) + b1(t)) + b2(t) ∈ ∂1Rd+ (x). (3.37)

The last term is the sub-di�erential of the indicator function of Rd+, which corresponds to the
normal cone of Rd+. By imposing sign constraints onW2(t) (forcing it to be negative), one can
derive stability estimates of the type in Def. 3.4.

Lastly, we also mention a recent work [YLBS20], which explores architectures based on a
continuous model that interpolates between residual and non-residual networks. There, the
authors consider

Ûx(t) = −λx(t) + ρ(λ)f (t ,x(t),θ (t)), (3.38)

where ρ : [0,∞) → [0,∞) with ρ(λ) → 1, λ → 0+and ρ(λ) ∼ λ, λ → +∞. By adjusting the
weight λ and discretizing, one can interpolate between a residual and non-residual network.
It is shown that this approach also improves stability for appropriate choices of λ, due to the
damping e�ect of the �rst term. This is similar to the di�erential inclusion approach whereW2
is negated.

3.4.2 Architectures from Other Finite Di�erence Discretization Schemes

Instead of constraining weights to achieve stability, another direction is to derive novel archi-
tectures based on di�erent �nite-di�erence discretization schemes. In this viewpoint, one keeps
in mind an underlying dynamical equation (in the form of an ODE) that is the “true” model of
the feed-forward dynamics. Thus, in this viewpoint one can view architectural design of the
neural net as a way to �nd a good discretization scheme, either to improve accuracy or stability.

To this end, suppose we have a underlying deep model in the form of an ODE

Ûx(t) = f (t ,x(t),θ (t)) =: f̃ (t ,x(t)), (3.39)
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The usual ResNet then corresponds to the forward Euler discretization of the above. Are there
other architectures that we have invented that corresponds to other discretization schemes?

Indeed, this is the case as observed in [LZLD18]. For example, the backward Euler discretization
of (3.39) reads

x̂(k + 1) = x̂(k) + ∆t f ((k + 1)∆t , x̂(k + 1)) (3.40)
⇓

x̂(k + 1) = (I − ∆t f ((k + 1)∆t , ·))−1(x̂(k)) (3.41)

For linear f one can expand (3.41) in ∆t as x̂(k + 1) ≈ x̂(k) + ∆t f ((k + 1)∆t , x̂(k)) + ∆t2[f ((k +
1)∆t , ·)2](x̂(k)). This iteration rule in fact is equivalent to PolyNet [ZLCLL17] (Poly-2) where it
was observed that better performance can be obtained when using (3.41) in place of the usual
ResNet. We note that in numerical analysis, backward Euler methods enjoy better stability
than forward Euler method, and is particularly useful for sti� equations [SG79]. It is further
remarked in [LZLD18] that other architectures also have similar interpretations as di�erent
discretization schemes. The authors then go on to propose another family of networks based
on linear multi-step discretization, which is

x̂(k + 1) = (1 − αk )x̂(k) + αk x̂(k − 1) + ∆t f (k∆t , x̂(k)), (3.42)

with the weight αk as a trainable parameter. This e�ectively adds a second order time derivative
term in tho the dynamics, which changes the dynamical properties of the evolution. Such
e�ect can be quanti�ed by deriving the modi�ed equation [WH74]. Similar methods are also
used to understand noise injection for residual networks, see [STD18]. We note that the well-
known DenseNet [HLVDMW17] can be thought of as an extreme case of such a multi-step
method. Multi-step methods are also used to construct reversible architectures, which have
memory saving properties on top of stability guarantees [CMH+18a]. Runge-Kutta method
inspired architectures are recently explored in [ZCF19], but we also remark that such approaches
has been applied to learn dynamical data in very early works [RKK+92]. Other variants of
di�erencing scheme inspired architectures include [XBMW19, YWL+19].

3.4.3 Architectures from PDE Theory

So far, we focused our discussion on architectures derived from ODE theory, either from
enforcing stability conditions or from other forms of discretization, including implicit, symplectic
and multi-step methods. We mention that there are also work that interpret feed-forward
networks as certain reductions from PDEs. These come in two categories. First, for convolutional
networks acting on images, there is a natural spatial dimension in addition to the temporal
one, and hence this can be immediately connected with evolution equations in the form of
PDEs (see e.g. [RH19]). On the other hand, there are also interpretations via the method of
characteristics. In fact, we mentioned that in the mean-�eld formulation, the PMP equations
(for which the forward equation is the feed-forward network) are indeed characteristics of
PDEs on distribution spaces (Theorem 3.2). A related approach is to interpret the networks as

54



3 Dynamical Systems Meets Deep Learning

Figure 3.1: The overall approach of architectural design using dynamical systems viewpoint.

characteristics of a transport PDE [LS18], from which one can again derive new models and
methods [WLL+18, WYSO19, WLZ+20].

3.4.4 Summary and Outlook

Let us now give a quick summary. In fact, the �avor of most of the aforementioned work
on architectural design can be understood in Figure 3.4.4. There, the property “X” may be
stability, robustness, reversibility or any other dynamical property. On the other hand the
property “X” may also be not having certain limitations, e.g. not being a homeomorphism,
which heuristically motivates embedding higher dimensions [DDT19]. While this approach has
enjoyed many successes, the type of properties “X” can be further expanded in future work.
For example, most of the properties that have been considered so far are properties that was
studied mainly in the feed-forward step (i.e. stability, reversibility). In some sense, they are
necessary for good performance but not su�cient. After all, the performance measure that one
is interested in a (mean-�eld) control problem is the convergence rate of the iterative step to
�nd an optimal control, as well as the generalization of that control to unknown data samples.
These properties and their precise relation to discretization requires an extension of traditional
numerical analysis techniques to combine with optimization/control theory in order to obtain a
holistic understanding of the e�ect of discretization on optimal control problems.
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3.5 Mathematical Results from the Dynamical Systems
Approach

In this section, we discuss some mathematical results relevant to the dynamical systems approach
to deep learning. Recall in Sec. 3.2 that we have introduced the basic optimality results that one
can prove for the learning setting – namely the mean-�eld Pontryagin’s maximum principle
and the mean-�eld Hamilton-Jacobi-Bellman equation. These however are only one facet of the
theory (see Fig. 1.1) and we are still far from a complete understanding of this continuous-time
approach to learning. In particular, the grand goal of the theoretical development is to arrive
at insights that currently hinders our understanding of deep learning itself. One key question
whose comprehensive answer remain elusive is: why and when are deep networks better than
shallow ones?

Let us now summarize some mathematical results on various aspects of the dynamical systems
viewpoint.

3.5.1 Approximation Theory

One of the most basic results in the theory of neural networks is the universal approximation
theorem (1.3). There, it is required that the width of the neural network go to in�nity in order to
approximate functions to arbitrary accuracy. This question can also be posed in the continuous-
time dynamical systems setting. However, the key question one would like to answer now is
whether universal approximation can be achieved by a su�ciently deep (instead of wide) neural
network, corresponding to a dynamical system with large terminal time T . Let us formulate
this problem more precisely.

Let us consider an controlled ODE

Ûx(t) = f (x(t),θ (t)), θ (t) ∈ Θ (3.43)

We can write this without explicit parameterization as

Ûx(t) = ft (x(t)), ft ∈ F (3.44)

where F is some family of control functions. Then, we may de�ne the family of �ow maps

Φ(F ,T ) := {x 7→ x(T ) : Ûx(t) = ft (x(t)), ft ∈ F , t ∈ [0,T ],x(0) = x}. (3.45)

To match output dimensions, we will need a family G of functions (�nal classi�cation/regression
layers) from Rd (input space) to Rm (output space). Hence, the resulting hypothesis space
induced by �ow maps takes the form

H = ∪T ≥0 {д ◦ φ : д ∈ G,φ ∈ Φ(F ,T )} . (3.46)

The primary approximation question is thus: What conditions on F and G is su�cient to guar-
antee the universal approximation property (UAP)?
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First, if F is itself a family of functions having the UAT, then it is not hard to show that then
H also has this property [ZGUA20]. However, this result does not capture the e�ect of the dy-
namical �ow in function approximation. In [LLS19], a general su�cient condition for universal
approximation forH is given that allows for F to be simple, and many existing architectures are
shown to satisfy the properties proved there. Furthermore, some approximation rates in terms
of T can be analyzed in limited settings. This partially resolves the approximation problem, but
a general understanding of how to e�ciently approximate functions using dynamical �ows
remains an open problem in need of further investigations. We also mention [CLT19] where
the authors study an alternative property of universal interpolation, i.e. mapping �nite number
of distinct points onto another �nite set of target points. There it is proved that such a property
holds for simple control families consisting of linear combinations of vector �elds that satisfy
some controllability conditions. Again, rate estimates are currently not established.

Recently, work on proving e�cient approximations – say those that avoid the curse of di-
mensionality – have been investigated for continuous-time systems under the Barron space
framework [EMW19, MW19b, MW19c, MW19a]. However, the control family F there is still
very large and such results have so far not been generalized for simple F , and in particular, the
depth dependence in terms of approximation rates remain unclear. In fact, the control family
there is a continuum limit in the width, in that one considers (ignoring bias for simplicity)

Ûx(t) =
∑
i

vi (t)σ (wi (t)
>x(t)) → Ûx(t) =

∫
vσ (w>x(t))dρ(v,w), (3.47)

with ρ being a probability measure. This has close relationship to the study of double continuum
limits (in depth and in width) and its relationship to optimal transport and ridgelet transform,
see [SM17, SM19], and also a kinetic theory formulation that relies on both limits [HTV20].
Lastly, a rigorous formulation of the optimal control and optimality conditions similar to the
mean-�eld PMP/HJB above, but directly on this double continuum limit view of the dynamical
process, can be found in [LM19].

3.5.2 Generalization

The problem of generalization is a very important aspect of learning algorithms. There are at
least two types of questions one can ask:

• Does |Rpop(F ) − Remp(F )| → 0 as N → 0 uniformly in F , and at what rate?

• Does a minimizer of Remp converge to that of Rpop as N →∞, and at what rate?

The �rst question is well-studied in classical statistical learning [FHT01], where generaliza-
tion bounds come in the form of a guarantee of the di�erence between empirical risk and
population/expected risk, e.g.

Rpop(F ) ≤ Remp(F ) +
C(F )

N α . (3.48)
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Here, C(F ) is a complexity measure of the model. In the language of numerical analysis, this is
a a posteriori estimate, in the sense that the estimate depends on the learned model F , instead
of being dependent purely on the ground truth F ∗.

Although such bounds are useful in classical settings, in deep learning it is found that they are
mostly vacuous, because the F in this case are deep neural networks for which most traditional
measures of complexity gives a very big estimate so that the right hand side of (3.48) is large.
In fact, it is suggested that deep networks do generalize despite having the ability to over-�t to
the training set if forced to [ZBH+16].

The second question has a more numerical analysis �avor, if one views Remp as a “discretization”
of Rpop (in fact, it is a discretization of the data distribution µ into an empirical measure). Indeed,
in this viewpoint, question 1 asks if the discretization is consistent, and question 2 asks if it
is convergent. Answers to 2 implies those to 1 under the assumption that the risk functions
are well-behaved. Note that with respect to variational problems (of which an optimal control
problem can be thought of as a special case), 2 is known as a Γ-convergence result.

There are relatively few results from the dynamical systems and the optimal control viewpoint
on the generalization question. In [EHL19], a basic relationship between the solution of the
empirical control problem and the population mean-�eld problem is established. In particular,
it is proved that under a concavity assumption on the Hamiltonian, a solution of the PMP
corresponding to the empirical control problem converges to that of the mean-�eld control
problem. However, this does not imply the optimal solution converges to the population optimal
solution in general.

More recently, [BCL19] proves the Γ-convergence of the sampled optimal control problem to
the mean-�eld optimal control problem with a relaxed control set, i.e. the control is now a joint
law of the control and the state parameters, instead of directly on the controls. In fact, a more
general forward dynamics is considered in [BCL19] where explicit mean-�eld interactions is
included that includes batch-normalization as a special case. As before, the rate of convergence,
and in particular its dependence on problem dimension, remain largely unexplored at the time
of writing of these notes.

3.5.3 Connection between Continuous and Discrete Time

Finally, we will discuss the connection of results between continuous time and discrete time.
The viewpoint in these notes are primarily of the continuous-time nature, but in practice the
problems we can solve on a computer are discrete. Hence, it is an important question to ask
what the continuous-time results imply about discrete time. We will look at two angles:

• Approximation: in approximation theory, this relationship is precisely the connection
between evolution equations and their discretizations. Here, the problem of convergence
is well-studied, and under quite general conditions, if the continuous-time �ow map
has a density property, then that property will transfer to that of a discretized map
(feed-forward NN) as long as the discretization is convergent. This has been discussed
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in [LLS19]. However, we point out that if we are after convergence rates, then one must be
more careful, in that one needs the continuous-time dynamics to satisfy certain regularity
conditions before we can transfer a rate of approximation on T (the time horizon of the
continuous-time evolution equation) and K = T /∆t (the depth of the discretized network).
In fact, if the continuous-time system is extremely ill-behaved in time, the fact that T is
small does not imply K is small, since a smaller step size ∆t may be required to achieve
the same level of truncation error.

• Optimization: the optimization issue is more delicate as in the case of [BCL19]. In short,
one not only have to prove that the temporal discretization is consistent, but one also
have to show that the solution of the discretized version (optimal parameters of the neural
network) converges to the solution of the continuous-time optimal control problem in
the limit of in�nitely many layers. This has been partially resolved in [TvGv18], where
the authors prove a Γ-convergence result of the control problem for discretized dynamics
(training ResNets) to the continuous-time control problem. However, one limitation there
is that the proof required the introduction a regularizer on trainable parameters akin
penalizing its temporal derivative. In other words, the convergence is established under a
condition that the traininable parameters are regular in time, something that may not
be satis�ed by control problems in continuous-time. We also remark that in [AN20], a
similar convergence result in the limit of in�nite depth is presented for the case where
the control do not vary in time.

3.5.4 Summary and Outlook

In this part we discussed some existing mathematical work on the dynamical systems approach to
deep learning from the three usual paradigms, approximation, optimization, and generalization.
We see many promising progress, yet there are many questions that await, making this an
interesting area of research. Here, we discuss some problems in the theoretical aspect of the
dynamical systems approach, most of which are also important open problems for deep learning
at large, and it is our hope that the dynamical systems approach can provide useful insights
into these problems.

• Approximation: The key issue is approximation rates, and in particular, answer the
question of what types of functions can be e�ciently approximated by a dynamical
system. This requires one to introduce a sensible notion of complexity of a target function
F ∗, that is expected to be very di�erent from usual ones in approximation theory, such as
smoothness. In some sense, this is the most important obstacle to understanding why
“deep” networks work so well in applications.

• Optimization: While various Γ-convergence results have been established, it remains to
develop a useful theory to understand the dynamics of solving optimal control problems.
For example, what is the relationship between the hardness of an optimal control problem
with respect to the form of the dynamical systems or the choice of discretization schemes
(i.e. architecture)? A useful �rst step is explored in [HKR19] in this direction.
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• Generalization: The curse of dimensionality remains unresolved, especially when we do
not take the continuum limit in width. In particular, what properties of the dynamical
system are su�cient for good generalization? This requires further thought than necessary
conditions such as stability, which often are generic and limits expressivity [HR17]. A
useful theory of generalization and its interaction with dimension d and depthT (or K ) is
an important future goal of generalization theory for the current setting.
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4 Summary

In these notes, we presented a pedagogical introduction of classical optimal control theory. Then,
we discussed in a survey form various recent work on the development of the dynamical systems
and optimal control approach to deep learning, including algorithm development, architecture
selection and theoretical results. Some very interesting topics that the dynamical systems
viewpoint have contributed to have not been discussed at length, e.g. stochastic aspects [TR19,
TKS19, JB19, LWCD20], generative modelling [ZW18, GCB+18, BGC+19, CBDJ19, QGMK19,
YHL19, ZYG+19, MPC+19, FJNO20], robustness studies [ZHW+19, HJVJ19, LXS+19, RW19],
modelling training dynamics [LTE17, LTE19] and various applications to image processing and
3D vision [LLZS10, CYP15, ZLLD18, JLFZ19, HCZ20]. Thus, these notes are not meant to be
a comprehensive survey of research on the intersection of machine learning and dynamical
systems, and many recent and interesting work may also be missed due to unfamiliarity,
ignorance or time-irreversibility. These will be updated in due time as these notes evolve and
any email updates on latest research are always welcome.
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