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CHAPTER 1

Introduction

A mathematical theory of any subject, by definition, is an interdisciplinary
study between pure mathematics and the subject area. Whether it is taught
in an applied mathematics program or as a theory course in the subject area
is not an intellectual matter, but rather a result of historical development and
academic preference. In physics, knowledge are delivered almost exclusively
using mathematical language; this is not so in biology. One also notices that
the teaching of physics and many engineering classes, such as in mechanical
engineering, electrical engineering, chemical engineering, etc., are very differ-
ent. The former is much more focused on concepts, ideas, and principles, while
the latter is on more realistic subjects with greater detailed knowledge. Viewed
through this perspective, we see that biological science has yet to differenti-
ate into its “mathemaical” and “engineering” specialties. In our opinion, the
highly acclaimed textbook Physical Biology of the Cell [19] has made a ma-
jor contribution toward defining the latter; and the current little book is an
attempt to introduce the former.

A piece of good applied mathematics always has two components: mathe-
matical techniques that are expressed in equations and formulas, and their
“interpretations” that can also be called “narratives”, which is just a fancier
word for story-telling. Some of you might be surprised to hear I say this: This
is because most applied mathematics one traditionally learns are about simple
not complex systems to which biological problems belong. It is on this issue
of “simple vs. complex” that you are required to read two important articles,
one by P. W. Anderson [2] and another by J. J. Hopfield [11].

Simple systems and problems have relatively straightforward representations
in terms of mathematics, while complex ones are often poorly represented
by mathematics; most times an effective representation itself is yet to be
discovered. It is not an overstatement to say that representation is almost
everything. Consider this problem: Can 32384732572057 be divided by 7? This
is not an easy task. But 32384732572057 is nothing but 6551501601656455 in
base-7; and obviously it can not.

One interesting lesson from the mathematical theory of quantum physics is
that what happens and what can be observed are two very different things:
What happens in a quantum system is represented by an abstract function
ψ in a Hilbert space H; ψ changing with time, as described by Schrödinger’s
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4 INTRODUCTION

equation, is completely independent of what are the observables, which are
represented by self-adjoint operators on the H [29]. It turns out, Kolmogorov’s
notions of a probability space and random variables, as the foundation of the
modern mathematical theory of probability, have a very similar characteristic
[14]: The latter is measurable functions defined on the former, called a mea-
surable space, whose existence and dynamics are completely independent of
any random variable, e.g., observables.∗

A careful look shows us that the confidence one derives from exact sciences is
often from the certainties in mathematics. This is even more true for complex
systems. Isaac Newton understood this earlier and better than anyone else [9].

The theory of cellular dynamics establishes a mathematical foundation for
analytical studies of cells. Its intellectual significance resides in its ability to
“mathematically explain” how inanimate molecules collectively give rise to
behavior and functions of a living cell; bridging physics and biology through
chemistry and applied mathematics. While we focus on the biology of cells,
the methods and ideas are applicable to other complex biological systems.
This is explained in ...

We start our discussion by closely scrutinizing every statement. Let us start
with parsing the title of this book, “cellular dynamics” — Why cell? What is
“dynamics”?

1.1 Cell

There are several reasons why we pick cell as the central theme for a math-
ematical understanding of biological systems in general [1]: Frist, it is con-
sidered as the fundamental building blocks of all biology; things smaller than
that, say a protein molecule, is also very complex, at least to atomic physi-
cists, but it is no longer a really living organism. Yet, a cell shares a great
deal of similarities with the much smaller protein, as well as the much big-
ger cancerous tissue. Therefore, cell can be used as an archetype for studying
complex living systems consisting of pupulations of individuals with multiple
scales [6].

Studying protein is a subject of chemistry; a protein contains atoms; and there
are only about 110 some types of atoms in the periodic table, most of them
do not even show up in a protein. One of the approaches to study protein is
molecular dynamics (MD), which represents each atom in a protein molecule
and its surrounding water molecules as point masses that follow Newton’s
equations of motions [15].

∗ For a given measurable space, there are infinite many possible observables. Only when
the set of all possible outcome is finite, there exists holographic random variables with
maximum entropy.
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Studying tumorous tissue is a subject of cancer biology; it contains heteroge-
nous cells. Non-genetic heterogeneity among cancer cells in a tumor and their
potential of phenotype switching have made this area one of the most exciting
new frontiers of cancer biology [3].

Studying a cell is the subject of cell biology; a typical bacterial cell con-
tains more than 4,000 proteins, while mammals, including humans, require
upwards of 100,000 different proteins. The number of copies of a particular
protein ranges from less than a hundred to a more than a million (c.f., actin
in myocytes) [8].

Cell theory is one of the fundamental organization principles in essentially all
life sciences. One of its main statements is “life comes from life” which, in the
post-genomic era, is exclusively interpreted as DNA is replicated from DNA -
one key step in the central dogma of molecular biology. Cells, as the basic unit
of structures and functions, divide the inanimate materials in biochemistry
and living organisms.

1.2 Dynamics

What is dynamics? If t represents time and x is a certain measurement, is
observed x(t) = 5 sin(t) a dynamics? The answer is “no”. x(t) is a function
of time; but it does not represent a dynamical system. On the other hand,
d2x(t)/dt2 = −x(t), to which one can easily verify that 5 sin(t) is a solution,
is a dynamics. The difference is profound: From the differential equation, e.g.,
a dynamic rule, we see that knowing x(0) alone is not sufficient for predicting
all the x(t), t ≥ 0. However, knowing both x(0) and dx(0)/dt is sufficient. The
dynamic description contains a great deal of generalizations and predictions in
connection to the observed data, 5 sin(t). One of the important consequences
of thinking dynamically is to know the potential of many other behaviors yet
to be observed: According to Newton’s mathematical theory there is Halley’s
Comet; this is certainly not contained in Kepler’s laws.

The dynamical description of nature can be understood as a two-by-two grids.
On the one axis: Mathematical models are based on either data or mechanisms;
and on the other axis: it is expressed in terms of deterministic and stochastic
mathematical descriptions.

The most significant example of a deterministic dynamic model based on data
is perhaps Kepler’s three laws of planetary motion. Developing stochastic-
process models based on big data is the subject of statistics. Research on
bioinformatics, ecology, econometrics, etc. are this kind. Analyzing determin-
istic differential or difference equations based on mechanisms has been the
central theme of applied mathematics. For example the study of nonlinear
wave. Finally, studying stochastic dynamics based on mechanisms has been
very important to mathematical biology and it is a growing new direction in
current applied mathematics.



6 INTRODUCTION

1.2.1 Nonlinear, stochastic dynamics as a new paradigm

What is modern science? Elemetary and high-school students are constantly
being told that science is about “observations” and “experiments”. But we all
know that those are only the very first steps: Exact science is also a narra-
tive written in terms of mathematics. Lord Kelvin once said: “When you can
measure what you are speaking about, and express it in numbers, you know
something about it, when you cannot express it in numbers, your knowledge
is of a meager and unsatisfactory kind; it may be the beginning of knowledge,
but you have scarely, in your thoughts advanced to the stage of science.” [28]

The nonlinear, stochastic dynamics offers a new mathematical framework to-
ward dynamics that encompass both deterministic and statistical aspects of
modeling. But it offers more. Perhap one of the most important insights is
the emergence of rare events which has infinitesimal probability to occur
in a short time, but it will occur with probability 1 on a much longer time
scale, or with a precise percentage among a large population. Rare events can-
not be understood by neither classical deterministic mathematics nor normal
statistics. The only tool we know of is by mechanistic stochastic modeling.†

Cancers, ecological catastrophes, stock market craches, and sociopolitical rev-
olutions are all rare events. It is these rare events that are truly unpredicatable
in the classical sense, giving the appearance of free will. Hopfield called it dy-
namic symmetry breaking. Jame Clerk Maxwell has said “It is manifest that
the existence of unstable conditions renders impossible the prediction of fu-
ture events, if our knowledge of the present state is only approximate, and not
accurate. ... At these (unstable) points, influences whose physical magnitude
is too small to be taken account of by a finite being, may produce results
of the greatest importance. All great results produced by human endeavour
depend on taking advantage of these singular states when they occur.” [20]
The singular state Maxwell referred to is called a transition state in chemistry
and it is associated with a “checkpoint” in current cell biology verbiage.

1.3 Some philosophical thoughts

† One of the profound insights from the probability theory of rare events is that in a very
complex nonlinear system, uncertainty about a rare event is only in the “when” while
the “how” is almost completely deterministic, in terms of the sequence of events leading
to its occurrence.



CHAPTER 2

Mechanics and Chemistry

We distinguish a mechanical representation of the world in terms of point
masses with positions and momenta and the chemical representation of the
world in terms of population densities of different individuals, each with an
internal dynamics that is very complex. The internal dynamics are so complex
that they appear as intrinsically stochastic; yet at the population level they
follow statistical laws in their syntheses, degradations, diffusion, and interac-
tions.

Mechanics Chemistry

representation spatial coordinates number densities

key concept point masses elementary reactions

dynamics mi
d2xi
dt2

= Fi
(
x
) dxi

dt
=

M∑
j=1

νji

(
R+
j (x)−R−j (x)

)
cause forces with vector addition reaction rates with additive fluxes

example F (x) = −kx I + S
k1−→ 2I, S

k2−→ R

potential
condition

Fi(x) = −∂U(x)

∂xi

R+
j (x)

R−j (x)
= exp

(
−

N∑
i=1

νji
∂G(x)

∂xi

)
energy law mechanical energy conservation chemical energy balance

thermodynamics S = ln Ω(E) Chapter 5

mechanism Newton’s theory is “fundamental”, elementary reaction, one at a time;
or Verlinde’s theory? mechanical and stochastic theories

7



8 MECHANICS AND CHEMISTRY

2.1 Consequences of Newton’s theory of mechanics

Following Newton’s equation of motion, we have

mi
dxi
dt

(
d2xi
dt2

)
= Fi(x)

dxi
dt

,

mi

2

d

dt
v2
i (t) = Fi(x)vi(t),

1

2

d

dt

(
p(t) · (t)

)
= F

(
x(t)

)
· v(t), (2.1)

in which pi = mivi are called the momentum of the ith point mass. Then, we
have

d

dt

[
p(t) · v(t)

2︸ ︷︷ ︸
kinetic energy

−
∫ t

t0

F
(
x(s)

)
· dx(s)

]
︸ ︷︷ ︸

mechanical work

= 0. (2.2)

The right-hand-side term in (2.1) is called mechanical power; it is the rate of
mechanical work. If the force F(x) = −∇xU(x) has a potential function, then
(2.2) becomes the more familiar

d

dt

[
p(t) · v(t)

2
+ U

(
x(t)

)]
= 0. (2.3)

2.1.1 Hamiltonian dynamics

dx

dt
=
∂H(x, y)

∂y
,

dy

dt
= −∂H(x, y)

∂x
. (2.4)

The H(x, y) is conserved.

2.1.2 The mechanical theory of heat

Let us consider H(x, y; ξ) which also contains a parameter ξ. So one naturally
interested in how a Hamiltonian dynamics depends on the ξ. In particular,
what is the long-time behavior. We recognize that the long time behavior is
a continuous motion on a H-level set, determined by the initial value of H.
Therefore, long-time, thermodynamic state of a mechanical system is a state
of motion; the entire level set H(x, y; ξ) = E.

Introducing the notion of generalized force and work due to a change in ξ:

dW =

(
∂H

∂ξ

)
dξ ≡ Fξdξ. (2.5)

We shall return to this notion later. Then, if the Ω(E) is the phase vol-
ume contained by, or the surface area of, the level set H(x, y) = E, then
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let S(E, ξ) = ln Ω(E, ξ) and one has E = E(S, ξ):

dE =

(
∂E

∂S

)
ξ

dS︸ ︷︷ ︸
TdS=dQ

+

(
∂E

∂ξ

)
S

dξ︸ ︷︷ ︸
Fξdξ=dW

. (2.6)

Therefore, there is an energy conservation for all different value of ξ, through
work dW = Fξdξ and heat dQ = TdS. This is the First Law of Thermo-
dynamics. This derivation of Eq. 2.6 is Helmholtz-Boltzmann’s mechanical
theory of heat.

Beyond predicting conservation of mechanical energy and deriving the First
Law, one should note that while Newton’s equation of motion mid

2xi/dt
2 =

Fi(x) is considered to be a natural law that is widely valid, it is not very useful
until one knows the right-hand-side Fi(x) as functions of x. For a complex
system, this is a daunting task. In the case of molecular dynamics of pro-
teins, it tooks many scientists and fifty years to develop several usable force
fields: AMBER (assisted model building and energy refinement), CHARMM
(chemistry at Harvard molecular mechanics), GROMOS (Groningen molec-
ular simulation), to name a few that are well-known [15]. Even with such a
major and concerted effort of an entire research community, there are still
criticisms that the mechanical approach might be irrelevant to certain key
aspects of protein dynamics and functions, c.f., folding or ligand binding [16].

2.2 Consequences of the chemical kinetic equations

A chemical or biochemical reaction system can be represented in term of N
species and M reactions. The `th reversible chemical reaction

ν+
`1X1 + ν+

`2X2 + · · ·+ ν+
`NXN

R+
`

GGGGBFGGGG

R−`

ν−`1X1 + ν−`2X2 + · · ·+ ν−`NXN (2.7)

has two set of stoichiometric coefficients {ν+
`k, ν

−
`k|1 ≤ ` ≤M, 1 ≤ k ≤ N}.

We shall assume the reaction vessel is rapidly stirred, hence it is well-mixed
in space. Under this assumption, the system will have no spatial inhomogene-
ity. Then because of the conservation of atoms and molecules, the change of
number density, i.e., concentration of the ith chemical species in the system
(2.7) follows the

dxi(t)

dt
=

M∑
`=1

ν`i

(
R+
` (x)−R−` (x)

)
(2.8)

where xi(t) is the concentration of chemical species Xi at time t, 1 ≤ i ≤ N ,
ν`i = ν−`i − ν

+
`i .

We shall point out that the validity of Eq. 2.8 for a chemical kinetic system
is just as sound and wide as Newton’s equation for the mechanical motions
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of a system of particles. Yet, just as discussed for Newton’s equation, without
explicitly knowing more about the right-hand-side of (2.8), it is nearly useless.
To be useful, one needs to further assume the functional forms of R±` (x) in
terms of the x = (x1, x2, · · · , xN ).

2.2.1 Waage-Guldbergs law of mass action

One of the widely used functional form for R±(x) is known as the Law of Mass
Action, which states that each elementary chemical reaction has an instanta-
neous rate, i.e., the number of reactions per unit time, that is proportional to
the concentration of each and every reactant:

R+
` (x) = k+

` x
ν+
`1

1 x
ν+
`2

2 · · ·x
ν+
`N

N , R−` (x) = k−` x
ν−`1
1 x

ν−`2
2 · · ·x

ν−`N
N , (2.9)

in which k±` are the proportional constants for the `th reaction in the forward
and backward directions.

2.2.2 The Gibbs potential never increases

Consider a reaction kinetic system that has a Gibbs potential G(x), which
satisfies

ln

(
R+
j (x)

R−j (x)

)
= −νj · ∇xG(x). (2.10)

Then we have

d

dt
G
(
x(t)

)
=

N∑
i=1

∂G(x)

∂xi

(
dxi(t)

dt

)

=

N∑
i=1

M∑
j=1

∂G(x)

∂xi
νji

(
R+
j (x)−R−j (x)

)

=

M∑
j=1

ln

(
R+
j (x)

R−j (x)
e∇xG(x)·νj

)(
R+
j (x)−R−j (x)

)
(2.11a)

−
M∑
j=1

(
R+
j (x)−R−j (x)

)
ln

(
R+
j (x)

R−j (x)

)
︸ ︷︷ ︸

entropy production rate (epr)

(2.11b)

The non-negativity of the entropy production rate is obvious. The term in
(2.11a) is zero due to Eq. 2.10. Therefore, dG(x(t))/dt = −epr ≤ 0, which is
the Second Law of Thermodynamics in chemical kinetics.
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2.2.3 Gibbs potential condition

The Gibbs potential condition given in (2.10) can be written as

N∑
i=1

νji
∂G(x)

∂xi
= − ln

(
R+
j (x)

R−j (x)

)

= −
lnR+

j (x)− lnR−j (x)

R+
j (x)−R−j (x)

(
R+
j (x)−R−j (x)

)
. (2.12)

Then the chemical kinetic equation (2.8) becomes

dxi(t)

dt
=

M∑
`=1

ν`i

(
R+
` (x)−R−` (x)

)
= −

N∑
k=1

Dik(x)
∂G(x)

∂xk
, (2.13)

in which symmetric, semi-positive definite matrix

Dik(x) =

M∑
`=1

ν`i

(
R+
` (x)−R−` (x)

lnR+
` (x)− lnR−` (x)

)
ν`k. (2.14)

When the R+
` , R

−
` � |R

+
` − R−` | for each and every reversible reaction `,

the term inside (· · · ) becomes 1
2

[
R+
` (x) +R−` (x)

]
. In stoichiometric network

kinetics, the term in (2.14) has been called biochemical conductance [24].

We note that from a simple minded calculus standpoint, the ODE system
(2.8) is a gradient system if and only if there exists a potential function U(x)
such that

dxi(t)

dt
=

M∑
`=1

ν`i

(
R+
` (x)−R−` (x)

)
≡ −∂U(x)

∂xi
. (2.15)

The equation in (2.13), however, suggests two complications: There is the x-
dependent factor Dij(x) and it is actually a tensor. They correspond to deeper
mathematical differences, in terms of change of measure and dynamics on a
manifold [26], between mechanical motions in space and chemical kinetics on
a graph.

2.2.4 Gibbs potential of ideal solution and the law of mass action

From the textbook on chemical thermodynamics, the Gibbs potential for an
ideal solution, in KBT unit, has the form:

G(x) =

N∑
j=1

xj

(
µoj + lnxj − 1

)
. (2.16)
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It is easy to verify that this function is consistent with the Gibbs potential
condition and Waage-Guldbergs law of mass action:

ln

(
R+
` (x)

R−` (x)

)
= ln

(
k+
`

k−`

) N∑
j=1

(
ν+
`j − ν

−
`j

)
lnxj = −ν`j

(
∂G(x)

∂xj

)
,

in which ν`j = ν−`j − ν
+
`j .



CHAPTER 3

Stochastic Theory of Elementary
Reactions

3.1 Exponential distribution for a rare event

Let us consider an event that can occur at any time. Let P (t) be the probability
it has not occured yet at time t. If everything is time-homogeneous, e.g.,
stationary, and the probabilities of the event not occurs in time intervals [0, t]
and [t, t+ τ ] are independent, then P (t+ τ) = P (t)P (τ). If the event is rare,
that is within a short ∆t time, the probability to occur is λ∆t, and not occur
is 1− λ∆t, where o(∆t). Then

P (t+ ∆t) = P (t)P (∆t) (3.1a)

= P (t)
(

1− λ∆t
)
,

P (t+ ∆t)− P (t) = −λP (t)∆t,

dP (t)

dt
= −λP (t). (3.1b)

The equality in (3.1a) is based on the assumption that the event occurs at
anytime uniformly and independently. We give several counter examples:

1) The time a mosquito “feels hungry and starts to hunt”. In this case, the
“event” occurs with increasing λ in time since the hungry sensation increases
with time; there is an urgency.

2) The first arrival at a shop that posts a “on sale” sign. In this case, the
event is likely not a “rare” since people coming to the doorstep in “cluster”.

3) ...

3.1.1 Essential properties of exponential distributions

If we use T to denote the random variable for the waiting time for the event
to occur, then T has a cumulative distribution function (cdf) FT (t) = 1−e−λt
and probability density function (pdf) fT (t) = e−λt. The expected value and
variance of T are

E
[
T
]

=

∫ ∞
0

tfT (t)dt =
1

λ
, (3.2)

13
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Var
[
T
]

=

∫ ∞
0

(
t− E

[
T
])2

fT (t)dt = E
[
T 2
]
− E2[T ] =

1

λ2
. (3.3)

One of the most important properties of an exponential distribution is mem-
oryless:

Pr
{
T ≥ t+ τ

∣∣T ≥ t} =

∫ ∞
t+τ

fT (s)ds∫ ∞
t

fT (s)ds

=
e−λ(t+τ)

e−λt
= e−λτ = Pr

{
T > τ

}
,

(3.4)
which is independent of t. Here is a weird story in connection to this mathe-
matical result:

You and your lazy brother doing experiments on measuring the time distribu-
tion for the radioactive decay of certain nucleus. You arrive at the laboratory
at 7:00am, take the nuclear material out of a freezer and use a Geiger counter
to record clicks, which represent the time of each radioactive decay event of one
nucleus. Your brother shows up at 9:00am, and starts recording on the same mate-
rial using his own Geiger counter. You expected your brother to observe a roughly
two-hours shorter mean time. But amazingly, when all are done, you and your
borther get a same result.

If there are N independent rare events, each follows an exponential distribu-
tion with rate λi, then the time for the first event to occur, irrespective of
which, also follows an exponential distribution. In fact, the time for the first
event is T∗ = min(T1, T2, · · · , TN ), where Tk is the waiting time for the kth

event. Then the cumulative distribution function (cdf)

FT∗(t) = Pr
{
T∗ < t

}
= 1− Pr

{
T∗ ≥ t

}
= 1− Pr

{
T1 ≥ t

}
× Pr

{
T2 ≥ t

}
× · · ·Pr

{
TN ≥ t

}
= 1− e−λ1te−λ2t · · · e−λN t = 1− e−λ∗t, (3.5)

where λ∗ = λ1 + λ2 + · · ·+ λN . Therefore,

fT∗(t) =
d

dt
FT∗(t) = λe−λt. (3.6)

Specifically, if all the Tk are i.i.d. with rate λ, then the rate parameter for T∗
is Nλ. The first one to occur is N times faster.

Now think about N runners: Do you expect the first one to reach the finishing
line sooner with a larger N , especially the time is inversely proportional to
N?

3.2 Poisson process

We now consider the repeated occurance of a “rare” event. Note, the term
“rare” here is no longer a synonym for “occasional”; it is now a mathematical
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concept for an event that occurs with exponential waiting time. Let Pn(t) the
probability that at time t, there have been n occurances of the event. Then

Pn(t+ ∆t) = Pn(t)P0(∆t) + Pn−1(t)P1(∆t) + Pn−2(t)P2(∆t) + · · ·
= Pn(t)(1− λ∆t) + Pn−1(t)λ∆t+ o(∆t),

dPn(t)

dt
= −λ

(
Pn(t)− Pn−1(t)

)
. (3.7)

Being rare, the probability of two events to occur within the time ∆t is o(∆t).
Therefore, noting that P0(0) = 1 and Pn(0) = 0 for all n ≥ 1, we have

Pn(t) =
(λt)n

n!
e−λt. (3.8)

3.2.1 Counting process, point process, and renewal process

If we let N(t) to denote the number of event has occured at time t, then N(t)
is an integer-valued random variable with probability distribution

Pr
{
N(t) = n

}
=

(λt)n

n!
e−λt. (3.9)

There is another way to represent the same process with recurrent events: The
time at which the kth event occurs, Tk. We then have

FTn(t) = Pr
{
Tn < t

}
= Pr

{
N(t) > n

}
=

∞∑
m=n

(λt)m

m!
e−λt,

fTn(t) =
d

dt
FTn(t) =

∞∑
m=n

(
λmtm−1

(m− 1)!
− λm+1tm

m!

)
e−λt

=

( ∞∑
m=n−1

λm+1tm

m!
−
∞∑
m=n

λm+1tm

m!

)
e−λt =

λntn−1

(n− 1)!
e−λt.(3.10)

This is a Gamma distribution. Therefore, a Poisson process has a counting
representation N(t), t ∈ R+, and a point-process representation Tk, k ∈ N.

Gamma distributed Tn+1 is actually the sum of Tn and an independent X
with exponential distribution fX(t) = λe−λt. To show this, let us denote
Tn +X = Y , then

fY (t) =

∫ t

0

fTn(s)fX(t−s)ds =

∫ t

0

λn+1sn−1

(n− 1)!
e−λtds =

λn+1tn

n!
e−λt = fTn+1

(t).

Therefore, Tn can be understood as the sum of n i.i.d. exponentially dis-
tributed X(1), X(2), · · · , X(n).

Tn = X(1) +X(2) + · · ·+X(n). (3.11)

Eq. 3.11 gives a Poisson process a third representation as a renewal process
generated by an exponential waiting time for the next renewal.
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As we shall show in Sec. 3.6, Poisson process plays a fundamental role in the
theory of mesoscopic chemical reaction kinetics in terms of Delbrück-Gillespie
processes.

3.3 Three theorems

Theorem 1 If X1, X2, · · · , Xn are n i.i.d. psoitive random variables with
probability density function fX(x), with fX(0) 6= 0, and let

X∗ = n×min
[
X1, X2, · · · , Xn

]
.

Then,

lim
n→∞

fX∗(x) = λe−λx,

where λ = fX(0).

Theorem 2 (Khinchin) If T
(1)
k , T

(2)
k , · · · , T (n)

k are n i.i.d. renewal processes
with waiting time distribution fT (x), then the superposition of the n renewal
processes has an exponential waiting time for the next event in the limit of
n→∞, with rate parameter nE−1[T ].

Birth	and	death	– cont.

Figure 3.1 If the red, orange, and blue point processes represent the renewal events
of light bulbs for 3 different sockets, then the fourth row is the combined point process
for all the bulb changs. It is the superposition of the three individual processes. With
more and sockets, a statistical law emerges.

Theorem 3 (Kramers) See Fig. 3.2, and more detailed in Chapter 8.

3.4 Markov processes

Let X(t) be a Markov process with a discrete state space S and continuous
time t. Then the probability of the system in state i ∈ S at time t is

dpi(t)

dt
=
∑
j∈S

(
pj(t)qji − pi(t)qij

)
, (3.12)
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A B
k1

k2

A

B

Figure 3.2 The mathematical description of a chemical reaction of a single molecule.
It is an emergent statistical law of a large number of discrete, stochastic reactions.

k1 ∝ e−∆G‡/kBT . Similarly, k2 has its own activation barrier height. According to
this description, the ratio k1/k2 becomes independent of of the barrier.

in which qij is the transition rate from state i to state j, with exponential wait-
ing time distribution. If we express the pi(t) as a row vector p(t) = (p1, p2, · · · ),
then Eq. 3.12 can be written as

dp(t)

dt
= pQ, Q =



−
∑

j∈S ,6=1

q1j q12 q13 · · ·

q21 −
∑

j∈S ,6=2

q2j q23 · · ·

q31 q32 −
∑

j∈S ,6=3

q3j · · ·

...
...

...
. . .


.

(3.13)
We note that the Q matrix have all the off-diagonal elements being positive,
and the sum of each and every row being 0. They are the defining properties
of a Markov transition probability rate matrix. Note the word “rate”.

The solution to the vector-matrix equation (3.13) is

p(t) = p(0) exp
(
Qt
)
, or p(t+ τ) = p(τ) exp

(
Qt
)
. (3.14)

The matrix eQt can has a very clear probabilistic interpretation: It contains
all the conditional probability

Pr
{
X(t) = j

∣∣X(0) = i
}

=
(
eQt
)
ij
. (3.15)

This matrix is called Markov transition probability matrix. Each and every
element of the matrix is now a probability, between 0 and 1. More importantly,
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the sum of every row is unity:∑
j∈S

(
eQt
)
ij

=
∑
j∈S

( ∞∑
k=0

Qk

k!

)
ij

=

∞∑
k=0

∑
j∈S

(
Qk

k!

)
ij

=
∑
j∈S

(
Q0

0!

)
ij

=
∑
j∈S

Iij = 1 ∀i ∈ S ,

in which I is the identity matrix.

More importantly, a Markov process is characterized by the probability of any
trajectory, in terms of a joint probability:

Pr
{
X(0) = i0, X(t1) = i1, X(t2) = i2, · · ·X(tn) = in

}
= pi0(0)

(
eQτ1

)
i0i1

(
eQτ2

)
i1i2
· · ·
(
eQτn

)
in−1in

, (3.16)

in which τ` = t` − t`−1.

The equation in (3.12) and (3.13) is known as a master equation, or a Kol-
mogorov forward equation, for a discrete state, continuous time Markov pro-
cess. Its solution gives the transition probability matrix eQt for the Markov
process.

3.5 Stationary distribution and stationary process

All the elements of matrix P(t) = eQt are non-negative. One of the funda-
mental theorems on square positive matrix is the Perron-Frobenius theorem,
which states that P(t) has its largest eigenvalue being 1, and its corresponding
eigenvector is non-negative. In fact, it is easy to see that the right eigenvector
associated with eigenvalue 1 is simply (1, 1, · · · )T . It is also the eigenvector of
Q with eigenvalue 0. More effort are needed to obtain the corresponding left
eigenvector π = (π1, π2, · · · ).

A Markov process is said to be irreducible if it is possible to get to any state
from any state. For such Markov process, its Q, thus the P(t), has a unique
eigenvalue 1, and its πi are strictly positive. Then for any initial probability
distribution p(0):

lim
t→∞

p(0)eQt = π. (3.17)

Note if p(0) is normalized, then π is normalized. The distribution (π1, π2, · · · )
therefore is called the stationary distribution of the Markov process. It is
unique.

A stationary Markov process has its initial distribution π. Thus for all time
p(t) = π. This is a highly, highly abstract concept. For each and every real-
ization, of course, X(t) still jumps around. An process started from t = −∞
is necessarily stationary.
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3.5.1 Solution to the master equation

According to the theory of linear, homogeneous ordinary differential equation
with constant coefficients, the solution to Eq. 3.13 can be expressed in terms
of the eigenvalues and eigenvectors of Q. In fact, if we denote its eigenvales
λ0 = 0, λ1, λ2, · · · , where all λ’s except λ0 are negative, and corresponding
left, row eigenvectors v0 = π,v1,v2, · · · and right column eigenvectors u0 =
(1, · · · , 1)T ,u1,u2, ·, then

eQt =
(
u0,u1, · · ·

)


e0 0 0 · · ·
0 eλ1t 0 · · ·
...

...
. . .

...

0 0 · · ·
. . .




v0

v1

...

...

 . (3.18)

Note, each u is a column vector, so the
(
u0,u1, · · ·

)
is a matrix. We see that

when t→∞,

eQt =
(
u0,u1, · · ·

)


1 0 0 · · ·
0 0 0 · · ·
...

...
. . .

...

0 0 · · ·
. . .




v0

v1

...

...

 =


π
π
...
...

 . (3.19)

This proves Eq. 3.17. That is, for any initial distribution p(0),

p(t) = p(0)eQt → π, (3.20)

if the zero eigenvalue is unique.

3.5.2 Time correlation function of an observable

Let the state space of a Markov process be S , and a measurement α(i) for
state i ∈ S . Then through α

(
X(t)

)
one can observe the stochastic process

X(t). If the X(t) is stationary, the correlation function of α is defined as

Gα(τ) = cov
[
α(t), α(t+ τ)

]
= E

[
α(t)α(t+ τ)

]
− E2[α]

=
∑

i,j,k∈S

α(j)α(k)πi
(
eQt
)
ij

(
eQτ

)
jk
−

∑
j∈S

α(j)πj

2

=
∑
j,k∈S

α(j)α(k)πj
(
eQτ

)
jk
−

∑
j∈S

α(j)πj

2

. (3.21)

How to estimate this statistical quantity from data? Let {αn|n = 0, 1, 2, · · · , N}
be a time series measurements with uniform time intervale δ. Then one can
estimate the correlation function according to
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Ĝα(nδ) =
1

N − n+ 1

N−n∑
j=0

(
αj − µ

)(
αj+n − µ

)
, (3.22)

in which µ is the estimated expected value

µ =
1

N + 1

N∑
i=0

αn. (3.23)

Note that Ĝα(0) is an estimated variance. Averging using the stationary pro-
cess X(t) is equal to the expected value according to the stationary distribu-
tion {π}: This is called ergodicity.

3.5.3 What is a “quantum collapse”?

Why did I said that the notion of a stationary process is highly abstract?

3.6 Delbrück-Gillespie processes of chemical reaction kinetics

A chemical or biochemical reaction is elementary if its occurence follows an
exponential distribution, with the rate r being the function of the numbers of
all the reactants, n = (n1, n2, · · · , nN ), as well as the volume of the reaction
vessel V . Then for a system of reactions

ν+
`1X1 + ν+

`2X2 + · · ·+ ν+
`NXN

r+` (n)

GGGGGBFGGGGG

r−` (n)

ν−`1X1 + ν−`2X2 + · · ·+ ν−`NXN , (3.24)

its kinetics is an integer-value, continous-time Markov process n(t) whose
master equation

dpV (n, t)

dt
=

M∑
`=1

[
pV (n− ν`, t)r+

` (n− ν`)− pV (n, t)r−` (n)

−pV (n, t)r+
` (n) + pV (n + ν`, t)r

−
` (n + ν`)

]
, (3.25)

in which ν` = (ν`1, ν`2, · · · , ν`N ) Eq. 3.25 is called a chemical master equation
(CME).

Let us now further consider discrete, individual events of the M possible re-
versible reactions in Eq. (3.24), one at a time. The Delbrück-Gillespie process
(DGP) description of chemical kinetics assumes that the jth reaction occurs
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following an exponential time, with rate parameter

r+
j (n) = k+

j V

N∏
`=1

 n`!

(n` − ν+
j`)!V

ν+
j`

 ,

(3.26)

r−j (n) = k−j V

N∏
`=1

 n`!

(n` − ν−j`)!V
ν−j`

 ,

in which the k±j are the same proportional constants as in Eq. 2.9. Note r(n)

has the dimension of [time]−1, while R(x) in Eq. 2.9 can have a dimension of
[time]−1[volume]−1.

According to Theorem 1, among all the possible 2M independent reactions,
the first reaction that occurs also follows an exponential time, with the rate
being the sum of the 2M reactions:

M∑
j=1

(
r+
j (n) + r−j (n)

)
. (3.27)

In fact, among the i.i.d. T1, T2, · · · , Tn, all exponentially distributed with re-
spective rate parameters λ1, λ2, · · · , λn, the probability of the smallest one
being Tk is

Pr
{
T ∗ = Tk

}
= Pr

{
Tk ≤ min

(
T1, · · · , Tk−1, Tk+1, · · · , Tn

)}
=

λk
λ1 + · · ·+ λn

. (3.28)

More importantly,

Pr
{
T ∗ = Tk, T

∗ ≥ t
}

= Pr
{
T1 ≥ Tk, · · · , Tk−1 ≥ Tk, Tk ≥ t, Tk+1 ≥ Tk, Tn ≥ Tk,

}
=

∫ ∞
t

λke
−λktk

n∏
`=1, 6̀=k

(∫ ∞
tk

λ`e
−λ`t`dt`

)

=

∫ ∞
t

λke
−λktk

n∏
`=1, 6̀=k

(∫ ∞
tk

λ`e
−λ`t`dt`

)

=

(
λk

λ1 + · · ·+ λn

)
e−(λ1+···+λn)t. (3.29)

This means the following important fact: The random time of the smallest
one among {Tk}, and the probability of which one, are independent.
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3.6.1 Random time-changed Poisson representation

The stochastic trajectory of the DGP can be expressed in terms of the Poisson
processes:

nj(t) = nj(0) +

M∑
`=1

ν`j

{
Y +
`

(∫ t

0

r+
`

(
n(s)

)
ds

)
− Y −`

(∫ t

0

r−`

(
n(s)

)
ds

)}
,

(3.30)
in which Y +

` (t) and Y −` (t) are 2` independent standard Poisson processes with
mean E(Y ±` (t)) = t.

We see that in the limit of n→∞ and V →∞, but n/V → x,

r+
j (n)→ k+

j V

n∏
`=1

(n`
V

)ν+
j`

= k+
j V

n∏
`=1

x
ν+
j`

` = V R+
j (x). (3.31)

Similarly, r−j (n) → V R−j (x). r(n) is widely called a propensity in stochastic
simulations community.

3.6.2 Kurtz’s macroscopic limit

We now consider V →∞ and finite concentration of species i: xi(t) = ni(t)/V .
We note if the rate λ is very large, then a Poisson process Y (λt) ' λt, with

negligible standard deviation on the order of
√
λt. Therefore, in the limit of

V, ni(t)→∞, Eq. 3.30 becomes

xi(t) = xi(0) +

M∑
`=1

ν`j

∫ t

0

(
R+
`

(
x(s)

)
−R−`

(
x(s)

))
ds. (3.32)

This is, of course, exactly the integral form of the ordinary differential equa-
tion in (2.8). Therefore, the DGP is not an alternative theory to the classical,
deterministic kinetics and the Law of Mass Action, but a more complete the-
ory that covers both small, mesoscopic, and large, macroscopic, biochemical
reaction systems.

3.7 General population dynamics

We give two examples to show that one can “map” chemical kinetics to more
general population dynamics, such as those in ecology and infectious disease
epidemics.

3.7.1 Predator and prey system

Let z(t) be the population density of a predator at time t and x(t) be the
population density of a prey at the same time. Then the simplest predator-
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prey dynamics is 
dx

dt
= αx− βxz,

dz

dt
= −γy + δxz.

(3.33)

The detailed analysis of the nonlinear dynamics can be found in many text-
books on mathematical biology or differential equations.

Let us now consider the following chemical reaction system:

A+X
k1−→ 2X, X + Y

k2−→ 2Y, Y
k3−→ B. (3.34)

The according to the Law of Mass Action, the concentrations of X and Y ,
with fixed concentrations of A and B being a and b:

dx

dt
= k1ax− k2xy,

dy

dt
= −k3y + k2xy. (3.35)

Therefore, we see that dynamics of an ecological predator-prey system is re-
markable similar to that of a chemical reaction system with autocatalysis.

3.7.2 A competition model

Let us now consider another widely studied ecological dynamics with compe-
tition: 

dN1

dt
= r1N1 − a1N

2
1 − b21N1N2,

dN2

dt
= r2N2 − a2N

2
2 − b12N2N1.

(3.36)

Can one “design” a chemical reaction that yields an idential system of differ-
ential equation? Without loss of generality, let us assume that b12 > b21.

A+X
k1−→ 2X, X +X

k2−→ B, A+ Y
k3−→ 2Y,

(3.37)
Y + Y

k4−→ B, X + Y
k5−→ B, X + Y

k6−→ X +B,

which, according to the Law of Mass Action,
dx

dt
= (k1a)x− k2x

2 − k5xy,

dy

dt
= (k3a)y − k4y

2 − (k5 + k6)xy.

(3.38)

If we identify x, y with N1, N2, and

(k1a)↔ r1, k2 ↔ a1, k5 ↔ b21, (k3a)↔ r2, k4 ↔ a2, (k5 + k6)↔ b12,

then Eq. (3.38) is the same as Eq. (3.36). Note that the last reaction, X+Y →
X +B, is introduced to represent b12 > b21.



24 STOCHASTIC THEORY OF ELEMENTARY REACTIONS

A close inspection of the system of chemical reactions in (3.37) indicates that
the overall reaction is 2A → B. Since all the each and every reaction is irre-
versible, there can be no chemical equilibrium. Rather, the system eventually
reaches a nonequilibrium steady state in which there is a continuous chemical
flux converting 2A to B.



CHAPTER 4

Mesoscopic Thermodynamics of
Markov Processes

We have seen how by merely introducing mathematically the notion of entropy,
S = kB ln Ω, L. Boltzmann was able to “derive” the equation for the First Law
of Thermodynamics from Newtonian mechanics. We particularly point out the
signifiance of the kB , Boltzmann’s constant: To a mathematician, it has no
consequence; but to a physicist, it made the mathematical concept connected
to reality: kB = 1.3807×10−23J ·K−1, joules per kelvin. kBT is energy where
T is the absolute temperature.

4.1 Entropy balance equation

We consider a Markov process X(t) with discrete state space S and transition
probability rate qij , i, j ∈ S . We further assume that X(t) is irreducible and
qij 6= 0 if and only if qji 6= 0. The first assumption implies the existence of a
unique, positive π, and the second assumption means one can introduce terms
like (qij/qji), as we shall do below.

The Shannon entropy of a Markov process at time t is defined as

S
[
p(t)

]
= −

∑
i∈S

pi(t) ln pi(t). (4.1)

We then have

d

dt
S
[
p(t)

]
= −

∑
i∈S

dpi(t)

dt
ln pi(t) =

∑
i,j∈S

(
piqji − pjqji

)
ln pi

=
1

2

∑
i,j∈S

(
piqji − pjqji

)
ln

(
pi
pj

)

=
1

2

∑
i,j∈S

(
piqji − pjqji

)
ln

(
piqij
pjqji

)
− 1

2

∑
i,j∈S

(
piqji − pjqji

)
ln

(
qij
qji

)
.

(4.2)

We note the first term in (4.2) is non-negative. If you had some knowledge
in elementary chemistry, you will recognize that the first logarithmic term

25
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is remarkably similar to ∆µ, and the second logarithmic term is remarkably
similar to ∆µo, of a unimolecular chemical reaction. We shall call the first term
instantaneous entropy production rate, ep. The second term then is related to
entropy exchange. In the theory of nonequilibrium thermodynamics, the latter
is often related to heat exchange rate divided by temperature, hex/T :

d

dt
S
[
p(t)

]
= ep −

hex
T
, (4.3a)

ep
[
p
]

=
1

2

∑
i,j∈S

(
piqji − pjqji

)
ln

(
piqij
pjqji

)
≥ 0, (4.3b)

hex
[
p
]

T
=

1

2

∑
i,j∈S

(
piqji − pjqji

)
ln

(
qij
qji

)
. (4.3c)

Equation (4.3a) is known, and will be called, entropy balance equation. In
physics, it originates from the Second Law of Thermodynamics and Clausius
inequality. Since in our Markov theory, the notion of temperature does not
exist, we let T = 1. This seems to imply that the Markov theory is a theory
about isothermal systems and processes.

In L. Onsager’s theory of irreversible thermodynamics, entropy production
rate is the sum of many terms, each represents an irreversible process, in the
form of “thermodynamics flux × thermodynamic force”. This implies that
(piqij−pjqji) can be considered as a flux, and ln(piqij/pjqji) can be identified
as a force. One example of Onsager’s theory is “electrical current × voltage”
= power, which can never be negative.

Note all the verbal discussion is just some “interpretations” of a mathematical
result about general Markov processes.

Eq. 4.3c tells us that if all the qij = qji for any i, j ∈ S , then hex = 0. For
such systems, Eq. 4.3a becomes dS/dt = ep ≥ 0. The entropy for systems
without heat exchange with environment continuously increases until reach
its “thermodynamic equilibrium” when the entropy reaches its maximum.
Entropy is not monotonically increasing for system with nonzero hex.

4.1.1 The notion of stochastic “heat”

The above discussion suggests that one could identify the ln(qij/qji) as the
amount of heat exchange of the stochastic system with its environment. If
qij = qji, then there is not heat exchange. Such a system is called adiabatic.
For a system that does exchange heat with its environment, an equilibrium
is defined as when the system starts from a state i0 and passing through
i1, i2, · · · , in and eventually returns to the inital state i0, the total amount of
heat exchange is zero:

ln

(
qi0i1
qi1i0

)
+ ln

(
qi1i2
qi2i1

)
+ · · ·+ ln

(
qin−1in

qinin−1

)
+ ln

(
qini0
qi0in

)
= 0.
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With this intuition, we introduce the very important notion of detailed balance
in Markov processes.

4.2 Detailed balance and reversibility

There is a more general subclass of Markov processes that is particularly
important and interesting: its stationary distribution satisfies πiqij = πjqji,
∀i, j ∈ S . This is known as detailed balance. It is a property of the π.

Theorem 4 An irreducible Markov process with Q matrix has a detailed bal-
anced π if and only if for every sequence of distinct states i0, i1, · · · , in−1, in ∈
S :

qi0i1qi1i2 · · · qin−1inqini0 = qi1i0qi2i1 · · · qinin−1
qi0in . (4.4)

The equation in (4.4) is called Kolmogorov cycle condition. The Theorem 4
implies that detailed balance is actually a possible property of a Q matrix.

Proof. The necessity: From detailed balance, we have

1 =

(
n−1∏
k=0

πikqikik+1

πik+1
qik+1ik

)
πinqini0
πi0qi0in

=

(
n−1∏
k=0

qikik+1

qik+1ik

)
qini0
qi0in

,

which yields relation (4.4).

The sufficiency: From (4.4), introducing a set of positive, normalized values
for each and every state i ∈ S , ξi as:

ξi
ξj

=
qj,i1qi1i2 · · · qin−1,i

qi1,jqi2i1 · · · qi,in−1

=
qji
qij
.

Then ∑
i,j∈S

(
ξjqji − ξiqij

)
=
∑
i,j∈S

ξiqij

(
ξjqji
ξiqij

− 1

)
= 0.

Therefore, {ξi} is a stationary solution to the master equation. Since the
normalized stationary solution is unique, ξi = πi, thus, πiqij = πjqji ∀i, j ∈ S .

Theorem 5 The following six statements about an irreducible Markov process
with matrix Q are equivalent.

(i) Its stationary distribution satisfies detailed balance: πiqij = πjqji, ∀i, j ∈
S .

(ii) Any path connceting states i and j: i ≡ i0, i1, i2, · · · , in ≡ j, has a path
independent

ln

(
qi0i1
qi1i0

)
+ ln

(
qi1i2
qi2i1

)
+ · · · ln

(
qin−1in

qinin−1

)
= lnπin − lnπi0 . (4.5)
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(iii) It defines a time reversible stationary Markov process.

(iv) Its Q matrix satisfies Kolmogorov cycle condition for every sequence of
states.

(v) There exists a positive diagonal matrix Π such that matrix QΠ is sym-
metric.

(vi) Its stationary process has zero entropy production rate.

Proof. (i) ⇒ (ii):

Using (i) we have

ln

(
qi0i1
qi1i0

)
+ ln

(
qi1i2
qi2i1

)
+ · · ·+ ln

(
qin−1in

qinin−1

)
(4.6a)

= ln

(
πi0qi0i1
πi1qi1i0

)
+ ln

(
πi1qi1i2
πi2qi2i1

)
+ · · ·+ ln

(
πin−1

qin−1in

πnqinin−1

)
+ lnπin − lnπi0

= lnπin − lnπi0 . (4.6b)

This means the term in (4.6a) is independent of the path; it is completely
determined by the initial state i ≡ i0 and final state j ≡ in.

Statement (ii) is similar to the path-independent work in a conservative force
field, which implies the existence of a potential function. In this discrete case,
(4.6) indicates that the potential function is the minus logarithm of the sta-
tionary distribution. Equilibrium probability distribution is the exponential
function of a potential energy is known as Boltzmann’s law in statistical me-
chanics.

(ii) ⇒ (iii):

Equation (4.6) is equivalent to

πi0qi0i1qi1i2 · · · qin−1in = πinqinin−1
· · · qi2i1qi1i0 ,

which implies

πi0pi0i1(τ1)pi1i2(τ2) · · · pin−1in(τn) = πinpinin−1
(τn) · · · pi2i1(τ2)pi1i0(τ1),

where pij(τ) =
(
eQτ

)
ij

. This means for stationary X(t), and tk =

k∑
`=1

τ`,

k = 1, 2, · · · , n:

Pr
{
X(0) = i0, X(t1) = i1, X(t2) = i2, · · · , X(tn) = in

}
=

Pr
{
X(0) = in, X(τn) = in−1, X(τn+τn−1) = in−2, · · · , X(tn−t1) = i1, X(tn) = i0

}
.

That is, the process X(t) is time reversible: Its statistical behaviors are in-
dentical when observed forward or backward in time.
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(iii) ⇒ (i):

Reversible Markov process has joint distribution πipij(t) = πjpji(t) for any t.
Therefore,

πi
(
eQt
)
ij

= πj
(
eQt
)
ji
,

πi

(
δij + qijt+

t2

2
(Q2)ij · · ·

)
= πj

(
δji + qjit+

t2

2
(Q2)ji · · ·

)
,

πi

(
qij +

t

2
(Q2)ij · · ·

)
= πj

(
qji +

t

2
(Q2)ji · · ·

)
.

Letting t = 0 we have πiqij = πjqji.

(ii) ⇒ (iv):

We simply choose i = j, then statement (ii) becomes statement (iv).

(iv) ⇒ (i):

This is contained in Theorem 4.

(i) ⇐⇒ (v):

Simply choose the positive diagonal matrix Π = diag(π1, π2, · · · ). Conversely,
if there eixts a set of positive numbers {νi} such that νiqij = νjqji, then
it is an eigenvector of Q with eigenvalue 0. Therefore since Q has a unique
eigenvalue 0, the normalized

νi∑
k∈S νk

= πi.

(i) ⇐⇒ (vi):

The entropy production rate is defined in (4.3b):

ep
[
π
]

=
1

2

∑
i,j∈S

(
πiqji − πjqji

)
ln

(
πiqij
πjqji

)
,

in which every term inside the summation (πiqji − πjqji) ln(πiqji/πjqji) ≥ 0.
Therefore, the entire sum is zero if and only if when πiqji − πjqji = 0. This is
detailed balance.

In thermodynamics, a stationary system, with fluctuations, is said to be at
equilibrum if it has a detailed balance. If not, then it is called a nonequilibrium
steady state (NESS). An equilibrium steady state has no sense of direction in
time; it is time reversibe. Theorem 5 suggests that in such a system, any se-
quence of events that occurs will have equal probability to “de-occur”: Nothing
can be really accomplished in a system at equilibrium.
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From statement (ii), one naturally thinks of − lnπi as an “internal energy
function” of the state i. Then Eq. 4.5 becomes a kind of conservation of
internal energy and heat: The left-hand-side of (4.5) is the amount of heat
released when system moves along the path i0, i1, · · · , in, and the right-hand-
side of (4.5) is the internal energy difference between the state i0 and in.

Because statement (v), Q is similar to a symmetrix matrix:(
Π−

1
2 QΠ

1
2

)
= Π

1
2 QTΠ−

1
2 =

(
Π−

1
2 QΠ

1
2

)T
,

all eigenvalues of Q are real. There is no kinetic oscillation in a system with
detailed balance.

Equilibrium systems are well-undestood through the theory of equilibrium sta-
tistical mechanics and thermodynamics. There is currently no widely accepted
theory of nonequilibrium statistical mechanics or thermodynamics.

A living cell, even when it is considered as in a stationary process, is not an
equilibrium system; it has positive entropy production. As well shall show in
Chapter ??, biochemical reactions in a cell are not detailed balanced.

4.2.1 Free energy

Markov systems with detailed balanced stationary π has another important
property. With detailed balance, let us now revisit the entropy exchange hd
in (4.3c):

hd
T

=
1

2

∑
i,j∈S

(
piqji − pjqji

)
ln

(
qij
qji

)
=

d

dt

∑
i∈S

pi(t) lnπi. (4.7)

If we identify − lnπi as the potential energy of state i, then

E(t) =
∑
i∈S

(
− lnπi

)
pi(t) (4.8)

is the mean potential energy of the entire system at time t. Then the entropy
balance equation (4.3a) can be re-written as

d

dt

(
E(t)− TS(t)

)
= −Tep

[
p
]
≤ 0. (4.9)

The term inside (· · · ) is known in thermodynamics as free energy. It is known
that for an isothermal system with temperature T , the Second Law of Ther-
modynamics states that its free energy never increases, and its decreasing rate
is the same as the entropy production rate times the T .

Only systems with a uniform πi = C have dS/dt ≥ 0: The Second Law of
Thermodynamics widely known among laypersons.
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4.3 Free energy balance equation

Eqs. 4.8 and 4.9 suggest a mathematical definition, in the context of a general,
irreducible Markov process with or without detailed balance, of a generalized
free energy

F
[
p
]

=
∑
i∈S

pi ln

(
pi
πi

)
. (4.10)

In information theory, the quantity in (4.10) is called relative entropy or
Kullback-Leibler divergence. It is a “nicer” quantity than entropy in the ther-
modynamic theory of Markov processes with detailed balance.

Concerning the F [p] in (4.10), since lnx ≤ x− 1, we first have

F
[
p
]

=
∑
i∈S

pi ln

(
pi
πi

)
= −

∑
i∈S

pi ln

(
πi
pi

)
≥ −

∑
i∈S

pi

(
πi
pi
− 1

)
= −

∑
i∈S

(
πi − pi

)
= 0. (4.11)

Furthermore we have

d

dt
F
[
p(t)

]
=

∑
i∈S

dpi(t)

dt
ln

(
pi(t)

πi

)
=

∑
i,j∈S

(
pjqji − piqij

)
ln

(
pi
πi

)

=
1

2

∑
i,j∈S

(
pjqji − piqij

)
ln

(
piπj
πipj

)

=
1

2

∑
i,j∈S

(
pjqji − piqij

)
ln

(
πjqji
πiqij

)
− ep

[
p(t)

]
. (4.12)

The first term in (4.12) is clearly zero if detailed balance holds true. It is not
zero in general, however. Interestingly,

1

2

∑
i,j∈S

(
pjqji − piqij

)
ln

(
πjqji
πiqij

)
= −

∑
i,j∈S ,i6=j

piqij ln

(
πjqji
πiqij

)

≥
∑

i,j∈S ,i6=j

piqij

(
πjqji
πiqij

− 1

)
=
∑
i,j∈S

(
πjqjipi
πi

− piqij
)

=
∑
i∈S

pi
πi

∑
j∈S

πjqji −
∑
i,j∈S

piqij = 0− 0 = 0. (4.13)
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Therefore, the generalized free energy F [p] satisfies its own balance equation:

d

dt
F
[
p(t)

]
= Ein − ep, (4.14a)

Ein
[
p
]

=
1

2

∑
i,j∈S

(
piqij − pjqji

)
ln

(
πiqij
πjqji

)
≥ 0, (4.14b)

ep
[
p
]

=
1

2

∑
i,j∈S

(
piqji − pjqji

)
ln

(
piqij
pjqji

)
≥ 0. (4.14c)

Eq. 4.14a is a “nicer” equation than Eq. 4.3a: Because both Ein and ep are non-
negative, the former has a very legitimate energetic interpretation: A Markov
system’s free energy changes with time, with an energy input rate (source)
term Ein and an energy dissipation rate (sink) term ep. The energy left the
system is considered as “wasted”, thus entropy production.

4.4 Two mesoscopic thermodynamic laws of Markov processes

In addition to the generalized free energy balance equation (4.14a), one further
has:

d

dt
F
[
p(t)

]
=

1

2

∑
i,j∈S

(
pjqji − piqij

)
ln

(
piπj
πipj

)
=
∑
i,j∈S

pjqji ln

(
piπj
πipj

)

≤
∑
i,j∈S

pjqji

(
piπj
πipj

− 1

)
=
∑
i∈S

pi
πi

∑
j∈S

πjqji −
∑
i,j∈S

pjqji = 0. (4.15)

So the generalized free energy is also non-increasing even for general Markov
processes without detailed balance.

The balance equation (4.14a) bears a remarkable resemblance to the First
Law of Thermodynamics, and the Eq. 4.15 has been widely considered as
the Second Law of Thermodynamics. Together, Markov processes provide a
rigorous mathematical representation for the theory of thermodynamics.



CHAPTER 5

From Mesoscopic to Emergent
Macroscopic Chemical

Thermodynamics

In the macroscopic limit, when V,n→∞ in Eq. 3.25 with n/V = x, we have

pV (xV, t) −→ V −1f(x, t), r±` (n) −→ V R±` (x), (5.1)

and the CME (3.25) becomes

∂f(x, t)

∂t
'

M∑
`=1

[
−
f(x, t)R+

` (x)− f(x− ν`/V, t)R+
` (x− ν`/V )

1/V

f(x + ν`/V, t)R
−
` (x + ν`/V )− f(x, t)R−` (x)

1/V

]
−→ −

M∑
`=1

ν` · ∇x

[(
R+
` (x)−R−` (x)

)
f(x, t)

]
,

∂f(x, t)

∂t
= −

N∑
i=1

∂

∂xi

{
M∑
`=1

ν`i

(
R+
` (x)−R−` (x)

)
f(x, t)

}
. (5.2)

In terms of the method of characteristics, this first-order partial differential
equation implies

dxi
dt

=

M∑
`=1

ν`i

(
R+
` (x)−R−` (x)

)
, (5.3)

which is exactly Eq. 2.8. This is a heuristic demonstration of what is known
as Kurtz’s theorem, which proves mathematically that the Markov process
nV (t) defined by the CME (3.25) approaches to the solution of (5.3) in the
macroscopic limit. Note that this is the same result as what we have already
obtained in Sec. 3.6.2 using the random time-changed Poisson representation
for the Delbrück-Gillespie processes.

In the theory of probability, a stochastic object converging to a deterministic
one is called law of large numbers:

V pV (zV, t) −→ δ
(
z− x(t)

)
.

Since the Dirac-δ function on the right-hand-side is not a nice, continuous

33



34 EMERGENT MACROSCOPIC CHEMICAL THERMODYNAMICS

function of z, the convergence must be not uniform for all z. For this type of
results, one usually can further ask the rate of convergence, characterized by
a large-deviation rate function in the form of

ϕ(x, t) = − lim
V→∞

ln pV (xV, t)

V
. (5.4)

In other words, for very large V ,

pV (xV, t) ' e−V ϕ(x,t). (5.5)

Eq. 5.5 is known as WKB ansatz. If we substitute this expression into Eq.
3.25, then we obtain:

∂ϕ(x, t)

∂t
' −eV ϕ(x,t)

M∑
`=1

[
e−V ϕ(x−ν`/V,t)R+

` (x− ν`/V )

−
(
R−` (x) +R+

` (x)
)
e−V ϕ(x,t) + e−V ϕ(x+ν`/V,t)R−` (x)

]
.

Therefore,

∂ϕ(x, t)

∂t
=

M∑
`=1

{
R+
` (x)

[
1− eν`·∇xϕ(x,t)

]
+R−` (x)

[
1− e−ν`·∇xϕ(x,t)

]}
,

(5.6)
which can be also expressed as

∂ϕ(x, t)

∂t
=

M∑
`=1

[
R+
` (x)−R−` (x)e−ν`·∇xϕ(x,t)

] [
1− eν`·∇xϕ(x,t)

]
. (5.7)

We see immediately that the Gibbs potential G(x) given in Eq. 2.10 is a sta-
tionary solution to (5.7). In fact, G(x) makes every term inside the summary
zero. This is a very special class of chemical reaction kinetic systems which
reaches a chemical equilibrium in the long-time limit.

5.1 Macroscopic emergent potential

For general chemical kinetic system, let ϕss(x) be the stationary solution to
(5.7). Then, noting R±` (x) ≥ 0 and ey ≤ 1 + y,

0 =

M∑
`=1

{
R+
` (x)

[
1− eν`·∇xϕ

ss(x)
]

+R−` (x)
[
1− e−ν`·∇xϕ

ss(x)
]}

≤
M∑
`=1

(
R−` (x)−R+

` (x)
)
ν` · ∇xϕ

ss(x). (5.8)
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This implies that for the solution to the ordinary differential equation (2.8),
x(t):

d

dt
ϕss
(
x(t)

)
=

(
dx(t)

dt

)
· ∇xϕ

ss(x)

=

M∑
`=1

(
R+
` (x)−R−` (x)

)
ν` · ∇xϕ

ss(x)

≤ 0. (5.9)

ϕss(x) is a “landscape” for the transient dynamics x(t).

5.1.1 Gibbs-Duhem equation

We have seen in Eq. 5.4 that in the limit of V →∞,

− lim
V→∞

ln pV (xV, t)

V
= ϕ(x, t).

We note that both numerator and denominator above tend to infinity; hence
one can apply L’hospital’s rule:

ϕ(x, t) = − lim
V→∞

∂ ln pV (xV, t)

∂V

= − lim
V→∞

x · ∇x ln pV (xV, t)

V

=

N∑
k=1

xkµk(x, t), µk(x, t) =
∂ϕ(x, t)

∂xk
. (5.10)

Eq. 5.10 is known as the Gibbs-Duhem equation in chemical thermodynamics.

5.2 Macroscopic emergent thermodynamics

What happens to the free energy balance equation (4.14a) and the three meso-
scopic quantities, generalized free energy F [p], entropy production rate ep[p],
and energy input rate Ein[p]?

Based on Eqs. 5.1 and 5.5, we have

F [p]

V
−→ ϕss(x), (5.11a)

dϕss(x)

dt
= cmf(x)− σ(x), (5.11b)

ep[p]

V
−→ σ(x) =

M∑
`=1

(
R+
` (x)−R−` (x)

)
ln

(
R+
` (x)

R−` (x)

)
, (5.11c)
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Ein[p]

V
−→ cmf(x) =

M∑
`=1

(
R+
` (x)−R−` (x)

)
ln

(
R+
` (x)

R−` (x)
eν`·∇xϕ

ss(x)

)
,

(5.11d)
in which σ(x) is the macroscopic entropy production rate density; and cmf(x)
is chemical motive force that drives a nonequilibrium chemical reaction sys-
tem. For closed, non-driven chemical reaction systems, cmf(x) = 0.

Eqs. 5.9 and 5.11b are two emergent laws for macroscopic chemical reaction
kinetics. They are valid for open, driven chemical and biochemical reaction
systems.

5.2.1 Delbrück-Gillespie processes and ideal solution in equilibrium

The term “solution” in the title means an aqueous fluid with solutes. It is
a chemical term which has nothing to do with an answer to a mathematical
problem. Eq. 5.11d indicates that for a chemical reaction system in equilib-
rium,

ν` · ∇xϕ
eq(x) = − ln

(
R+
` (x)

R−` (x)

)
. (5.12)

This is the Gibbs potential condition in Sec. 2.2.3. For systems with detailed
balance, therefore, ϕeq(x) is the Gibbs potential for macroscopic chemical
equilibrium.

If a M -dimensional vector v = (v1, v2, · · · , vM ) satisfies

M∑
`=1

v`ν`i = 0, (5.13)

for all i, 1 ≤ ` ≤ N , then v represents a reaction cycle, a set of reaction fluxes,
together there is a perfect balance of the concentrations of all the chemical
species:

dxi
dt

=

M∑
`=1

ν`iv` = 0. (5.14)

Eq. 5.12 implies that for any such v,

−
M∑
`=1

v` ln

(
R+
` (x)

R−` (x)

)
=

M∑
`=1

v`ν` · ∇xϕ
eq(x) = 0. (5.15)

In chemistry, this equation is known as Wegscheider-Lewis cycle condition.

We now employ the Delbrück-Gillespie rate laws r±` (n, V ) given in Eq. 3.26
and its macroscopic counterpart R±` (x) in Eq. 2.9. Then the Wegscheider-
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Lewis cycle condition becomes

0 =

M∑
`=1

v` ln

(
k+
`

k−`

N∏
i=1

(
xi
)ν+
`i−ν

−
`i

)
(5.16)

=

M∑
`=1

v` ln

(
k+
`

k−`

)
+

M∑
`=1

v`

N∑
i=1

(
ν+
`i − ν

−
`i

)
lnxi

=

M∑
`=1

v` ln

(
k+
`

k−`

)
−

N∑
i=1

lnxi

M∑
`=1

v`ν`i =

M∑
`=1

v` ln

(
k+
`

k−`

)
.

For any reaction cycle v, the rate constants satisfy a cycle condition. This
is also known as chemical detailed balance, a concept independently arose in
chemical kinetics. Then, it is easy to verify from Eq. 5.12

ϕeq(x) =

N∑
i=1

xi
(
µoi + lnxi − 1

)
, (5.17a)

in which the set of constants {µoi }
N∑
i=1

ν`iµ
o
i = − ln

(
k+
`

k−`

)
. (5.17b)

Eq. 5.17 is the Gibbs potential for ideal chemical solution in equilibrium. It
can be considered as a mathematical theorem for Delbrück-Gillespie processes.

5.2.2 Local and global landscapes

Eqs. 5.9 and 5.11b show that the Lyapunov property of ϕss(x) for the macro-
scopic chemical kinetics is a consequence of the mesoscopic (dF/dt) ≤ 0 in
Chapter ??. Introducing − lnπi as the internal energy of state i in Chapter
?? has led to a rather complete mesoscopic thermodynamics, and it is now
shown that in the macroscopic limit, the generalized, mesoscopic free energy
is nothing but the

ϕss(x) = − lim
V→∞

lnπxV
V

. (5.18)

These two intimately related mathematical results firmly establish the legiti-
macy of a potential function in nonequilibrium systems represented by Markov
processes without detailed balance.

For chemical kinetic systems with detailed balance, ϕss(x) is precisely Gibbs
potential. This potential function has two usages: It gives the equilibrium
probability, à la Boltzmann’s law; and it gives the rate for transition rates
between two difference basins of attractions, according to Kramers theory.
For systems without detailed balance in general, these two properties bifurcate
into a global potential and a local potential; they are no longer the same.
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One can in fact introduce a “local force” for the `th reversible reaction

Ψ`(x) = − ln

(
R+
` (x)

R−` (x)

)
. (5.19)

Then Eq. 5.11c becomes

σ(x) = −
M∑
`=1

(
R+
` (x)−R−` (x)

)
Ψ`(x) =

M∑
`=1

Ψ`(x)C``(x)Ψ`(x), (5.20)

in which the chemical conductance of the `th reaction is (see Eq. 2.14)

C``(x) =
R+
` (x)−R−` (x)

lnR+
` (x)− lnR−` (x)

. (5.21)

Equations in 5.20 are known as a part of Onsager’s theory of irreversible ther-
modynamics: entropy production is the product of “flux” × “thermodynamic
force”, and the force and the flux are linearly related.

And Eq. 5.11d and Eq. 5.11b can be written as

cmf(x) =

M∑
`=1

(
R+
` (x)−R−` (x)

)(
ν` · ∇xϕ

ss(x)−Ψ`(x)
)
, (5.22)

dϕss(x)

dt
=

M∑
`=1

(
R+
` (x)−R−` (x)

)
ν` · ∇xϕ

ss(x)

= −
M∑
`=1

Ψ`(x)C``(x)ν` · ∇xϕ
ss(x). (5.23)

A chemical kinetic system can be reprented by the set of kinetic rates
{
R±` (x)

}
,

or it can be represented thermodynamically by forces and transport coeffi-
cients

{
Ψ`(x), C``(x)

}
:

R+
` (x) =

C``(x)Ψ`(x)

eΨ`(x) − 1
, R−` (x) =

C``(x)Ψ`(x)

1− e−Ψ`(x)
, (5.24)

and

dx(t)

dt
= −

M∑
`=1

ν`C``(x)Ψ`(x). (5.25)

For reaction system with zero cmf:

σ(x) = −dϕss(x)

dt
=

M∑
`=1

C``(x)
(
ν` · ∇xϕ

ss(x)
)2

, (5.26)

is a quadratic form with a symmetric, N ×N matrix, which we have seen in
Eq. 2.14,

D(x) =

M∑
`=1

νT` C``(x)ν`, (5.27)
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where ν` are row vectors and νT` are column vectors. The entry Dij(x) con-
tains terms like ν`iν`j 6= 0: the species i is connected to species j via reaction
`.

5.3 Hamiltonian structure and Lagrangian principle

The nonlinear partial differential equation (PDE) with first-order in ∇xϕ(x, t)
in (5.7) is widely called a Hamilton-Jacobi equaion (HJE):

∂ϕ(x, t)

∂t
+H

(
x,∇xϕ(x, t

)
= 0, (5.28)

with a Hamiltonian function

H(x,y) = −
M∑
`=1

[
R+
` (x)−R−` (x)e−ν`·y

][
1− eν`·y

]
. (5.29)

In the advanced PDE class, it can be shown that the solution to the HJE can
be constructed from the solution to the systems of ODEs

dx(t)

dt
= ∇yH(x,y),

dy(t)

dt
= −∇xH(x,y), (5.30)

through the method of characteristics [121, 122].

5.3.1 The probabilistic meaning of the Hamiltonian description

What is the meaning of the Harmiltonian dynamics (5.30), which is actually
a 2N -dimensional system, double the size of the ODE in (5.3)? In classical
mechanics, we know that a Hamiltonian system is equivalent to a Newton’s
equation, which also has a Lagrangian action principle throug a minimizer. It
turns out, one can introduce a scalar function through the Legendre-Fenchel
transform:

L(x, z) = sup
y

{
y · z−H(x,y)

}
= y∗z−H(x,y∗), (5.31)

in which y∗(x, z) is the root of z = ∂H(x,y)/∂y. Then

exp

{
−V

∫ t

t0

L
[
x(s), ẋ(s)

]
ds

}
(5.32)

is proportional to the probability density of the trajectory x(t) with x(t0) = x0

and x(t) = xt. The most probable trajectory x(t) satisfies a system of second-
order ODEs, known as Euler-Langrange equation

∂L[x, ẋ]

∂xi
− d

dt

(
∂L[x, ẋ]

∂ẋi

)
= 0, i = 1, 2, · · · , N, (5.33)

as a solution to the boundary value problem.
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In the macroscopic limit of V → ∞, any trajectory x(t) that is not the so-
lution to the ODE in (5.3) is nearly impossible; it is rare event. Still, with
given x(t0) = x0 and x(t) = xt, a rare event is possible, and the correspond-
ing probability is given by Eq. 5.32. With very large V , only the x(t) that
minimizes the action in (5.32) can really occur; all the other x(t)’s connecting
x0 to xt are impossible among the nearly impossibles.

A solution to (5.3) is not a rare event; it has L[x(t), ẋ(t)] = 0 ∀t. This cor-
respinds to the solution to (5.30) with y = 0. Note that

dy

dt
= −∇xH

(
x,0

)
= 0 ⇐⇒ y(t) = 0, (5.34a)

dx

dt
= ∇yH

(
x,0

)
=

M∑
`=1

ν`

(
R+
` (x)−R−` (x)

)
, (5.34b)

and along this solution, H[x(t),0] = 0.

5.4 An example

For unimolecular reaction

X1

k+1

GGGGBFGGGG

k−1

X2, (5.35)

ν = (−1,+1), and its Hamilton-Jacobi equation is

∂ϕ(x1, x2, t)

∂t
+H

(
x1, x2,

∂ϕ

∂x1
,
∂ϕ

∂x2

)
= 0, (5.36)

in which the Hamiltonian

H(x1, x2, y1, y2) = k+1x1e
−y1+y2 − k+1x1 − k−1x2 + k−1x2e

y1−y2 . (5.37)

The Hamiltonian system of ODEs:

dx1

dt
= −k+1x1e

−y1+y2 + k−1x2e
y1−y2

dy1

dt
= k+1

(
1− e−y1+y2

)
dx2

dt
= k+1x1e

−y1+y2 − k−1x2e
y1−y2

dy2

dt
= k−1

(
1− ey1−y2

)
.

(5.38)

We see that d(x1 + x2)/dt = 0. Let z = y1 − y2, then
dx1

dt
= −k+1x1e

−z + k−1

(
xtot − x1

)
ez

dz

dt
= k+1

(
1− e−z

)
− k−1 (1− ez) ,

(5.39)
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in which xtot = x1(t) + x2(t). When z = 0, the dx1(t)/dt in (5.39) becomes
the mass-action kinetics.



42 EMERGENT MACROSCOPIC CHEMICAL THERMODYNAMICS

5.5 Maxwell relations in macroscopic thermodynamics

Let us now consider the situation where the mesoscopic probability distribu-
tion has several extensive parameters in addition to the volume V : pV (n, t;α, β).
Then in the macroscopic limit we have

pV (xV, t; α̂V, β̂V ) ' e−V ϕ(x,t;α̂,β̂), (5.40)

5.6 The logics of mesoscopic dynamics

5.6.1 Some considerations based on symmetry

If we introduce two new rate functions

R̃±` (x,ψ) = R±` (x)e±
1
2ν`·ψ(x,t), (5.41)

then the HJE (A10) becomes

ψ(x, t) = ∇xϕ(x, t) (5.42)

∂ϕ(x, t)

∂t
= −

M∑
`=1

ln

(
R̃+
` (x,ψ)

R̃−` (x,ψ)

)
D``(x,ψ)

[
e

1
2ν`·ψ − e− 1

2ν`·ψ
]
(5.43)

Let us first consider systems with detailed balance. If we denote ∇xϕ(x, t) =

∇xϕ
eq(x) + ~Ψ(x, t) and ~Φ(x) = (∂/∂t)∇xϕ(x, t), they are, following Onsager,

called thermodynamic force and thermodynamics flux, respectively. Then from
Eq. 5.7

∂

∂t
~Ψ(x) = ∇x

{
M∑
`=1

(
R+
` (x) +R−` (x)

)[ e−ν`·∇xϕ
eq(x)

e−ν`·∇xϕeq(x) + 1

]
(5.44)

×
(

1 + eν`·∇xϕ
eq(x) − e−ν`·~Ψ(x) − eν`·∇xϕ

eq(x)eν`·
~Ψ(x)

)}
.

5.6.2 Onsager’s linear irreversibility

If we assume the system is “near equilibrium”, then one expects ~Ψ(x) � 1,
and it satisfies a linear equation:

∂

∂t
~Ψ(x) = −∇x

{
M∑
`=1

(
R+
` (x) +R−` (x)

)
tanh

(
ν` · ∇xϕ

eq(x)

2

)
ν` · ~Ψ(x)

}
.

(5.45)
whose characteristic lines satisfy Eq. (5.3). Actually, the more interesting re-
sult is the linear perturbation ϕ(x, t) = ϕss(x)+u(x, t), where ∇xu(x, t)� 1:

∂u(x, t)

∂t
=

M∑
`=1

(
R−` (x)e−ν`·∇xϕ

ss(x) −R+
` (x)eν`·∇xϕ

ss(x,t)
)
ν` · ∇xu(x, t).

(5.46)
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If the system is actually detailed balanced, then one has ∇xϕ
ss(x) satisfies

relation ??. In this case,

∂u(x, t)

∂t
=

M∑
`=1

(
R+
` (x)−R−` (x)

)
ν` · ∇xu(x, t). (5.47)

Which can and should be interpreted as Onsager’s linear irreversibility with
thermodynamic force ~Ψ and thermodynamic flux ~Φ:

∂

∂t
~Ψ(x) = ~Φ(x), (5.48)

where ~Φ and ~Ψ are related via

~Φ(x) = ∇x

[
M∑
`=1

(
R+
` (x)−R−` (x)

)
ν` · ~Ψ(x)

]

= ∇x

[
M∑
`=1

(
R+
` (x) +R−` (x)

)
ν` · ~Ψ(x)

]
(5.49)

Which one is “near equilibrium”?

5.6.3 Local and global dynamics

The first shock.

5.6.4 Emergent behavior and a circular logic

u(x, y, t) =
∂ϕ

∂y
− ∂ϕ

∂x
. (5.50)

Then,

∂u(x, y, t)

∂t
=

(
∂

∂y
− ∂

∂x

)[
k+1x

(
1− e−u(x,y,t)

)
+ k−1y

(
1− eu(x,y,t)

)]
= k+1xe

−u(x,y,t) ∂u

∂y
+ k−1

(
1− eu(x,y,t)

)
− k−1ye

u(x,y,t) ∂u

∂y
(5.51)

5.6.5

∂ϕ(x, t)

∂t
= −H

(
x,
∂ϕ

∂x

)
, (5.52)

in which

H(x, y) = v(x)ey + w(x)e−y − v(x)− w(x), (5.53)
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whose Hamiltonian system of ODEs are

dx

dt
= v(x)ey − w(x)e−y,

(5.54)
dy

dt
= v′(x) + w′(x)− v′(x)ey − w′(x)e−y.



CHAPTER 6

Enzyme Kinetics

6.1 Double reciprocal relation and Michaelis-Menten mechanism

E + S
k1

GGGGBFGGGG

k−1

ES
k2−→ E + P (6.1)

6.2 Quasi-steady-state approximation and singular perturbation

Using e(t), s(t), c(t) and p(t) for the concentrations of the enzyme E, substrate
S, enzyme-substrate complex ES, and product P , we have

ds(t)

dt
= −k1es+ k−1c, (6.2a)

de(t)

dt
= −k1es+

(
k−1 + k2

)
c, (6.2b)

dc(t)

dt
= k1es−

(
k−1 + k2

)
c, (6.2c)

dp(t)

dt
= k2c. (6.2d)

One immediately observes

d

dt

(
s(t) + c(t) + p(t)

)
= 0,

d

dt

(
e(t) + c(t)

)
= 0. (6.3)

They are, of course, due to the conservation of total number of molecules of
S, ES, and P , s0, and the conservation of total number of enzyme molecules,
e0, in the bare form E and complex form ES. Because of Eq. 6.3, there are
really only two independent ODEs in (6.2):

ds(t)

dt
= −k1e0s+ k1sc+ k−1c, (6.4a)

dc(t)

dt
= k1e0s− k1cs−

(
k−1 + k2

)
c. (6.4b)

It is easy to see that the steady state of the system of ODEs is s = c = 0. This
is expected intuitively from the chemical reaction scheme in (6.1): in the long
time, all the substrate molecules becomes P , and all the enzyme molecules
are in the E form. There will be no S and no ES complex.

45
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In most biochemical problems, e0 � s0. Let us introduce non-dimensionalization
to the equations in (6.4):

u =
s

s0
, v =

c

e0
, τ = k1e0t. (6.5)

Then,

du

dτ
= −u+ uv +

(
Km − q

)
v, (6.6a)

ε
dv

dτ
= u− uv −Kmv, (6.6b)

in which

ε =
e0

s0
, Km =

k−1 + k2

k1s0
, q =

k2

k1s0
. (6.7)

The initial conditions for the differential equations are u(0) = 1 and v(0) = 0.

In the limit of ε→ 0, v(τ) changes rapidly from 0 to u− uv−Kmv = 0 while
u(τ) = 1 has nearly change any. This occurs on the time scale of order O(ε).
Therefore, we have, on the time scale O(1):

du

dτ
= − qu

Km + u
. (6.8)

6.3 Single-molecule enzymology

6.3.1 Stochastic enzyme kinetic cycle

With only a single enzyme and the concentration of S essentially constant
over time, the chemical master equation (CME) is

dpE(t)

dt
= −pEk1s+ pES

(
k−1 + k2

)
, (6.9a)

dpES(t)

dt
= pEk1s− pES

(
k−1 + k2

)
, (6.9b)

in which

pE(t) = Pr
{
nE(t) = 1

}
,

pES(t) = Pr
{
nE(t) = 0

}
.

Note that in the Delbrück-Gillespie process, nE(t) +nES(t) = 1. The station-
ary probability distribution

pssE =
k−1 + k2

k1s+ k−1 + k2
, pssES =

k1s

k1s+ k−1 + k2
. (6.10)

Therefore, the steady state rate of P production is

k2p
ss
ES =

k2k1s

k1s+ k−1 + k2
=

k2s

s+Km
. (6.11)

This agrees with (6.8).
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6.3.2 Stochastic product arriving time, one at a time

Let E[T ] denote the mean time from the left side of Eq. 6.1 to the right side.
Then,

E[T ] =
1

k1s
+

1

k−1 + k2
+

(
k2

k−1 + k2
0 +

k−1

k−1 + k2
E[T ]

)
. (6.12)

From this, we solve

E[T ] =
k−1 + k2

k2k1s
+

1

k2
=

(
k2k1s

k−1 + k2 + k1s

)−1

. (6.13)

The mean time is the reciprocal of the rate in (6.11).

The method we used to compute the E[T ] is a part of the general theory of the
mean first passage time problem, which will be further discissed in Chapter 8.





CHAPTER 7

1-d DGP and Chemical Kinetics of
Single Species

7.1 Nonlinear kinetics, stability and bifurcations

7.1.1 Saddle-node bifurcation in nonlinear dynamics

7.1.2 Cusp catastrophe

7.2 Birth-and-death process with state-dependent transition rates

With n individuals, let the rate of one birth, e.g, synthesis, production, u(n),
and the rate of one death, e.g., degradation, w(n). Both are function of the
size of the reaction vessel V . Then the CME:

dpn(t)

dt
= pn−1u(n− 1)− pn

(
u(n) + w(n)

)
+ pn+1w(n+ 1). (7.1)

Its stationary distribution can be obtained:

pssn
pssn−1

=
u(n− 1)

w(n)
. (7.2)

Therefore,

pssn = pss0

n∏
k=1

(
u(k − 1)

w(k)

)
, (7.3)

in which pss0 is to be determined by normalization.

As a function of discrete n, where are the peaks and toughs of the distribution?
When u(n−1) > w(n), pssn increases; and when u(n−1) < w(n), pssn decreases.
Therefore, the peaks and troughs are at k∗ when u(k∗−1) = w(k∗), when the
birth rate is balanced by the death rate.

When V → ∞, let us denote the number density, e.g., concentration as x =
n/V . Then we have

lim
V→∞

u(xV )

V
= û(x), lim

V→∞

w(xV )

V
= ŵ(x). (7.4)

49
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And, denoting ∆x = V −1:

ln pssxV = ln pss0 + V

xV∑
k=1

ln

(
u(k − 1)

w(k)

)
∆x

' V

∫ V

0

ln

(
û(z)

ŵ(z)

)
dz + C, (7.5)

where C is just an additive constant. Therefore,

− lim
V→∞

ln pssxV
V

= ϕ(x) =

∫ x

0

ln

(
ŵ(z)

û(z)

)
dz. (7.6)

For the solution to the corresponding macroscopic, deterministic kinetic equa-
tion

dx(t)

dt
= û(x)− ŵ(x), (7.7)

we have:

d

dt
ϕ
(
x(t)

)
=

(
dϕ(x)

dx

)
dx(t)

dt

=
(
û(x)− ŵ(x)

)
ln

(
ŵ(x)

û(x)

)
≤ 0. (7.8)

The negative value of that in Eq. (7.8) is known as entropy production rate.

7.3 Stochastic chemical kinetics

7.3.1 Reversible bimolecular association reaction

We now applying the stochastic chemical kinetics to a nonlinear chemical
reaction in a small volume V with small number of molecules, nA, nB , and
nC numbers of A, B, and C:

A+B
k+

GGGGBFGGGG

k−
C. (7.9)

We note that the nA + nC and nB + nC do not change in the reaction. Hence
we can denote nA + nC = noA and nB + nC = noB as the total amount of A
and B, including those in C, at the initial time. Now if we use nC as the non-
negative integer-valued random variable to describe the stochastic chemical
kinetics, this simple nonlinear chemical reaction, according to DGP, is a one-
dimensional birth-and-death process, with state-dependent birth and death
rates un = k+nAnB and wn = k−nC . Then, according to Eq. (7.3), we have
an equilibrium steady state distribution peq(m) = Pr

{
neqC = m

}
:

peq(m+ 1)

peq(m)
=
k+(noA −m)(noB −m)

k−(m+ 1)V
, (7.10)
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in which noA = nA(0) + nC(0) and noB = nB(0) + nC(0). Therefore,

peq(m) =
Ξ−1 noA!noB !

m!(noA −m)!(noB −m)!

(
k+

k−V

)m
, (7.11)

where Ξ is a normalization factor

Ξ(λ) =

min(noA,n
o
B)∑

m=0

noA! noB ! λm

m!(noA −m)!(noB −m)!
, λ =

(
k+

k−V

)
. (7.12)

More importantly, by noting nA + nB + nC = n0
A + n0

B − nC ,

− ln peq(nC)

= − ln

[
λnC

nC !(noA − nC)!(noB − nC)!

]
+ const.

= nA ln
(nA
V

)
− nA + nB ln

(nB
V

)
− nB + nC ln

(nC
V

)
− nC − nC ln

(
k+

k−

)
= nA lnxA + nB lnxB + nC lnxC + nC

(
µoC − µoA − µoB

)
− (nA + nB + nC)

=
∑

σ=A,B,C

nσ

(
µoσ + lnxσ − 1

)
. (7.13)

This agrees with Eq. 2.16, which was taken from chemical thermodynamics
textbooks, and Eq. 5.17a, which is a general result we had derived.

7.3.2 Logistic model and Keizer’s paradox

Let us now consider a still simple, but nonlinear chemical reaction system,

A+X
k1−→ 2X, X +X

k2−→ B. (7.14)

Recall in standard textbooks on mathematical biology, e.g., by J. D. Murray
[117], this system is introduced as a one-species ecological population growth
model. It is easy to see that the ODE according to the LMA,

dx

dt
= r

(
1− x

K

)
x, r = k1a, K =

r

k2
, (7.15)

is the celebrated logistic equation in population dynamics. In the ecological
context, r is known as the per capita growth rate in the absence of intra-species
competition; and K is known as carrying capacity.

The DGP stochastic model has a chemical master equation for the probability
of n X molecules in a reaction volume of V :

dpn(t)

dt
= u(n− 1)pn−1 −

(
u(n) + w(n)

)
pn + w(n+ 1)pn+1. (7.16a)

in which the state-dependent birth and death rates are

u(n) = rn, w(n) =
k2n(n− 1)

V
. (7.16b)
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Then, according to Eq. 7.3,

pss0 = 1 and pssn = 0, n ≥ 1, (7.17)

since u(0) = 0! In other words, according to this theory, the stationary distri-
bution is “population extinction with probability 1”. But the ODE in (7.15)
says that the stable steady state is x = K, with x = 0 being a unstable steady
state which is not “relevant”.

This seeming disagreement between the determinsitic ODE in (7.15), and
stochastic dynamics described by (7.16), is known as Keizer’s paradox.

The resolution to the paradox comes in Chapter 8 below.

7.4 Nonequilibrium steady-state and chemical reaction systems
driven by chemical potential difference

If a chemical reaction system reaches its chemical equilibrium, then each and
every reaction in the system is in detailed balance with zero net flux. This puts
a very strong condition on the dynamics. When a chemical reaction system
has a sustained source and sink with different chemical potentials, it can not
reach a chemical equilibrium. Rather, it reaches a nonequilibrium steady state.

Let us consider the following example.

7.4.1 Schlögl model

A+ 2X
k+1

GGGGBFGGGG

k−1

3X, X
k+2

GGGGBFGGGG

k−2

B, (7.18)

in which the concentrations (or chemical potentials) of A and B are sustained
by an external agent. This reaction is known as Schlögl model, whose dynamics
can be described by a single ordinary differential equation

dx

dt
= k+1ax

2 − k−1x
3 − k+2x+ k−2b = f(x), (7.19)

which is a third-order polynomial. It can exhibit bistability and saddle-node
bifurcation phenomenon. All of them only occur under driven condition, when
µA 6= µB . Note in the chemical equilibrium: µA = µoA + kBT ln a = µoB +
kBT ln b, and (

b

a

)eq
=
k+1k+2

k−1k−2
. (7.20)
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ODE (7.19), with its parameters ak+1k+2 = bk−1k−2, has the right-hand-side

f(x) = k+1ax
2 − k−1x

3 − k+2x+ k−2b

= k+1ax
2 − k−1x

3 − k+2x+
ak+1k+2

k−1

=

(
x2 +

k+2

k−1

)(
ak+1 − k−1x

)
. (7.21)

Therefore, the f(x) has a unique fixed point at x = x∗ ≡ ak+1/k−1, the chem-
ical equilibrium. In general, system (7.18) can exhibit chemical bistability; but
this is only possible when A and B have a sufficiently large chemical potential
difference. Such a substained driving is called a chemostat. It is the chemical
equivalence of an electric motive force, e.g., a battery.

More interestingly, when a and b satisfying (7.20), the DGP of the number of
X, nX(t), is again a one-dimensional birth-and-death process, with

u(n) =
k+1an(n− 1)

V
+ k−2bV

=
k+1a

V

(
n(n− 1) +

k+2V
2

k−1

)
, (7.22)

w(n+ 1) =
k−1(n+ 1)n(n− 1)

V 2
+ k+2(n+ 1)

=
k−1(n+ 1)

V 2

(
n(n− 1) +

k+2V
2

k−1

)
. (7.23)

Therefore, the stationary distribution, according to Eq. (7.3),

pssn = C

n−1∏
`=0

k+1a/V

k−1(`+ 1)/V 2
=
λn

n!
e−λ, λ =

(
k+1aV

k−1

)
. (7.24)

This is a Poisson distribution, with expected value being
〈
neqX
〉

= λ. Therefore,
the expected concentration is x∗ = (k+1a/k−1).

7.5 The law of large numbers — Kurtz’ theorem

7.5.1 Diffusion approximation and Kramers-Moyal expansion

Starting with the master equation in (7.1), let us consider a partial differential
equation for a continuous density function f(x, t)dx = pV x(t) where x =
nV −1, ∆x = V −1,
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∂f(x, t)

∂t
= V

dpV x(t)

dt

=
1

dx

(
f(x−∆x, t)û(x−∆x)− f(x, t)

(
û(x) + ŵ(x)

)
+f(x+ ∆x, t)ŵ(x+ ∆x)

)
=

∂

∂x

(
f
(
x+ ∆x/2, t

)
ŵ
(
x+ ∆x/2

)
− f

(
x−∆x/2, t

)
û
(
x−∆x/2

))
≈ ∂

∂x

{
∂

∂x

(
ŵ(x) + û(x)

2V

)
f(x, t)−

(
û(x)− ŵ(x)

)
f(x, t)

}
+ · · ·

(7.25)

in which

lim
V→∞

u(V x)

V
= û(x), lim

V→∞

w(V x)

V
= ŵ(x). (7.26)

7.5.2 Nonlinear differential equation, law of mass action

Therefore, in the limit of V →∞,

∂f(x, t)

∂t
= − ∂

∂x

(
û(x)− ŵ(x)

)
f(x, t), (7.27)

which corresponds to the ordinary differential equation

dx

dt
= û(x)− ŵ(x), (7.28)

as you expected.

7.5.3 Central limit theorem, a time-inhomogeneous Gaussian process

In the theory of ordinary differential equation, if ẋ = F(x, t) where the vector
field F(x, t) is also an explicit function of time t, then the ODE is called non-
autonomous. Similarly, in the theory of Markov processes, if the transition
probability is itself an explicit function of t, then the process is called time-
inhomogeneous.

Now consider the process

Y (t) =
X(t)− V x(t)√

V
, (7.29)

which characterizes the “deviation” of
X(t)

V
from x(t). In the limit of V →∞,
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its pdf fY (y, t) satisfies

∂fY (y, t)

∂t
=

∂

∂y

{
∂

∂y

(
ŵ(x(t)) + û(x(t))

2

)
fY (y, t)

−
(
û′(x(t))− ŵ′(x(t))

)
yfY (y, t)

}
. (7.30)

We see both the diffusion “coefficient” and the drift are theyselves time de-
pendent. It can be shown that the solution to this equation is a Gaussian
process.

7.6 Diffusion’s dilemma

Truncating the Eq. (7.25) after the second order, it has a stationary distribtion

− 1

V
ln f̂stY (y) = 2

∫ (
ŵ(x)− û(x)

û(x) + ŵ(x)

)
dx ≡ ϕ̃(x). (7.31)

On the other hand, according to Eq. 7.6,

ϕ(x) =

∫
ln

(
ŵ(x)

û(x)

)
dx. (7.32)

Is it possible Eqs. (7.31) and (7.32) are actually the same? We notice that
both has idential local extrema:

d

dx
ϕ̃(x) = 2

(
ŵ(x)− û(x)

ŵ(x) + û(x)

)
= 0 ⇐⇒ ŵ(x) = û(x). (7.33)

In fact, the curvature at a local extremum are idential:[
d2

dx2
ϕ̃(x)

]
û=ŵ

= 2

(
ŵ′(x)− û′(x)

ŵ(x) + û(x)

)
=

(
ŵ′(x)− û′(x)

û(x)

)
=

[
d2

dx2
ϕ(x)

]
û=ŵ

. (7.34)

However, it can be shown, via an example, that the global minimua of the
ϕ̃(x) and ϕ(x) can be different!

The Kramers-Moyal expansion is not mathematically valid. The reason is
that the scaling for obtaining a law of large numbers (LLN) and the scaling
for obtaining a central limit theorem (CLT) are different: To have a non-trival
LLN means a zero variance in the latter; and to have a non-trival CLT means a
divergent LLN, if the LLN is finite. The mathematically correct theory for the
DGP, therefore, yields a time-dependent central limit theorem. In stochastic
physics, this is known as van Kampen’s Ω-expansion.





CHAPTER 8

Phase Transition, Mesoscopic
Phenomena, and Multiple Scales

The result in Sec. 7.1 is only valid for finite time: We have first taken the limit
of V →∞ and obtained an ODE for the dynamics, and then studied the long-
time behavior of the ODE, e.g., its fixed points. One of the most important
features of a nonlinear ODE is the breakdown of ergodicity: The long-time
bahavior is dependent upon the initial condition; it is not unique. On the other
hand, we have shown that the long-time behavior of the stochastic kinetics, for
any finite V , is ergodic. There is a unique stationary distribution pssV (n). To
understand this stark contrast between the two limiting behavors: V tending
to inifinity following t→∞ and V tending to infinity preceding t→∞, we use
the solvable 1-d models as examples. Here we will be able to explicitly compute
the exact stationary distribution and its large deviation properties. When this
is discussed in the context of saddle-node bifurcation, the Landau’s theory of
phase transition arises. A key new result in this discussion is Kramers’ theory
for barrier crossing.

8.1 Mean first passage time (MFPT)

We consider a one-dimensional diffusion process with probability density func-
tion following the Kolmogorov forward equation

∂f(x, t)

∂t
= ε

∂2f(x, t)

∂x2
+

∂

∂x

(
U ′(x)f(x, t)

)
, (8.1)

where x ∈ R. Now let us consider x ∈ [a, b] where x = a is a reflecting
boundary and x = b is absorbing, and one is interested in the mean time,
E[Tfp], the diffusion process takes from x = a to x = b for the very first time.
This problem is knows as mean first-passage time. To compute this, one needs
to first know the probability of random time of first arriving at x = b, starting
at x = a.

Let ρ(x, t|z) be the probability density function remaining inside [a, b] at time
t, starting at x = z ∈ [a, b]. Clearly, ρ(x, t|z) satisfies the Eq. (8.1), with
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boundary condition[
ε
d2ρ(x, t)

dx2
+ U ′(x)ρ(x, t)

]
x=a

= 0, ρ(b, t) = 0, (8.2)

and initial condition ρ(x, t|z) = δ(x− z). More importantly,

∂ρ(x, t|z)
∂t

= ε
∂2ρ(x, t|z)

∂z2
− U ′(z)∂ρ(x, t|z)

∂z
. (8.3)

This is the Kolmogorov backward (partial differential) equation. Then the
remaining total probability∫ b

a

ρ(x, t|z)dx = Pr
{
Tfp > t

}
(8.4)

where Tfp is the random first passage time. Therefore,

E
[
Tfp(z)

]
=

∫ ∞
0

t ffp(t)dt =

∫ ∞
0

t d
(
Ffp(t)− 1

)
= −

∫ ∞
0

t Pr
{
Tfp > t

}
dt

= −
∫ ∞

0

t

(∫ b

a

ρ(x, t|z)dx

)
dt. (8.5)

Therefore, (
ε
∂2

∂z2
− U ′(z) ∂

∂z

)
E
[
Tfp(z)

]
= −

∫ ∞
0

tdt

∫ b

a

(
∂ρ(x, t|z)

∂t

)
dx

= −
∫ b

a

dx

{[
tρ(x, t|z)

]t=∞
t=0
−
∫ ∞

0

ρ(x, t|z)dt
}

=

∫ b

a

dx

∫ ∞
0

ρ(x, t|z)dt =

∫ ∞
0

Pr
{
Tfp > t

}
dt = −1. (8.6)

Eq. (8.6), together with boundary conditions[
dE[Tfp(z)]

dz

]
z=a

= 0, E
[
Tfp(b)

]
= 0,

solves the mean first passage time problem.

8.2 Kramers’ theory

The inhomogeneous differential equation (8.6) can be solved in terms of inte-
grals. Let us denote E[Tfp(z)] = τ(z). Then,

dτ ′(z)

dz
− U ′(z)

ε
τ ′(z) = −1

ε
, (8.7)
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where τ ′(z) is the derivative of τ(z) with respect to z. Noting that τ ′(a) = 0,
we have

τ ′(z) = −1

ε

∫ z

0

exp

(
U(z)− U(y)

ε

)
dy. (8.8)

Integration again, we have an exact result

τ(z) =
1

ε

∫ b

z

dζ

∫ ζ

a

exp

(
U(ζ)− U(y)

ε

)
dy. (8.9)

8.2.1 Asymptotic evaluation of an integral

If the potential function U(x) has two energy wells, located at x = x0 > a
and x = b, which are separated by an energy barrier localted at x‡, then in
the triangle domain of (ζ, y) for the double integral of τ(a) has a maximum
at ξ = x‡ and y = x0. The exponent of the integrand of (8.9), near this
maximum, can be expressed as

U(ζ)− U(y) =
{
U(x‡)− U(x0)

}
(8.10)

−1

2

{∣∣∣U ′′(x‡)∣∣∣(ζ − x‡)2

+ U ′′(x0)
(
y − x0

)2

+ ...

}
.

Therefore, if kBT is very small and following Laplace’s method for integrals,
one has

τ(a) ≈ 1

ε
e
U(x‡)−U(x0)

ε

∫ b

a

e−
|U′′(x‡)|

2ε (ζ−x‡)2dζ

∫ ζ

a

e−
U′′(x0)

2ε (y−x0)2dy

≈ 1

ε
e
U(x‡)−U(x0)

ε

∫ ∞
−∞

e−
|U′′(x‡)|

2ε (ζ−x‡)2dζ

∫ ∞
−∞

e−
U′′(x0)

2ε (y−x0)2dy

=
2π√

|U ′′(x‡)|U ′′(x0)
exp

(
U(x‡)− U(x0)

ε

)
. (8.11)

This is known as Kramers’ formula for the rate, e.g., inverse of the mean first
passage time, of a barrier crossing. The term U(x‡)− U(x0) is known as the
height of the energy barrier.

One can in fact show that, in the asymptotic limit of ε→ 0, the first passage
time is exponentially distributed. Therefore, Kramers’ theory has the funda-
mental importance that illustrates how discrete chemical reaction, as “jump
events”, arise from continuous atomic physics based on potential energy func-
tion U(~x) in classical mechanics. Of course, the ~x should be understood as
very high dimensional.

8.3 MFPT in nonlinear chemical kinetic systems with DGP

The results in Secs. 8.1 and 8.2 are based on the theory of continuous diffusion
process with Kolmogorov forward equation (8.1) and backward equation (8.3).



60PHASE TRANSITION, MESOSCOPIC PHENOMENA, AND MULTIPLE SCALES

However for a discrete DGP, as we have discussed in Sec. 7.6, the diffusion
approximation is not a fully legitimate mathematical representation for large
but finite V . Whether the landscape ϕ(x) can be used, as the U(x) in the
Kramers’ formula, to compute the MFPT for a DGP in the limit of V → ∞
is still a question.

In this section, we directly formulate the MFPT for the discrete birth-and-
death process in Sec. 7.2. Let us assume n0 be a reflect boundary and n1 be
the absorbing boundary for the DGP n(t). We shall denote the random first
passage time, by T (n0) where n0 is the initial value of process n(t), and its
expected value E[T (n0)] = τn0 . Then τn satisfies the equation

τn =
1

u(n) + w(n)
+
u(n)τn+1 + w(n)τn−1

u(n) + w(n)
, (8.12)

which can be re-arranged into

L ∗
[
{τn}

]
≡ u(n)τn+1 −

(
u(n) + w(n)

)
τn + w(n)τn−1 = −1. (8.13)

One should observe the close similarity between this difference equation and
the differential Eq. 8.6. In terms of matrix representation, the middle part of
(8.13) is the adjoint of

L
[
{pn}

]
= pn−1u(n− 1)− pn

(
u(n) + w(n)

)
+ pn+1w(n+ 1). (8.14)

Introducing sn = τn+1 − τn, we have Eq. 8.13 expressed in terms of a first
order difference equation for sn:

u(n)sn − w(n)sn−1 = −1, (8.15)

with boundary condition at n0: s(n0) = 0.

The solution to (8.15) can be obtained using the method of variation of pa-
rameters for inhomogeneous linear equations:

sn =

− n∑
k=n0

1

w(k)

k−1∏
j=0

u(j)

w(j)

 n∏
i=0

w(i)

u(i)
. (8.16)

Thus,

τn =

n1−1∑
`=n

s` =

n1−1∑
`=n

 ∑̀
k=n0

1

w(k)

k−1∏
j=0

u(j)

w(j)

∏̀
i=0

w(i)

u(i)
. (8.17)

Interestingly, the τn in (8.17) can be expressed in terms of the stationary
solution to (8.14), given in (7.3):

τn =

n1∑
m=n+1

m−1∑
`=n0

pss`
w(m)pssm

. (8.18)

Recognizing the V dependence of the stationary distribution pssn and w(n),
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we have an asymptotic approximation to (8.18):

τxV ' V

∫ x1

x

dz

ŵ(z)

∫ z

x0

eV [ϕ(z)−ϕ(y)]dy. (8.19)

This equation should be compared and contrasted with Eq. 8.9.

8.3.1 Gambler’s ruin problem

The gambler’s ruin problem is a discrete time step Markov chain, and with
a probability p to win a bet of a $1, and q = 1 − p to loss it, the game ends
when the player reaching $N or lossing all. Let the un be the probability of
eventually winning, starting with $n; and let τn be the MFPT for the duration
of the game. Then we have

un = pun+1 + qun−1, u0 = 0, uN = 1; (8.20)

τn = pτn+1 + qτn−1 + 1, τ0 = τN = 0. (8.21)

Eq. 8.20 is an homogeneous, 2nd order linear difference equation with inhomo-
geneous boundary condition, and (8.21) is an inhomogeneous equation with
homogeneous boundary condition.

It is easy to see that the characteristic equation is pλ2−λ+ q = 0. Therefore,
the general solution to the homogeneous equation is

C1 + C2

(
q

p

)n
, (8.22)

a particular solution to the inhomogeneous equation in (8.21) is n(q − p)−1.
Therefore we have

un =
1− (q/p)n

1− (q/p)N
, (8.23)

τn =
n
[
1− (q/p)N

]
−N

[
1− (q/p)n

]
(q − p)

[
1− (q/p)N

] =
n−Nun
(q − p)

. (8.24)

We see that when p < q, i.e., the gambler has a disadvantage, un ' (p/q)N−n

is a very small number if N − n is large. The probability of reaching 0 is
nearly 1. Furthermore, we see that the time is basically what one expect for
a “deterministic dynamics” of $(p − q) per step: n/(q − p). In the landscape
language, this is a down-hill movement.

For a fair game, p = q = 1
2 , and we apply L’Hospital’s rule and have

un =
n

N
and τn = n(N − n). (8.25)

A more interesting scenario is the boundary condition τ0 = τ1. This means
someone is going to give the player $1 to keep him/her in the game: There is
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a reflecting boundary condition at n = 0. In this case, we have

τn =
p

(q − p)2

[(
q

p

)N
−
(
q

p

)n]
− N − n

q − p
. (8.26)

Now if q > p, then this time is about

τn '
p

(q − p)2

(
q

p

)N
(8.27)

which is independent of n, the initial value. The ln τn ∝ N ln(q/p), which
is the “barrier height” in the landscape language: The stationary probability
distribution is pssn ∝ (p/q)n, and

ln τn ∝ − ln pssN + ln pss0 . (8.28)

8.4 Thermodynamic limit and global minimum of ϕ(x)

8.5 Exchange of limits: ε→ 0 and t→∞



CHAPTER 9

Cellular Biochemical Dynamics, I:
Gene Regulatory Networks

9.1 The central dogma of molecular biology

mRNA	

DNA	+	mRNA

mRNA	+		AAs mRNA	+	Protein

DNA	+	NTPs

Protein

ଵ

ଶ

ଵ
௢

ଶ
௢

Figure 9.1 Transcription (mRNA polymerization reaction) and translation (protein
biosynthesis reaction) are two fundamental processes in the central dogma of molecule
biology. Both mRNA and protein molecules are continuously being degradated inside
a living cell.

9.1.1 Deterministic dynamics

Accoding to the macroscopic, well-mixed mass-action kinetic description, the
central dogma shown in Fig. 9.1 can be represented by a system of two ODEs

dx(t)

dt
= k1 − γ1x, (9.1a)

dy(t)

dt
= k2x− γ2y, (9.1b)

in which x(t) represents the concentration of mRNA, and y(t) the concen-
tration of protein, at time t. The parameters k1 = ko1[DNA][NTP] and k2 =
ko2[AA].
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Figure 9.2 Protein concentration, v(τ), according to Eq. 9.3b, with v(0) = 0, u(0) =
3 (purple and burgundy) and 6 (red), and ε = 0.05 (burgundy and red) and 0.5
(purple). Blue dashed line is the outer solution in (9.3b).

The system of ODE in (9.1) can be non-dimensionalized into

du(τ)

dτ
= 1− u

ε
, (9.2a)

dv(τ)

dτ
=

u

ε
− v, (9.2b)

in which u = (γ2/k1)x, v = (γ1γ2y/(k1k2), τ = γ2t, and ε = γ2/γ1. The
solution to (9.2) can be explicitely obtained as:

u(τ) =
(
u(0)− ε

)
e−τ/ε + ε, (9.3a)

v(τ) =
(
v(0)− 1

)
e−τ + 1︸ ︷︷ ︸

outer solution

+
u(0)− ε

1− ε

{
e−τ − e−τ/ε

}
︸ ︷︷ ︸

inner solution

, (9.3b)

If ε � 1, then the system in (9.1) is a singularly perturbed ODE system in
which u(τ) are very fast, thus the v(τ) has a fast component and a slow com-
ponent. According to the pertubation theory of differential equations [111],
the fast and slow components can be analytically obtained as the so-called
inner and outer solutions respectively.

Fig. 9.2 shows with v(0) = 0, v(τ) has a transient “burst”. The amplitude
of the transient burst increases with increasing u(0). The figure also suggests
that the amplitude increases with decreasing ε. To understand this result, we
note that the term inside {· · · } in (9.3b) is responsible for the transient. It
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can be easily verified that function

1

1− ε

(
e−t − e−t/ε

)
reaches its maximum at t∗ = ε

ε−1 ln ε. It has the largest amplitude 1 when
ε = 0. In this case,

lim
ε→0

1

1− ε

(
e−t − e−t/ε

)
=

{
0 t = 0

e−t t > 0

The limit is a discontinuous function of t.

9.1.2 Goodwin’s model and self-regulating gene expression

Goodwin’s model [112] is a more elaborate version of the kinetics in (9.2), with
mRNA (x), its gene product, an enzyme with concentration y, and the sub-
strate of the enzme, S, with concentration z. The S regulates the transcription
process that produces the mRNA:

dx(t)

dt
= k1(z)− γ1x, (9.4a)

dy(t)

dt
= k2x− γ2y, (9.4b)

dz(t)

dt
= k3y − γ3z. (9.4c)

If function k1(z) is an decreasing function of z, then we say the S is an repres-
sor of the transcription, and the interaction between the S and transcription
process is a negative feedback. If the k1(z) is an increasing function of z, then
this is a positive feedback and the S is a promoter of the transcription.

The steady states of the system (9.4) are the roots of

k1(z)−
(
γ1γ2γ3

k2k3

)
z = 0. (9.5)

If k1(z) is a strict non-increasing function of z, then there will be only one
steady state to the kinetic system. One such example is

k1(z) =
V

K + zn
. (9.6)

On the other hand, if k1(z) is an increasing function of z, then the kinetic sys-
tem could exhibit multi-stability. Note that while a negative feedback has only
one steady state, it could be unstable. This implies a limit cycle oscillation.
For example, when n > 8 in (9.6) [117].
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9.2 Stochastic gene expression without feedback and transcription
burst

In terms of the stochastic DGP, the kinetic system in Fig. 9.1 has a state
space (m,n) representing the copy numbers of mRNA and protein inside a
cell, with the transition rates shown in Fig. 9.3, below.

(m− 1, n) (m,n) (m+ 1, n)

(m,n+ 1)

(m,n− 1)

-� -�

?

6

?

6

k1 k1

mγ1 (m+ 1)γ1

mk2

mk2nγ2

(n+ 1)γ2

Figure 9.3 The state transition diagram for the DGP representing the biochemical
reactions in the central dogma of molecule biology, shown in Fig. 9.1. k1 = ko1 × DNA
concentration × nucleotide concentration; k2 = ko2 × amino acids concentration.

The CME for the joint distribution of number of mRNA and protein in the
system at time t, pMP (m,n, t) = Pr{M(t) = m,P (t) = n}, is

dp(m,n, t)

dt
(9.7)

= k1

(
p(m− 1, n)− p(m,n)

)
− γ1

(
mp(m,n)− (m+ 1)p(m+ 1, n)

)
+ k2m

(
p(m,n− 1)− p(m,n)

)
− γ2

(
np(m,n)− (n+ 1)p(m,n+ 1)

)
.

The mRNA copy number has a steady state marginal distribution

pM (m) =
(k1/γ1)m

m!
e−k1/γ1 . (9.8)

The distribution for protein number is rather complex. One limiting case is
the negative binomial distribution (see Sec. 9.2.2),

pP (n) =
Γ(n+ r)

n!Γ(r)
bn(1− b)r, (9.9)

with b = k2/(γ1 + k2) and r = k1/γ2. This distribution characterizes “tran-
scription burst” based on high-resolution meansurements, with single-molecule
sensitivity, on single cells. Negative binomial distribution is also called Pólya
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distribution, whose probability generating function (PGF) is{
1− b

1− b
(
s− 1

)}−r
. (9.10)

The distribution in (9.9) has been widely intuitively interpreted as follows: One
mRNA has an exponentially distributed lifetime, with mean value γ−1

1 , within
which the number of proteins synthesized according to a Poisson process has a
geometric distribution with probability b = k2/(γ1 + k2), where k2 is the rate
of the Poisson process. Now considering the incoming bursts with rate k1 and
combined with protein degradation rate γ2, therefore the steady state number
of protein is k1/γ2 number of independent bursts. This yields the PGF in
(9.10): (

1− b
1− bs

)k1/γ2
. (9.11)

9.2.1 The number of proteins remaining at the time when all mRNA are
degradated

Is the intuition given above really legitimate? Can the total proteins in a
stationary state be considered as the sum of ' k1/γ2 i.i.d. geometric distribu-
tions?

Let us consider there is a single copy of mRNA, and we know the number
of proteins synthesized during its lifetime is a geometric distribution. What
is the number of protein remaining if protein degradation is taken into con-
sideration? Writing the probability distribution p(m,n, t) in (9.7) as pm(n, t)
where m = 0, 1, this restricted model has a much simplified master equation
for the probability distribution

dp0(n, t)

dt
= γ1p1(n), (9.12)

dp1(n, t)

dt
= k2p1(n− 1)−

(
k2 + nγ2 + γ1

)
p1(n) + γ2(n+ 1)p1(n+ 1),

with initial condition p0(n) = 0 and p1(n) = δn0. Therefore, the probability
of the number of protein being n at the time of the mRNA is degradated is

un = lim
t→∞

p0(n, t) = γ1

∫ ∞
0

p1(n, τ)dτ, (9.13)

whose PGF

U1(s) =

∞∑
n=0

uns
n = γ1

∫ ∞
0

∞∑
n=0

snp1(n, τ)dτ

satisfies the partial differential equation

γ2(1− s)
(

dU1(s)

ds

)
+
(
k2(s− 1)− γ1

)
U1(s) = −γ1, (9.14)
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under the condition U1(1) = 1. We see that if γ2 = 0, then U1(s) is indeed the
generating funtion for a geometric distribution with parameter p̂ = k2

γ1+k2
:

∞∑
n=0

snp̂n
(
1− p̂

)
=

1− p̂
1− sp̂

=
γ1

γ1 − k2(s− 1)
.

For γ2 6= 0, denoting

ψ(s) =

∫
k2(s− 1)− γ1

γ2(1− s)
ds =

γ1

γ2
ln(s− 1)− k2s

γ2
. (9.15)

Then,

U1(s) = e−ψ(s)

(
C +

γ1

γ2

∫ s

1

eψ(z)

z − 1
dz

)
=

γ1

γ2
(s− 1)−

γ1
γ2 e−

k2
γ2

(s−1)
∫ s−1

0

z
γ1
γ2
−1e−

k2
γ2
zdz, (9.16)

with C = 0 to satisfy U(1) = 1. U1(s) = 1 if k2 = 0 as expected.

The above method can be generalized to total M copies of mRNA. When
k1 = 0 and initial condition p(m,n, 0) = δmMδn0, we have the CME (9.7):

dp(m,n, t)

dt
= −m

(
γ1 + k2

)
p(m,n) + γ1(m+ 1)p(m+ 1, n) (9.17)

+ mk2p(m,n− 1)− γ2

(
np(m,n)− (n+ 1)p(m,n+ 1)

)
,

in which 0 ≤ m ≤M . Introducing the generating function

Gm(s) =

∞∑
n=0

sn
∫ ∞

0

p(n,m, t)dt, (9.18)

which satisfy
m
[
k2(s− 1)− γ1

]
Gm(s)− γ2

(
s− 1

)(dGm(s)

ds

)
= −γ1(m+ 1)Gm+1(s),

M
[
k2(s− 1)− γ1

]
GM (s)− γ2

(
s− 1

)(dGM (s)

ds

)
= −1,

(9.19)
in which 1 ≤ m < M . Then UM (s) = γ1G1(s) is the generating function for
the distribution of the number of protein copy numbers when all the M copies
of mRNA are degradated. In terms of the ψ(s) function defined in (9.15), the
solution to this system of equations is

GM (s) =
e−Mψ(s)

γ2

∫ s

1

eMψ(z)

z − 1
dz, (9.20a)

Gm(s) =
γ1e
−mψ(s)

γ2

∫ s

1

emψ(z)

z − 1
(m+ 1)Gm+1(z)dz. (9.20b)
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The UM (s) 6= UM1 (s) in general! However, when γ2 = 0, we have

UM (s) = γ1G1(s) =
2γ2

1G2(s)

γ1 − k2(s− 1)
=

3γ3
1G3(s)

[γ1 − k2(s− 1)]2
= · · ·

=
MγM1 GM (s)

[γ1 − k2(s− 1)]M−1
= UM1 (s). (9.21)

In the presence of protein degradation, the total number of proteins when all
the M copies of mRNA are gone is not the same as the sum of the remaining
proteins when each one of the mRNA is gone.

9.2.2 Stationary and transient protein distribution with bursting biosynthesis

We now consider protein synthesis can be “instantaneous” with bursts that
come with a Poisson rate k1, each with a geometric distribution for the protein
numbers. The master equation for the probability of having n number of
protein at time t then is

dp(n, t)

dt
= γ2

(
(n+ 1)p(n+ 1)− np(n)

)
+ k1(1− b)

[
n∑
`=0

b`p(n− `)−
∞∑
`=0

b`p(n)

]
, (9.22)

in which b = k2
γ1+k2

< 1. The corresponding PGF GP (s, t) satisfies

∂GP (s, t)

∂t
= γ2(1− s)∂GP (s)

∂s
+ k1

(
sb− b
1− sb

)
GP (s). (9.23)

Therefore, the stationary distribution for protein has its generating function

GssP (s) = exp

{
k1

γ2

∫ s

1

(
b

1− zb

)
dz

}
= exp

{
−k1

γ2
ln

(
bs− 1

b− 1

)}
=

(
1− b
1− bs

)r
. (9.24)

in which r = k1
γ2

. This proves Eq. 9.11.

One can also solve the Eq. 9.23 and obtain the time-dependent transient
distribution for the protein:

GP (s, t) = α
(

(1− s)e−γ2t
)
GssP (s), (9.25)

in which α(1−s) is determined by the PGF for the initial distribution p(n, 0).
That is,

GP (s, t) = GP

(
1− (1− s)e−γ2t, 0

)[γ1 + k2(1− s)e−γ2t

γ1 + k2(1− s)

]r
. (9.26)
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9.3 Gene regulatory netwok with feedbacks

When a transcription factor (TF) is regulating its own gene expression, a
feedback loop is formed. In this case, the single DNA molecule inside a cell
undergoes the biochemical reaction

DNA + TF
h

GGGGBFGGGG

f
DNA·TF.

We shall call the bare DNA off-state and DNA bound with the TF on-state.
Fig. 9.4 gives the state transition diagram for the DGP.

on-state

off-state 0 1 2 3 · · · ` · · ·

0 1 2 · · · `− 1 · · ·
6 6 6 6

? ? ? ?

-� -� -� -� -�

-� -� -� -� -� -�
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g0

2γ
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3γ

g0 g0

`γ

g0

h 2h 3h `h

g1

γ

g1

2γ

g1 g1

(`− 1)γ

g1

f f f f

Figure 9.4 Off-state and on-state represent the unbound and bound state of the single
copy of DNA (gene) with a TF. ` denote the copy of free TF. Monomeric TF binds
DNA with on-rate constant h and off-rate constant f . Binding reduces the copy
number of free TF by 1. TF biosynthesis rate is g1 and g0 when the gene is bound
and unbound, respectively. TF degradation rate is γ.

When f = h = 0, the steady state distribution for the protein copy numbers
in both on- and off-states are Poissonian:

pP (n|i) =
(gi/γ)n

n!
e−gi/γ , (9.27)

where i = 0 for off- and i = 1 for on-state, respectively. The modal value of
a Poisson distribution is at its mean value gi/γ. Therefore, for very different
gi the two modal values can be very different. For a very small f and h, the
probability distribution for the proteni is simply

pP (n) =
γfpP (n|0) + g0hpP (n|1)

γf + g0h

=

(
γ−n

n!

)
γfgn0 e

−g0/γ + g0hg
n
1 e
−g1/γ

γf + g0h
, (9.28)

which has two modal values approximately at g0/γ and g1/γ.

On the other extreme, if the f and h are very large, that is the TF binding-
unbinding to DNA are much faster than the protein biosynthesis and degra-
dation, then there is a mean g value at each n, the total protein copies:

g(n) =
fg0 + nhg1

f + nh
, γ(n) = n

(
f + h(n− 1)

f + nh

)
γ, (9.29)
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then the protein copy number distribution is

pP (n) = C

n∏
i=1

g(i− 1)

γ(i)
=
C

n!

(
g1

γ

)n n∏
i=1

[fg0/(hg1)] + (i− 1)

(f/h) + (i− 1)
, (9.30)

where C is a normalization factor. This is a uni-modal distribution with an
intermediate modal value.

Note that the macroscopic ODE dynamics, in a test tube with a large number
of DNA molecules with concentration x(t) at time t (0 ≤ x ≤ 1), is

dx(t)

dt
= hy(1− x)− fx,

dy(t)

dt
=

(
g0(1− x) + g1x

)
− γy,

(9.31)

in which y(t) is the concentration of protein at time t. g1 < g0 means the TF is
its own gene expression repressor and the feedback is negative. g1 > g0 means
the TF is its own gene expression enhancer and the feedback is positive. In
the latter case, the two null-clines for the ODE system are

y1(x) =
fx

h(1− x)
, y2(x) = γ−1

(
g0(1− x) + g1x

)
. (9.32)

Both y1(x) and y2(x) are increasing functions of x; y1(x) is a convex func-
tion and y2(x) is linear. There is only a single intersection x∗ ∈ (0, 1]. The
macroscopic fixed point is located at (x∗, y∗) in which y∗ is the positive root
of

y2 +

(
f

h
− g1

γ

)
y − fg0

hγ
= 0.

We note this is the same equation as g(n) = γ(n), both are given in (9.29).
Therefore, the macroscopic kinetics is closer to the rapid TF-binding scenario,
with the term

(
g0(1−x) +g1x

)
in Eq. 9.31 representing the law of large num-

bers. Therefore there is no bistability according to the ODE model. The bi-
modality in the stochastic model is a consequence of single copy of DNA. This
phenomenon is called stochastic bistability, in contrast to nonlinear bistability.

Treating the protein concentration y(t) as a deterministic dynamic variable,
and the single DNA as a two-state Markov process, the hybrid system is called
an ODE with Markov switching [113, 116], or a random evolution [114], or a
piecewise deterministic Markov process (PDMP) [115].

9.3.1 Walczak-Onuchic-Wolynes resonance





CHAPTER 10

Cellular Biochemical Dynamics, II:
Signaling Networks

10.1 Phosphorylatin-dephosphorylation signaling

Intracellular regulations are carried out in major part by the phosphorylation
and dephosphorylation of functional enzymes, or the exchange of proteins
bound to GDP for GTP. In the former case, say for an enzyme E:

E + K + ATP
k+1

GGGGGBFGGGGG

k−1

E∗ + K + ADP, (10.1a)

E∗ + P
k+2

GGGGGBFGGGGG

k−2

E + P + Pi, (10.1b)

in which K, called a kinase, is the enzyme to the phosphorylation reaction, and
P, called a phosphatase, is the enzyme to the dephosphorylation reaction. The
substrates of enzymes K and P are themselves enzymes, E and E∗, respectively.
ATP, ADP, and Pi stand for adenosine triphosphate, adenosine diphosphate,
and inorganic phosphate.

In the second second case, one has a very similar kinetic scheme:

E·GDP + GEF + GTP
q+1

GGGGGBFGGGGG

q−1

E·GAP + GEF + GDP, (10.2a)

E·GTP + GAP
q+2

GGGGGBFGGGGG

q−2

E·GDP + Pi + GAP, (10.2b)

in which GEF is an enzyme called guanine nucleotide exchange factors, and
GAP is another enzyme called GTPase-activating protein. The enzyem E in
the reaction 10.2b is called an GTPase that catalyzes the hydrolysis of GTP
→ GDP + Pi.

Assume all the biochemical species in (10.1) are kept at constant concentra-
tions except E and E∗, we have

dx

dt
=
(
k+1KT + k−2PPi

)
(1− x)−

(
k−1KD + k+2P

)
x (10.3)

where x(t) is the fraction of E∗ at time t, K, T , D, P , and Pi are the corre-
sponding concentrations of K, ATP, ADP, P, and Pi.

73
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The steady state level of protein E phosphorylation according to the system
(10.1) is

xss =
k+1KT + k−2PPi

k+1KT + k−2PPi + k−1KD + k+2P

=
θ + µ

θ + µ+ θ
γµ + 1

, (10.4)

in which

θ =
k+1KT

k+2P
, γ =

k+1k+2T

k−1k−2DPi
, µ =

k−2Pi

k+2
. (10.5)

The parameter θ is called an “activation parameter” which increases with
increasing kinase (K) and decreasing phosphatase (P), ln γ represents the
amount of phosphorylation energy in an ATP hydrolysis reaction. When γ = 1,
the Eq. 10.4 becomes

xss =
θ + µ

(θ + µ)
(
1 + 1

µ

) =
µ

µ+ 1
. (10.6)

Note in this case the xss is completely independent of θ! No phosphorylation
energy, no cellular signaling. The two forms of the enzyme E and E∗ are in
a chemical equilibrium. To a chemist, it is widely known that the amount of
enzyme to a reaction, the kinase and the phosphotase in this case, can not
change a chemical equilibrium. The amount of enzyme can only change the
“kinetics” of a reaction.

For γ 6= 1, the xss in (10.6) represents not a chemical equilibrium, but a
nonequilibrium steady state. The rate of entropy production, in kBT units, is{

K
(
k+1k+2T − k−1k−2DPi

)
P

k+1KT + k−2PPi + k−1KD + k+2P

}
ln γ. (10.7)

The term in {· · · } is the number of ATP hydrolysis per unit time.

10.2 Zeroth-order ultrasensitivity

In the kinetic equation (10.3), we have assumed that both the phosphorylation
reaction (10.1a) and dephosphorylation reaction (10.1b) are operating in the
linear regime of their respective enzymes. If this is not a valid assumption,
then instead of Eq. 10.3, we follow Briggs-Haldane kinetics:

dx

dt
=

V +
1

(
1− x
KK

)
− V −1

(
x

K∗K

)
1 +

x

K∗K
+

1− x
KK

−
V +

2

(
x

K∗P

)
− V −2

(
1− x
KP

)
1 +

x

K∗P
+

1− x
KP

, (10.8)

in which KK and K∗K are the Michaelis constants of the kinase for E and E∗,
respectively; andKP andK∗P are the Michaelis constant of the phosphotase for
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E and E∗. Among the eight parameters, the Haldane equation, a generalized
detailed balance condition, states that(

V +
1 K∗K
KKV

−
1

)(
KPV

+
2

V −2 K∗P

)
= γ. (10.9)

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

st
ea

dy
 s

ta
te

 p
ho

sp
ho

ry
la

ti
on

  x
ss

activation signal 

(1,1)

(0.01,0.01)

Figure 10.1 Steady state level of phosphorylation according to Eq. 10.12. The values

in the parentheses are
(

KK
K∗
K
,
K∗P
KP

)
. A discontinuous step function arises in the limit

of both being zero.

The steady state x∗ satisfies

θ =

[
x− µ (1− x)

] [
KK + 1 +

(
KK
K∗K
− 1
)
x
]

[
1− x− x

µγ

] [
K∗P + x+

K∗P
KP

(1− x)
] . (10.10)

in which

θ =
V +

1

V +
2

, µ =
V −2 K∗P
KPV

+
2

.

If all the K’s are very large, then Eq. 10.11 is reduced to (10.4), in which θ
should be identified as K∗P θ/KK . On the other hand, if all the K’s are small,
then

θ =
µ
[
x
µ − 1 + x

] [
1 +

(
KK
K∗K
− 1
)
x
]

[
1− x− x

µγ

] [
x+

K∗P
KP

(1− x)
] . (10.11)

In this case, both the kinase and the phosphotase are operating under zeroth
order, saturated condition. In particular, if µ ' 0 and µγ →∞, then[(

1− KK

K∗K

)
− θ

(
1− K∗P

KP

)]
x2 +

(
θ − 1− 2θK∗P

KP

)
x+

θK∗P
KP

= 0. (10.12)
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Fig. 10.1 shows that with decreasing KK/K
∗
K and K∗P /KP , the transition

curve according to Eq. 10.12 becomes sharper, known as ultrasensitivity. In
the limit of KK/K

∗
K = K∗P /KP = 0, xss = 0 for θ < 1 and xss = 1 for x > 1.

10.3 Multiple steps signaling cascade

The phosphorylation and dephosphorylation biochemical reactions are the
molecular processes that carry out the step-after-step delivery of cellular in-
formation. They often form a “signaling cascade” as shown in Fig. 10.2. One
well-known example is the MAPK (mitogen activated protein kinase) pathway.

E1*E1

E2*E2

E3*E3

Figure 10.2 A signaling cascade consisting of three phosphorylation-
dephosphorylation cycles. The activation of enzyme E1 is considered to the
“upstream” of E2, to which the activation of E3 is considered as a “down-stream”
step. An activated enzyme serves as the catalyst for its down-stream biochemical
reaction.

dx1

dt
= α1(xN )(1− x1)− β1(xN )x1, (10.13a)

dx2

dt
= α2x1(1− x2)− β2x2, (10.13b)

· · · · · · (10.13c)

dxN
dt

= αNxN−1

(
1− xN

)
− βNxN . (10.13d)
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To obtain the steady state, we note

1

xk
= 1 +

(
βk
αk

)
1

xk−1
, (10.14)

then,

1

xN
= 1 +

(
βN
αN

)
x−1
N−1 = 1 +

(
βN
αN

)[
1 +

(
βN−1

αN−1

)
x−1
N−2

]

= 1 +

N−2∑
k=0

k∏
`=0

(
βN−`
αN−`

)
+
βNβN−1 · · ·β2β1(xN )

αNαN−1 · · ·α2α1(xN )
. (10.15)

Therefore, denoting

A =
βNβN−1 · · ·β2

αNαN−1 · · ·α2
, B =

N−2∑
k=0

k∏
`=0

(
βN−`
αN−`

)
, (10.16)

A,B > 0, we have
α1(xN )

β1(xN )
− AxN

1− (1 +B)xN
= 0. (10.17)

This equation should be compared with the Eq. 9.5 from the Goodwin’s model
for the central dogma in Sec. 9.1.2. Again, we see that if α1(x)/β1(x) is a
decreasing function of x, representing a negative feedback, then (10.17) has a
unique root.

10.4 Enzyme mediated biochemical activation and temporal
cooperativity

The notion of cooperativity is one of the most important concept in equilib-
rium biochemistry and equilibrium statistical physics. Allosteric cooperativity
is a cornerstone of molecular biophysics. We now focus on a single step in Fig.
10.2: how does an enzyme Ek catalyze the transformation of Ek+1? We are
particularly interested in the case when both the numbers of molecules of Ek
and Ek+1 are small.

In Sec. 4.14c we have discussed the case of single enzyme with a large num-
ber of substrate molecules and derived the Michaelis-Menten kinetic equation
based on the mean first passage time.





CHAPTER 11

Chemical Oscillations and Stochastic
Circulation
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CHAPTER 12

Mechanics Revisited

The 20th century physicists have already shown that the movement of point
masses in the microscopic world is not deterministic; they follow quantum
mechanical rules, which has a probabilistic interpretation. Let us take this
insight as our starting point for a nonlinear, stochastic dynamic theory of
mechanical motions. We assume the space at the very microscopic level is a
three-dimensional discrete lattice with spacing ε. Then the stochastic move-
ment of a single point mass is simply represented by six transition rates in
x, y, z directions: (

u±1 (n), u±2 (n), u±3 (n)
)

(12.1)

in which n = (n1, n2, n3). The corresponding master equation for the proba-
bility is

dpε(n, t)

dt
=

∑
k=1,2,3

[
pε(n− νk, t)u+

k (n− νk)− pε(n, t)u−k

−pε(n, t)u+
k (n) + pε(n + νk, t)u

−
k (n + νk)

]
(12.2)

in which ν1 = (1, 0, 0), ν2 = (0, 1, 0), and ν3 = (0, 0, 1).

The transition rates are related to the ε in such a way that in the limit of
ε→ 0,

lim
ε→0

εu±k
(
x/ε
)

= R(x) + εT±k (x) +O
(
ε2
)
, (12.3)

the difference between u+
k and u−k at a given n disappears in the macroscopic

limit, in an isotropic space. Furthermore, R(x) = R independent of x for a
homogeneous space with translational symmetry. Then we have a HJE:

∂ϕ(x, t)

∂t
+H

(
x,∇xϕ(x, t)

)
= 0, (12.4)

with Hamiltonian function

H
(
x,y) = 2R

(
cosh y1 + cosh y2 + cosh y3 − 3

)
, (12.5)

and Hamiltonian dynamics:

dxi
dt

= −2R sinh yi,
dyi
dt

= 0. (12.6)
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Therefore,
d2xi
dt2

= −
(

2R cosh yi

)dyi
dt

= 0. (12.7)

This is Newton’s first law of motion. One actually notices that for small yi:

H(x,y) ' R
(
y2

1 + y2
2 + y2

3

)
.
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The condition above yields

dx(t)

dt
= ε

∑
i=1,2,3

νi

(
T+
i (x)− T−i (x)

)
(12.8)

The Markov process is detail balanced if and only if the invariant measure π
satisfies detailed balance. In this case, the sufficient and necessary condition
is

ln

(
R+
k (x)

R−k (x)

)
= −∂ϕ

ss(x)

∂xk
, (12.9)

in which

ϕss(x) = − lim
ε→0

ε lnπε
(
x/ε
)
. (12.10)

12.0.1 Quantum heat hypothesis

We have seen in Chapter ?? that the ratio ln(qij/qji) can be interpretated as
the heat exchange in the transition i → j. When qij = qji, the transition is
considered adiabatic. We now apply this idea to mechanics, and assume that
for any n, u+

k (n) ' u−k (n), which is a statement of isotropic space. But there
is a tiny difference u+

k (n)− u−k (n)� u+
k (n), u−k (n), and we shall call

ln

(
u+
k (n)

u−k (n)

)
'

2
[
u+
k (n)− u−k (n)

]
u+
k (n) + u−k (n)

(12.11)

quantum heat exchange associated with the microscopic spatial movement.
Then Eq. 12.9 implies that ∇xϕ� 1, and the HJE becomes

∂ϕ(x, t)

∂t
= V(x) · ∇xϕ+∇xϕ ·D(x)∇xϕ. (12.12)

in which vector V = (V1, V2, V3), with Vk(x) = R+
k (x)−R−k (x) and matrix

D(x) =
1

2

∑
k=1,2,3

νTk

(
R+
k (x) +R−k (x)

)
νk· (12.13)

And combining Eqs. 12.9 and 12.12 together become

ln

(
R+
k (x)

R−k (x)

)
=

Vk(x)

Dkk(x)
= −∂ϕ

ss(x)

∂xk
. (12.14)

For general V(x) and D(x), obtaining the stationary solution to (12.12),
ϕss(x), is highly challenging. However, for a class of problem with

V(x) = −D(x)∇U(x) + γ(x), (12.15)

in which ∇ × γ(x) = 0 and γ(x) · ∇U(x) = 0, one can easily verify that
ϕss(x) = U(x).
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H(x,y) = V(x) · y + yD(x)y. (12.16)

with Hamiltonian system

dx

dt
= V(x) + 2D(x)y,

dy

dt
= −∇x

(
V(x) · y + yD(x)y

)
. (12.17)

If the y is very large, and dy� y, then,

dx

dt
= 2D(x)y,

dy

dt
= −∇x

(
yD(x)y

)
. (12.18)

The second equation is essentially the Newton’s law with a potential function
defined as U(x) = yD(x)y.
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If we further assume that

d

dt
ln

(
R+
k (x)

R−k (x)

)
=

(
∇xR

+
k (x)

R+
k

−
∇xR

−
k (x)

R−k

)
· dx(t)

dt
(12.19)

and
d2x(t)

dt2
=

∑
k=1,2,3

νk
dx(t)

dt
·
(
∇xR

+
k (x)−∇xR

−
k (x)

)
. (12.20)

are

12.1 Symmetric diffusion and Schrödinger’s equation

Let us consider the Kolmogorov’s forward and backward equations for a dif-
fusion process with D(x) and gradient drift b(x) = D(x)∇U(x):

∂f(x, t)

∂t
= L

[
f
]

= ∇ ·D(x)
(
∇f(x, t) +∇U(x)f(x, t)

)
, (12.21)

∂u(x, t)

∂t
= L ∗

[
u
]

= ∇ ·D(x)
(
∇u(x, t)

)
−∇U(x)∇u(x, t).(12.22)

We know the forward equation has a stationary distribution fss(x) = exp
[
−

U(x)/D
]
. Introducing a symmetric operator

L̂
[
ψ
]

= e
U(x)

2 L
[
e−

U(x)
2 ψ(x)

]
= e

U(x)
2 ∇ ·D(x)

[
∇
(
e−

U(x)
2 ψ(x)

)
+∇U(x)

(
e−

U(x)
2 ψ(x)

)]
= e

U(x)
2 ∇ ·D(x)

[
1

2
ψ(x)∇U(x)e−

U(x)
2 + e−

U(x)
2 ∇ψ(x)

]
= ∇ ·

(
D(x)∇ψ(x)

)
+

(
∇ ·
(
D(x)∇U

)
2

− ∇U ·D(x)∇U
4

)
ψ(x)

= e−
U(x)

2 L ∗
[
e
U(x)

2 ψ(x)
]
. (12.23)

We see that the L̂ is a Schrödinger operator ∇·D(x)∇−E(x) with potential
energy function

E(x) =
∇U(x) ·D(x)∇U(x)

4
−
∇ ·
(
D(x)∇U(x)

)
2

. (12.24)

Note the ∇U(x)∇U(x) appears also in the HJE:

H(x, y) = yDy+ (12.25)





CHAPTER 13

From Cellular Dynamics to
Evolutionary Stable Strategy and Back

We now introduce an alternative mathematical theory which is widely em-
ployed in evolution theory and ecological dynamics: the theory of evolution-
ary stable strategy (ESS). This approach is based on a very different kind of
mathematical tools: nonlinear optimizations rather than dynamical systems.
However, we would like to present this approach in the general framework of
cellular dynamics.

We shall use cancer cell growth as a metaphor. Let us assume there is a pre-
genetic stage of carcinogenesis for a cell: Its biochemical and gene regulatory
networks lead to two very different cellular attractors: one goes through cell
division and one does not. Let us further assume that a cell that remains
dormant has a very low death rate, d1, over a given time period T . On the
other hand, the cell that goes into division gives rise to two cells but faces a
higher death rate d2 > d1.

Let’s say a cell population has fixed fractions p1 and p2 = (1 − p1) being in
the dormant and growing states. Then the simplest mathematical model one
has is

du

dt
= (−p1d1 + p2(b− d2))u, (b, d1, d2, p1, p2 ≥ 0) (13.1)

where u(t) is the population of the “cancer cell in the pre-genetic stage”, and
b is the doubling, or birth, rate of the cells in the growing state.

The dynamics that follows Eq. (13.1) is simple exponential increasing or de-
creasing depending on the net growth rate r , ((1−p1)(b−d2)−p1d1) > 0 or
r < 0. Then the formal answer to the question “what is the choice of p1 such
that the cancer will appear?” is

p1 > 1 if b < d2 − d1,

p1 < 0 if d2 − d1 < b < d2,

p1 <
b− d2

d1 − d2 + b
if b > d2.

(13.2)

Therefore, it is impossible for pre-cancer cells to survive if b < d2. If b > d2,
then there is a “strategy” for the cancer to have a right value of p1 to “survive”:
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p2 >
d1

d1 − d2 + b
; and the optimal strategy is p2 = 1 which gives the maximum

growth rate (b− d2).

The above model is certainly not realistic; but it gives us a sense of how to
think about “life-history strategies” in the context of cancer cell dynamics.
What we would like to do next is to develop a stochastic view of the above
problem, and to see how questions like such can be turned into many useful
“predictions”.

13.1 Discrete versus continuous times

Differential equations for population dynamics such as (13.1) assume a large
population size and the population u(t) having real, continuous values. How-
ever, when dealing with early cancer development, these assumptions are not
warranted. There is a significant stochastic element in the early stage of car-
cinogenesis, and the cell population should be counted in integers.

First, let us see an important difference between a generation-by-generation
view and the continuous growth view of a population:

u(t+ ∆t) = λu(t), λ = er∆t, (13.3)

here we assume that the time for a generation is ∆t. The population increases
or decreases depending on λ > 1 or λ < 1. Then following the same argument
for the strategy in the previous section, we have

u(t+ ∆t) =
(
p1e
−d1∆t + p2e

(b−d2)∆t
)
u(t). (13.4)

One should immediately note that this result is very different from what is
expected based on Eq. (13.1):

u(t+ ∆t) = u(t)e(−p1d1+p2(b−d2))∆t. (13.5)

The strategy for p1 will also be different
p1 > 1 if b < d2 − d1,

p1 < 0 if d2 − d1 < b < d2,

p1 <
e(b−d2)∆t − 1

e(b−d2)∆t − e−d1∆t
if b > d2.

(13.6)

How does one explain this result? The answer to this quetsion is very sim-
ple: If you have two different growth possibilities r1 and r2 for investiment,
you always invest in the two by two separated pots of money, rather than
continuously mixing the two pots:

ep1r1+p2r2 ≤ p1e
r1 + p2e

r2 . (13.7)

This is known as Jensen’s inequality; it is because the function ex is a convex
function.
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13.2 Life-histroy strategies in fluctuating environments

It turns out that the birth rate b, death rates d1 and d2 above are all fluctuating
over space and time. Therefore, one needs to consider the consequnce of this
important effect. Let us consider discrete time steps:

un+1 = λun, (13.8)

where the λ = er∆t > 0, the ∆t being the time step, i.e., the generation time.

(a) We first consider the scenario of λ has a temporal stationary fluctuation:
For each step, λn follows an independent idential distribution fλ(x). Then,

un = u0 exp

(
n−1∑
`=0

lnλ`

)
. (13.9)

In the limit of n→∞, we have the term inside the parenthesis

1

n

n−1∑
`=0

lnλ` →
∫ ∞
−∞

(lnx) fλ(x)dx , 〈lnλ〉 (13.10)

according to the Law of Large Numbers. Therefore, asymptotically we have

un = u0e
〈lnλ〉n. (13.11)

Note that Eq. (13.11) is different from un = u0〈λ〉n. We note that

〈lnλ〉 ≤ ln〈λ〉. (13.12)

This is known as Jensen’s inequality.

Let us assume that the critical size of cancer detection is u∗. Then according
to the simple stochastic model, we can obtain the distribution for the “random
time of detection” N∆t:

u∗ = u0 exp

(
∆t

N∑
`=1

r`

)
. (13.13)

Let us denote the critical r∗:

r̂ =
1

∆t
ln
u∗

u0
, (13.14)

and cumulative probability distribution for random variable r

ψ(x) =

∫ x

−∞
fr(z)dz, ϕ(x) =

∫ +∞

x

fr(z)dz. (13.15)
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Therefore,

Pr{N = 1} =

∫ +∞

r̂

fr(x)dx = ϕ(r∗),

Pr{N = 2} =

∫ r̂

−∞
fr(x)dx

∫ +∞

r̂−x
fr(y)dy =

∫ r̂

−∞
fr(x)ϕ(r̂ − x)dx,

Pr{N = 3} =

∫ r̂

−∞
fr(x)dx

∫ r̂

r̂−x
fr(y)dyϕ(r̂ − y),

· · · · · ·

One can also estimate the distribution of N :

Ñ =
1

r∆t
ln
u∗

u0
, (13.16)

where Ñ is a function of the random variable r.

HOMEWORK 1: Compute the distribution of N exactly, and com-
pare with the distribution for the approximated Ñ given in Eq.
(13.16).

(b) We now consider the case of λ = er∆t has a spatical heterogeneity, but
constant over time at a fixed location.

HOMEWORK 2: Find the probability distribution for the N accord-
ing to the spatical herterogeneous r.

13.3 Population dynamics and frequency dynamics

[118]



CHAPTER 14

Entropic Force and Rectified Brownian
Motion

Let us consider a diffusion process with that is restricted within interval [a, b],
with reflecting boundary condition at a and absobing boundary condition at
b, and initially f(x, 0) = δ(x− a).

Then, we have

∂f(x, t)

∂t
= D

∂2f(x, t)

∂x2
, (14.1a)

with (
∂f(x, t)

∂x

)
x=a

= 0, f(b, t) = 0, f(x, 0) = δ(x− a). (14.1b)

The solution to the partial differential equation f(x, t) tends to zero in the
limit of t→∞. The “missing probability” is located at x = b. Hence one can
write the “total probability” as

ftot(x, t) = f(x, t) +

(
1−

∫ b

a

f(z, t)dz

)
δ(x− b). (14.2)

It is easy to check that ∫ b

a

ftot(x, t)dx = 1, (14.3)

and the apparent “velocity” of the partical movement

d

dt

∫ b

a

xftot(x, t)dx

= D

∫ b

a

x

(
∂2f(x, t)

∂x2

)
dx− b d

dt

∫ b

a

f(z, t)dz

= D

∫ b

a

(
x− b

)(∂2f(x, t)

∂x2

)
dx

= −D
∫ b

a

(
∂f(x, t)

∂x

)
dx

= D
(
f(a, t)− f(b, t)

)
(14.4)
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Now let us consider a steady state problem. We replace the reflecting boundary
condition at a to f(a, t) = fa.

14.0.1

Within ∆t time, the change in “total probability” associated with interval
[a, b] is

dftot(x, t)

dt
=

df(x, t)

dt
+D

(
∂f(x, t)

∂x

)
a

δ(x− a)−D
(
∂f(x, t)

∂x

)
b

δ(x− b).

(14.5)
Let us consider

∆x(t)

∆t
=

aD

(
∂f(x, t)

∂x

)
a

− bD
(
∂f(x, t)

∂x

)
b

+

∫ b

a

x
df(x, t)

dt
dx∫ b

a

f(t, x)dx

=

aD

(
∂f(x, t)

∂x

)
a

− bD
(
∂f(x, t)

∂x

)
b

+D

[
x
∂f(x, t)

∂x

]b
a

−D
∫ b

a

∂f(x, t)

∂x
dx∫ b

a

f(t, x)dx

=
D
(
f(a, t)− f(b, t)

)
∫ b

a

f(t, x)dx

=

∫ b

a

D

(
∂ ln f(x, t)

∂x

)
f(x, t)dx∫ b

a

f(t, x)dx

(14.6)

Now consider diffusion with a drift V :

∂f(x, t)

∂t
= D

∂2f(x, t)

∂x2
− ∂

∂x

(
V (x)f(x, t)

)
(14.7)

Then,

∆x(t)

∆t
= aD

(
∂f(x, t)

∂x

)
a

− bD
(
∂f(x, t)

∂x

)
b

+

∫ b

a

x
df(x, t)

dt
dx

= D
(
f(a, t)− f(b, t)

)
−
∫ b

a

x
∂

∂x

(
V (x)f(x, t)

)
dx

=
(
D + aV (a)

)
f(a, t)−

(
D + bV (b)

)
f(b, t) +

∫ b

a

V (x)f(x, t)dx(14.8)

aV (a)f(a, t)− bV (b)f(b, t) +

∫ b

a

V (x)f(x, t)dx∫ b

a

f(x, t)dx

.
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APPENDIX A

A Field Equation Formalism of
Ecological Population Dynamics

Given a population network in terms of stoichiometric coefficients ν` and
kinetic rate laws

dx

dt
=

M∑
`=1

(
R+
` (x)−R−` (x)

)
ν`, (A1)

we have a generalized Gibbs potential ϕ(x) satisfying

d

dt
ϕ
(
x(t)

)
= −

(
dx(t)

dt

)
· ∇xϕ(x)

=

M∑
`=1

(
R+
` (x)−R−` (x)

)(
ν` · ∇xϕ(x)

)
=

M∑
`=1

(
R+
` (x)−R−` (x)

)
ln

(
R+
` (x)

R−` (x)
eν`·∇xϕ(x)

)
− σ

[
x(t)

]
, (A2)

in which

σ
[
x(t)

]
=

M∑
`=1

(
R+
` (x)−R−` (x)

)
ln

(
R+
` (x)

R−` (x)

)
≥ 0. (A3)

We now study the first term in (A2):

M∑
`=1

(
R+
` (x)−R−` (x)

)
ln

(
R+
` (x)

R−` (x)
eν`·∇xϕ(x)

)

=

M∑
`=1

{
R+
` (x) ln

(
R+
` (x)

R−` (x)
eν`·∇xϕ(x)

)
+R−` (x) ln

(
R−` (x)

R+
` (x)

e−ν`·∇xϕ(x)

)}

≥
M∑
`=1

{
R+
` (x)

(
1−

R−` (x)

R+
` (x)

e−ν`·∇xϕ(x)

)
+R−` (x) ln

(
1−

R+
` (x)

R−` (x)
eν`·∇xϕ(x)

)}

=

M∑
`=1

{
R+
` (x)

(
1− eν`·∇xϕ(x)

)
+R−` (x)

(
1− e−ν`·∇xϕ(x)

)}
. (A4)
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Therefore, if we have a “field equation”

∂ϕ(x, t)

∂t
=

M∑
`=1

{
R+
` (x)

(
1− eν`·∇xϕ(x,t)

)
+R−` (x)

(
1− e−ν`·∇xϕ(x,t)

)}
.

(A5)
Then, its steady state solution ϕss(x) will satisfy an energy balance equation
with source and sink:

d

dt
ϕss
(
x(t)

)
= Ein

[
x
]
− σ

[
x
]
, (A6)

in which both Ein[x] and σ[x] are non-negative.

So what is the logic relationship between this equation and the kinetic equa-
tion? First, one can obtain the latter in the limit of ν` · ϕx � 1. In this case,
Eq. A5 becomes

∂ϕ(x, t)

∂t
= −

M∑
`=1

[
R−` (x)−R+

` (x)
](
ν` · ∇xϕ(x, t)

)
, (A7)

which implies the rate equation (A1). In this way of thinking,

Now for systems with
d

dt
ϕss
(
x(t)

)
= 0, (A8)

we call it conservative ecology [exampe? LV system?] Then, there is an “energy
conservation”; but more importantly, a ???
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Let k1k2k3 = A and k−1k−2k−3 = B both A and B are giving. This fixes
k1k2k3 − k−1k−2k−3 as well as

ln

(
k1k2k3

k−1k−2k−3

)
.

The entropy production over the 3-state cycle is

A−B
k3k−1 + k−2k−1 + k2k3 + k1k−2 + k−3k−2 + k3k1 + k2k−3 + k−1k−3 + k1k2

ln

(
A

B

)
,

(A9)
To minimuze this is to maximize the denominator. We know

k3k−1 + k−2k−1 + k2k3 + k1k−2 + k−3k−2 + k3k1 + k2k−3 + k−1k−3 + k1k2

A

= k3k−1 + k−2k−1 + k2k3 + k1k−2 + k−3k−2 + k3k1 + k2k−3 + k−1k−3 + k1k2
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In our research, we have obtained the following equation:

∂ϕ(x, t)

∂t
=

M∑
`=1

{
R+
` (x)

[
1− eν`·∇xϕ(x,t)

]
+R−` (x)

[
1− e−ν`·∇xϕ(x,t)

]}
,

(A10)
in which x ∈ RN , in the first quadrant. R±` (x), 1 ≤ ` ≤ M , are 2M non-
negative scalar functions, and ν` are M integer-valued N -dimensional vectors.

It is widely believed that the equation (A10) and the following (A11):

∂ϕ(x, t)

∂t
= ∇ϕ(x) ·

(
D(x)∇ϕ(x) + V(x)

)
, (A11)

in which V(x) : RN 7→ RN is a vector field, and D(x) is a positive definite
matrix, are in the same class of nonlinear PDE. In particular, someone told
me that the (A11) has a Riemannian structure while (A10) has a Finsler
structure.

But based on earlier David’s comments, even the (A11) having a Riemannian
structure is not for sure and obvious?


