Summer Course at PKU (July 2020)

Introduction to Kinetic Theory — Lecture Notes*

Jingwei Hu

July 5, 2020

Contents

1 Introduction

2 The Boltzmann equation for hard spheres
2.1 Heuristic derivation . . . . . . . . ... Lo oL
2.2 Formal derivation from the Liouville equation (BBGKY hierarchy) . . .

3 The Boltzmann equation for general (repulsive) intermolecular poten-

tials

4 Basic properties of the Boltzmann equation
4.1 Collision invariants and local conservation laws . . . . . . . .. ... ..
4.2 Boltzmann’s H-theorem and Maxwellian . . . . . . . .. .. ... ....

4.3 Boundary condition . . . . ... ... Lo

12
13
15
16

*These lecture notes are for course use only and will be kept updating. Please do not copy or

distribute for any other purposes. Please send corrections or comments to jingweihu@purdue.edu.



1 Introduction

These lecture notes are a collection of materials related to various aspects of modern
kinetic theory, including physical derivation, mathematical theory, and numerical meth-
ods. The main focus is on the Boltzmann-like collisional kinetic equations and their
numerical approximations. To begin with, let us take a look at Figure 1 to understand

the role of kinetic theory in multiscale modeling hierarchy.
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Figure 1: Role of kinetic theory in multiscale modeling hierarchy.

2 The Boltzmann equation for hard spheres

Proposed by Ludwig Boltzmann in 1872, the Boltzmann equation is one of the fun-
damental equations in kinetic theory. It describes the non-equilibrium dynamics of a gas
or system comprised of a large number of particles. In this very first part of the course,
we derive the Boltzmann equation for hard sphere molecules. For better understanding,
we start with a heuristic derivation and then discuss a more formal derivation from the

Liouville equation.

2.1 Heuristic derivation

This part of the presentation mainly follows [2, Chapter 1.2].

Let us start with the function P(l)(t,xl,vl), which is the one-particle probability
density function (PDF). P(Y) dz; dv; gives the probability of finding one fixed particle
(say, the one labeled by 1) in an infinitesimal volume dz; dwv; centered at the point
(x1,v1) of the phase space, where z1 € R? is the position and v; € R3 is the particle

velocity.



When two particles (say, particles 1 and 2) collide, momentum and energy must be
conserved (mass is always conserved). Let vy, vy be the velocities before a collision and

(v}, vh) the velocities after a collision. From
I TR VN (] S (Y0 e [T LR [P (2.1)
one can derive that
v = v — [(v1 —v2) - wlw, vy =wvy+ [(v1 — v2) - w]w, (2.2)

where w is the impact direction (the unit vector connecting the centers of particles 1
and 2). Note from (2.2) that

/

vh — v = (vg —v1) — 2[(vg — V1) - W]w, (2.3)

i.e., the relative velocity undergoes a specular reflection at the impact (see Figure 2).

/ /
Vg — Uy

Figure 2: Illustration of particle collisions.

In the absence of collisions and external forces, P(') would remain unchanged along

the trajectory of particle 1. That is, P() satisfies

opP

ot +ur- va(l) =0. (2:4)

Now with collisions, one would expect

opW
Ot

where L dxy dvy dt gives the probability of finding particles with position between 1

+v -V PO =G—1L, (2.5)

and x1 + dxy and velocity between v; and vy + dv; that disappear from these ranges of



values because of a collision in the time interval between ¢ and ¢ + dt (L is often called
the loss term of the collision operator), and G dz; dv; dt gives the analogous probability
of finding particles entering the same range in the same time interval (G is often called
the gain term of the collision operator). To count these probabilities, imaging particle
1 as a sphere at rest and endowed with twice the actual radius r and the other particles
being the point masses with velocity vy — v (see Figure 2). Fixing particle 1, there are
N — 1 particles (assume there are a total of N particles) that will collide with it, and
they are to be found in the cylinder of height |(va — v1) - w|dt and base area (2r)? dw.
Then

Ldzydvydt = (N — 1)/ / P(Q)(t,xl,vl,:vl + 2rw,va)|(ve — v1) - w| dt
RS Js2 (2.6)

x (2r)% dw dvy dzzy doy,

where P is the two-particle PDF, and S2 is the hemisphere corresponding to (vg —
v1) - w < 0. Therefore,

L=(N- 1)(27“)2/ / PO (t, 21,01, 1 4 2rw, v2)|(v2 — v1) - w| dw dws. (2.7)
R3 J 52

Similarly,

G=(N- 1)(27")2/ / PO (t, 21,01, 21 4 2rw, v2)|(vy — v1) - w| dw dus, (2.8)
R3 J53
where S2 is the hemisphere corresponding to (va — v1) - w > 0.
Now we make two crucial assumptions:
e Assume N — oo, r — 0, but Nr2 is finite. This is the so-called Boltzmann-Grad
limyt.
o Assume PO(t, 2,01, z0,v2) = PW(t,21,v) PV (t,z9,v2) for two particles that

are about to collide. This is the molecular chaos assumption.

Then L becomes

L= N(27")2/ / P(2)(t,x1,v1,x1,vg)|(vg — 1) - w|dw dvg

RIS (2.9)

= N(2r)2/ / PW (21, 0) P (21, 09)|(v2 — v1) - w| dw dog,
R Js2

where we used the assumption 1 in the first equality and assumption 2 in the second



equality. For G, we have

G=(N-1)(2r) / / )(t, 21,0, 21 + 2rw, vh)|(v2 — v1) - w| dw dug
R3 J52
= N(2r)? / PO (21, v) PD (¢, 21, b)) (va — v1) - w| dw dog (2.10)
3 52
N(2r) / / )(t, @1, 0,) PY (8, 21, 0h)| (v — v1) - w]| dw dog,
R3 JS2

where the first equality is because P is continuous at a collision, the second equality is
obtained for the same reason as above for L (since (va—v1)-w > 0 implies (v)—v})-w < 0),
and the third one is a simple change of variable w — —w.

Putting together G and L, we have

(1)
op VIIP ) N(2r) / / (vg —v1) - w|
ot R3 J$2 (2.11)

x [PO (¢, 21, v)) PO (8, 21, v4) — PO (8,21, 01) PO (t, 21, v9)] dw dva.

In this course we will often consider the one-particle number distribution function f

(ie., f = NPW), then f satisfies (changing 1 — , v] — v, V2 — Vs, W — —W)

%“j Val = (27“)2/R3 /(v . w<0\(va*)-w|[f’fi — [ dwdo., (2.12)

where f, fi, f', fi are short hand notations for f (¢, z,v), f(t,x,vs), f(t,2,0"), f(t, z,v)),
and

/

V= —[(v—v) ww, V=04 [(v—vi) - wlw. (2.13)

Equation (2.12) is the Boltzmann equation for hard spheres.
It is often convenient to integrate w over the whole sphere S? rather than hemisphere,

which yields

3}
6—{—}—1} Va.f :27‘2/R3 /52 |(v —vi) - w|[f fi — ffe] dw dus. (2.14)

2.2 Formal derivation from the Liouville equation (BBGKY hierarchy)

In this section, we give a formal derivation of the Boltzmann equation starting from
the Liouville equation. The rigorous derivation was an open and challenging problem
for a long time. In 1973, Lanford showed that, although for a very short time, the
Boltzmann equation can be derived from the mechanical systems.

This part of the presentation mainly follows [1, Chapter 3.2], where one can also find

the rigorous treatise.



Consider N hard spheres of radius r. Let x;, v; denote the position and velocity of

particle 4, then the state of the system is given by
(z1,v1,...,zn5,0n) € QN x R3NV = A,
where
oV = {(@1,...,oNn) | |z — 23] > 2r,0 # 5},
OAN = {(z1,v1,...,zN,oN) | |o; — xj| = 21,0 # 5},

since the particles cannot overlap.
Let PN (¢, 21,01, ..., xN,vx) be the N-particle PDF, then P(Y) satisfies the Liou-

ville equation

op) XN
o +3 vV, PN =0 (2.15)
i=1
Define the s-particle PDF as
P(s)(t,xl,vl, ey Ty Vg) = /P(N) drsiqdvsay ... dey doy, (2.16)

then integrating (2.15) one obtains

oP®)
Ot

+5L+1=0, (2.17)

with

S
I = Z/vi Ve, PN dzgyy dvgyy ... dzy doy,
= (2.18)
L=) / Vi Vo, PN da gy dvgyy . .. day doy.
i=s+1
For Iy, applying the divergence theorem (one can refer to Figure 2 again but with

(x1,v1) replaced by (zj,v;), (x2,v2) by (z;,v;), and w by w;;), one has

s N

I, — 2r)2 o PO (¢ . A R VORI

2 = (T) vl'w’bj (,.'Bl,Ul,...,(Z‘Z_l,Uz_l,.f[I]— T'WU,UZ,...,J:N,UN)
j=1i=st+1

X dwij dZL‘S+1 R d.l‘ifl d$i+1 R de dvs+1 R d’UN

N N
2 N
+ E E (2r) /Ui'wijp( (21,01, oy i1, Vi1, Tf — 27Wij, Vs« - TN, UN)
j=s+1,1=s+1
J#i

X dw;jdesyr ... doj—1daiyr ... dey dvsyr ... doy.
(2.19)



The second sum in the above equation is completely zero by the Liouville theorem (it is
the integral of ZZ]\; si1 Vit VmiP(N ) relative to the dynamics of the last N — s particles).
Using the symmetry of PV the first term can be further reduced to

I, = (N —s)( 27‘ g /Us+1 ws+1]P( )(t L1, U1, s Ty Usy Tj — 2TWet 1 j Vst1s- -5 TN, UN)
7j=1

X dws+1j d$5+2 - da:N d'Us—i—l . dUN

= (N—S) QT Z/Us+1 WerIJP( st )(t L1y,V1ye.. 3 L5y VUsy Tj — 27ﬂws+1,javs+1) dws+1,j dvgy1.

j=1

(2.20)

For I, it can be shown that (see below)

S
I Y] LR
j=1
X P(s+1)(ta X1, V15 .oy Tsy Usy Tj — 2TWs41 5, Vst1) dwst1,5 dvsy,
(2.21)
where the second term is due to the integration domain depends on x;.
Putting together I; and Iy, (2.17) becomes
ZUZ Vi P(S - —s)(2r) Z/ — Vsy1) *Wst1,5

(2.22)

1
x Pt )(t,:rl,vl, e Ty Vg, T — 2TWet 1, Vst1) dweyr,j dvgy.

This is the so-called BBGKY hierarchy for hard spheres (the equation of P* depends
on Pt1), named after Bogoliubov, Born, Green, Kirkwood, and Yvon. In particular,

taking s = 1 in (2.22) gives

apW)
ot v

2 /(02 —01) - wiaPP(t, 21,01, 21 + 2rwi2, va) dwyz duy

(1) = (N — 1)(27“)2 /(Ul — UQ) . WQ1P(2) (t, r1,V1,21 — 2TW21, ’02) dUJ21 dvz

(N —1)(2r)
= (N — 1)(27“)2 / ‘(Ug — Ul) . W12’P(2) (t, r1,V1,21 + 27’&)12, Ug) dW12 dvg
(v2—v1)-w12>0

— (N — 1)(27’)2/ ‘(UQ — ’1)1) . wlg‘P@)(t, r1,V1,21 + 27’&)12,1)2) dw12 dUQ.

(v2—v1)-w12<0

(2.23)

This is the same as equation (2.5) with (2.8) and (2.7) derived in the previous section.
The rest of the derivation is the same. That is, the first BBGKY hierarchy yields the

Boltzmann equation.



It remains to prove (2.21). Note that in the two-particle case,

v Vi PO(t, 21,01, 22, v2) dza dus
|x1—z2|>2r
1
=lim — / P(Q)(t,l'l —i—tUl,Ul,xQ,Ug) d.%'g dvg — / P(2)<t,.%'1,?)1,.%'2,1]2) d.%'g dvg
=01 |/ |z1 4+t —z2[>2r |x1—xz2|>2r

1
=lim — / P(z)(t,xl +tv1,v1,m2+tvl,vg) dl‘deg—/
|1 —x2|>2r

PO (t, 21,01, 2, v2) dws dvs
t—=0t |x1—x2|>2r

1
=lim — / P(z)(t,xl —|—tv1,v1,m2+tvl,vg) ded’Ug—/
|x1—az2|>2r

|x1—x2|>2r

P(Q) (t, 1+ tvl, V1,22, ’Ug) dxg d’l)z]

!
t

/ P(Q)(t,l‘l—FtUl,Ul,xQ,UQ) ded’Ug—/
|1 —x2|>2r

|x1—x2|>2r

PO (t, 21,01, 29, v2) daa dvz]

:/| ‘ (Ul 'Vm + v ‘V$1)P(2)(t,a:1,v1,:1:2,v2) daxs dvg
xr1—x2|>2r

:(27')2 / v w21P(2) (t, r1,V1,2T1 — 27‘(,021, 1)2) d(,UQl d'UQ + /1)1 . VMP@) (t, r1,V1,22, ’Ug) dxg dvg.
(2.24)

Analogously,

> i Ve, / PN dzgyy dvgys ... day doy

k=s+1

=1
s N
:Z/ < Z Vi - Vg, +0; VIZ) P& drsyi dvgyy ... dey doy
i=1
S
:Z [(N — s)(2r)2/vi -w3+1,iP(N)(t, T1, U1, Ts, Vsy Tj — 2TWet 14, Vst1s- -+ TN, UN)
=1

X dwsﬂ,i dvsy1dzsya ... deydoy + /Ui . V%P(N) drsy1 dvgyy ... deydoy]| .

(2.25)

This implies

S S
Z v; - V%P(s) — Z(N — s)(27‘)2 / v - ws+1ﬂ-P(s+1)(t, L1, V1, ..,Ts, Vs, Tj — 2rWst14, Ust1) dwst1,i dUst1
i1 i=1

= Z/vz . VwiP(N) dzsyq dvgtr ... dey doy,
=1
(2.26)

which is (2.21).



3 The Boltzmann equation for general (repulsive) inter-
molecular potentials
We have seen that the Boltzmann equation for hard spheres is given by (2.12) (2.13).

Another way of viewing (2.13) is to note that (v/,v)) must lie on the same sphere

determined by (v, v«) (see Figure 3).

Figure 3: Velocities during a classical elastic collision. w is the unit vector along the

direction of v/ — v.

To include general interactions other than hard spheres, one can generalize the Boltz-

mann equation (2.12) as

a ! pl
o v Ve = /R 3 /@_U*Mo B(o — ve,w)[f'f — f£.] dw do. (3.1)

Here the function B is called the collision kernel and is defined as
b db‘

B(U - U*7w) = ‘Vlsm9 @ ’ (32)

where V' = v — v, is the relative velocity, 0 < 6§ < 7/2 is the angle between —V and
w, b = b(|V|,0) is the impact parameter (see Figure 4). From the classical scattering

theory, we know for hard spheres with radius r,
b=2rsin6. (3.3)

Therefore,
B = 4r?cos 0|V | = 47|V - w, (3.4)

i.e., it reduces to the hard sphere case derived before.

Corresponding to the integration over the whole sphere (2.14), we define

9
a—{—kv.vzf:/w /S Bo(IV], | cos 0D f. — f1.] desdus, (3.5)

9



scattering center

Figure 4: Tllustration of particle scattering in a repulsive potential field (notation con-
sistent with Figure 3). b is the impact parameter, y is the scattering angle, V = v — v,

and V' =o' — .

where
db

Bu(|V], | cos0]) = \ = (3.6)

sin @
and

V=0 —[(v—v) ww, v =+ [(v— i) w]w. (3.7)

This is what we are going to refer to as the w-representation.
Another parametrization of the Boltzmann equation that uses the unit vector o along
V' reads

S0Vt = [ [ BoV]coslr' s~ £ do o (3.8)
where
B, , =V yX), = ,X) = — — .
(Vleosx) = VISV 0. E0VI) = oo | (39
Y(|V], cos x) is the differential cross section with 0 < x < 7, and
;v v — v p_vtue |u— o
= — 5 = 5O (3.10)

This is what we are going to refer to as the o-representation. In particular, the hard
sphere collision kernel under this representation reads B, (|V],cos x) = r2|V|.
Now for a general (repulsive) intermolecular potential ¢(r) (r is the distance between

two particles), b is related to x implicitly as follows

T0 d
X:7r—2/ . (3.11)
0 4¢(br—1)
where m is the single particle mass, and rq is the positive root to the equation
4¢(br—1)
1—p2 222 7 _ . 3.12

10



Let’s take a close look of the inverse power law potential

K
¢(r)=——, 2<s<oo, K issome positive constant. (3.13)
r

Then (3.11) becomes

o dr o dr

7"2 — AR 1 9 r s—1
m|V\ bs— —re — (E)

o\
with g := (%) "' b. Thus the collision kernel B, is

2 2
b | db AK \=T 8 |dg AKNTT o5 B |dgB
By = VI |2 =y () | < () T v |2
siny | dy m|V| siny | dy m siny | dy
15)
Since 8 can be solved implicitly from (3.14) to yield 8 = B(x), (3.15) implies that
2
_ = _(AE\FT 5 |as
B, = bs(cos x)|V|*=1, bs(cosx) = <m> Snx ’dX . (3.16)

When s = 5, B, is a function of x only which will lead to many simplifications
(usually referred to as Maxwell molecules). The hard sphere kernel can be considered
as a special case of (3.16) when s = co. Furthermore, (3.16) shows that the velocity
dependence in the collision kernel behaves like ]V\%H. When |V| is small, this is
integrable if % 4+ 2> —1,i.e. s> 2. Note that s = 2 corresponds to the Coulomb po-
tential. Therefore, the Boltzmann equation should not be used to describe the Coulomb
interaction?.

Based on (3.16), it is common in the kinetic literature to distinguish the kernel by

its velocity dependence:
B, = by(cos\)|[V]}, —-3<A<1, (3.17)

where A > 0 is called the hard potential, X < 0 is the soft potential, and A = 0 is the
Maxwell kernel.
Let’s analyze a bit the asymptotic behavior of xy w.r.t. 5. When g < 1, (3.14) can

be approximated as

B dr 1 du
X%W_2A |:1 <T>S_1:|1/2 :7T—2ﬂ/(; m :7'('—2514(5), (318)
~\B

'In this limit, one should consider the so-called Landau operator which is a diffusive type operator.

We will come back to this later in the course.

11



so when 8 — 0, x — m, and B‘i—g is well behaved. When 8 > 1, (3.14) can be

approximated as

s—1

11+ %(1 — )1 (%) A(s)
Xmﬂ—2/0 1= r2)i2 dr = Fo1 (3.19)
so when 5 — oo, x — 0, and
dp -2
— | ~ s—1 320
8 L]~ am (3.20)

i.e., the collision kernel contains a nonintegrable singularity at xy = 0 for all s > 2 (except
s = 00). This can be avoided either by cutting off 3, so that the potential ¢ is zero for
large 3, or by the less physical, but mathematically more tractable, method of directly
cutting off x near 0, that is, eliminating grazing collisions from the collision term. This

is the so-called Grad’s angular cut-off assumption.

4 Basic properties of the Boltzmann equation

In this section, we derive some basic properties of the Boltzmann equation, which

we rewrite here for clarity?

%+U-fo:Q(f,f), reQCRY, veR? d>2. (4.1)

Q(f, f) is the so-called collision operator, which is a quadratic integral operator acting
only in the velocity space. In fact, it is convenient to introduce a bilinear form of @ as

(in both o- and w- representations):

Qo) = [ [ Bollo=vl.coslats' = g.fldo do.

(4.2)
= [, ] Bullo vl |cosODlgl s~ g.f]ddo,
Rd JSd-1
where
R B e e LS N UETA ML)
V=0 —[(v—v.) ww, v.=v.+[(v—vi) ww, |cosl|=]|w- (v/—\v*)| (4.4)

Note that the physically relevant case is the dimension d = 3 as we considered in previous
sections. Here we assume d > 2 for mathematical generality.
We first derive a very important formula of the collision operator using the w-

representation.

2We have deliberately ignored the forcing term like F(z) -V, f in the discussion so far. With this

term, the equation is the so-called Vlasov equation. We will come back to this later in the course.

12



Proposition 4.1. (Boltzmann’s lemma) For any functions ¢(v), f(v) such that the

integrals make sense, one has

/Q(f,f)wdv—// Bw(|v—v*!,]c056])[f’f;—ff*]¢+¢*_¢,_w;dwdvdv*
R4 Rd JRd Jgd—1 4

:/ / Bu(Jv — vil, | cos 8]) f felp’ — ¢] dw dv du.
Rd JRA Jgd—1
(4.5)

Proof.
/Rd Qf, flpdv = B (Jv — vy, | cos O\)[f' fr — f felp dw dv dovs

Buy(|v = val, [ cos O))[f'fL = £ fslopw dw dv do,

= Bo(lv — ., [cos O£ — ££]27-2* dw dv dv,
d Jmd Jad—1 2
/ /
= Bu(jv — vl | cosODIF £ — £'£1 5% dw dv do,
d Jpd Jad—1 2

= [ [ [ Butie = wlleosenls s - FIEEEE = v,
Rd JRd Jgd—1 4
(4.6)
where in the second line we swapped v and v, (hence v" and v); in the fourth line we
changed (v, v,) to (v',v)) (hence (v, v}) becomes (v,vy)) for a fixed w and used the fact
that dvdv, = dv’ dv, (the transform has the unit Jacobian).
The second equality in (4.5) is obtained by changing (v,v.) to (v/,v}) only to the

gain term. O

4.1 Collision invariants and local conservation laws

Definition 4.2. A collision invariant is a continuous function ¢ = p(v) such that for
each v, v, € R and w € Sd_l, one has

P+ = ¢ + . (4.7)

Since during collisions, mass, momentum and energy are conserved, it is obvious that
functions 1, v, and |v|?, and any linear combination of them are the collision invariants.
In fact, it can be shown that these are the only collision invariants (this is a non-trivial
result, for proof one may refer to [3, p. 36-42]).

Using the Boltzmann’s lemma, it is clear that

Corollary 4.3.
/ QUf. ) dv = / QUf. fudv = / QU o2 dv = 0. (48)
Rd Rd Rd

13



Using the Corollary 4.3, if we multiply the Boltzmann equation (4.1) by m, muv,

m|v|?/2, and integrate w.r.t. v, we obtain

8t/ mfd”u—i—Vm-/ mufdv =0,
Rd Rd

8t/ mvfvaero/ mvufdv=0, (4.9)
R4 R4

1 1
8t/ —mlv’fdv + V, - / —mulv2fdv = 0.
Rd 2 R4 2

These are the local conservation laws (conservation of mass, momentum, and energy).
To better view the connection of f (number distribution function) and macroscopic
quantities such as density, temperature, etc., let us define

1
n:/ fdv, p=mn, u:/ vf dv, (4.10)
Rd

n

where n is the number density, p is the mass density, and v is the bulk velocity. Further,
with the peculiar velocity
c=v—u, (4.11)

we define

1 1
= an R |C|2fd'U7 ]P) = \/Rd mec Cfd’l}, q= /Rd §mC|C|2f dU, (412)

where T is the temperature, P is the stress tensor, and q is the heat flux vector. R = kg/m
is the gas constant (kp is the Boltzmann’s constant).

Finally, the pressure p is defined as

1
p= gtr(}P’) = pRT. (4.13)

With the above definitions, we can recast the local conservation laws (4.9) using

macroscopic quantities:
Op+ V- (pu) =0,
O(pu) + Vg - (pu@u+P) =0, (4.14)

815E+V;,;(EU+P’U,+(]):O,

where F = % pRT + % pu? is the total energy. The system (4.14) is completely equivalent
0 (4.9), hence to the Boltzmann equation. Note that this system is not closed because

P and g, generally speaking, cannot be represented in terms of p, u, and T

14



4.2 Boltzmann’s H-theorem and Maxwellian

Proposition 4.4. (Boltzmann’s H-theorem,)

[ eunmra <o, (1.15)
R4

and the equality holds if and only if f = exp(a +b-v + c|v|?).

Proof. Taking ¢ = In f in the Boltzmann’s lemma yields

1
[Leunmsao=— [ [ [ Bulfs— £ ) - (/7)) dedvdu. <0
Rd R4 JRA Jgd—1
(4.16)
where the inequality is due to In z is a monotonically increasing function, so (x—y)(Ilnz—
Iny) > 0 for any x,y > 0. The equality holds iff In f is a collision invariant, i.e.,

f =exp(a+b-v+clv?), with a, b, ¢ being some constants. O

If a function f is of the form exp(a + b - v + ¢|v|?), it can be rewritten as

f + T + (4.17)
=exp|clv+—| ——+a]. :
P 2¢ 4c
. . . b|?
For f to be integrable, ¢ must be negative. Choosing ¢ = —¢, b/ = —%, a = exp(—% +
a) gives
f=d exp(=c|v—V|?). (4.18)

Using the definition of n, v and T given in the previous section, we can see that?

__n o —uP _

(4.19) is called the Mazwellian.
Corollary 4.5. The following statements are equivalent.

/Rdw,f)lnfdv:o = f=M = Q) =0. (4.20)

Corollary 4.6.
at/ flnfdv—i—vx-/ vfln fdv=—-D(f) <0, (4.21)
Rd Rd
where

D) =1 [ [ Bl = PRI ) =) dw oo, (422

e v = (2)*, [ 0% dv = 4 ()7

[N

oo

3Note the Gaussian integrals J o
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If we assume f decays fast enough as x — oo, or is periodic in z, then (4.21) upon

further integration in x yields
d

—H(t) <0 4.23
L) <0, (4.23)
where H(t) := [pa Jga fIn fdvda is the H function. (4.23) shows that # is always
non-increasing and reaches its minimum value iff f reaches the Maxwellian (local equi-

librium). This is consistent to the second law of thermodynamics.

4.3 Boundary condition

The commonly used boundary condition for the Boltzmann equation consists of the

following: for a boundary point x € 9Q and outward pointing normal n(x),

e Inflow boundary:

G
flt,z,v) = 1o 72 exp <—|U ol ), v-n <0, (4.24)

(27TRTO 2RTO

where ng(t, x), up(t,x), and Ty(t,z) are the prescribed density, velocity and tem-

perature.

e Maxwell diffusive boundary:

ft,z,v) = pu(t, ) fu(t,z,v), (v—1uy) -n <0, (4.25)
with )
fw(taxvv) = €xp <_|2}2_R;:U|> s (426)

where u,(t,x) and T, (t,x) are the wall velocity and temperature. py(t,x) is
determined by
f(v—uw)-nzo(v - ’U,w) ' TLf dv
f(vfuw)-n<0(v - uw) : nfw dv’

pu(t,z) = (4.27)

e Reflective boundary:

ft,z,v) = flt,z,v —2[(v — uy) - nln), (v —1uy) -n <O0. (4.28)
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