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Chapter 1

Introduction

1.1 Dynamic vs. Informatic Approach to Modeling in Bi-
ology

1.1.1 Bioinformatics is data-driven

The goal of bioinformatics is “finding certain signatures” in the data. In the old time, when
the data is very reproducible, e.g., planet motions, one simply looks for a mathematical
function to “fit the data”. In biology, almost all data are with significant variations. In this
case, one tries to find a “statistical model” to fit the data: sample mean, standard deviation,
linear regrssions, clustering, etc.

1.1.2 Dynamics is the logic of rational thinking

A physical approach to a system means “dynamical”, and a mathematical approach to a
process means quantitative. Hence the title. It embidies a very old Chinese saying: “qian
yin hou guo”, e.g., a causal relation.

1.2 A Collection of Familiar Terms with More Precise Mean-
ings

There is no doubt we all agree that “mathematics” is a tool. But it is a language as well;
this is widely appreciated. But actually, it is also a culture. One does not hear this last point
often; but actually it is a core of Theoretial Physics. Applied Mathematics is mainly about
models of the real world, but theoretical physics provide representations of the Reality. In
the theoretical physics thinking, one can understand the real world via purely mathematical
deduction.

Let us give some examples: In high school, we did “bullet out of a gun”.
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More importantly, theoretical physics provided a computational framework that is not
based on data; but based on mechanisms! This mode of operator is very different from
“modeling”. In the latter, its success is ultimately measured by fitting the reality. The
theoretical physics approach is intimately related to the so called mechanistic modeling.
Let us explain their relationship:

Equation of motion, which can be further divided into kinematics and dynamics, and
constitutive equations; also called material property. Here are three examples.

1.2.1 Mechanis (lixue)
Since mechanics is the oldest paradigm for doing a mechanistic modeling, and it was the
birth place of differential equations, we shall carry out a careful analysis of “what is me-
chanics”.

The concept of point masses; instantaneous velocity and acceleration, forces, etc. The
concept of point mass is actually very abstract. It does not even have a size. Note that

ma =
d2x

dt2
= F,

is actually completely useless, if one does not have F as a function of x.
Let us recall that the accleration of a point mass on earth is g = 9.8m/s2, a constant.

Then

d2x(t)

dt2
= g,

v(t) =
dx(t)

dt
= gt+ v(0),

x(t) =
1

2
gt2 + v(0)t+ x(0).

The significance of this? The concept of the “center of mass”. Furthermore, in believing
this paradigm, solid mechanics, fluid mechanics, and molecular dynamics of a protein.
These are in fact the vast fields of several engineering.

1.2.2 Biochemistry (shenwu huaxue)
Chemical reaction can be expressed as

X
J+1

GGGBFGGG

J−1

Y,

which is called reversible unimolecular reaction(s), or conformational change. It means
that X and Y are isomers. The differenece is in the arrangement of the atoms within. And

A+B
J+2

GGGBFGGG

J−2

C,
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is call molecular association and dissociation. If A is a protein and B is a small molecule,
it is also called binding.

In terms of the concepts of concentration and instantaneous rate of a reaction R, we
have

−dx(t)

dt
=

dy(t)

dt
= J+1 − J−1,

and

−da(t)

dt
= −db(t)

dt
=

dc(t)

dt
= J+2 − J−2,

respectively. This equation is basd on counting; it cannot be wrong! But it is also useless,
just as F = ma! To be useful, one needs to have J’s as functions of the concentrations.
One widely used is the law of mass action, which states that the instantaneous rate of a
chemical reaction is proportional to the product of the masses of the reactants. See the
equation below Eq. 1.12. The proportinal constant is called a rate constant, usually written
as lower case ks:

X
k+1

GGGBFGGG

k−1

Y, A+B
k+2

GGGBFGGG

k−2

C,

with
J+1(x) = k+1x, J−1(y) = k−1y, J+2(a, b) = k+2ab, J−2(c) = k−2c.

We then have two of differential equations for the unimolecular reaction

−dx(t)

dt
=

dy(t)

dt
= k+1x− k−1y, (1.1)

and for the association-dissociation reaction

−da(t)

dt
= −db(t)

dt
=

dc(t)

dt
= k+2a(t)b(t)− k−2c(t). (1.2)

1.2.3 Detailed mathematical analysis of Eq. 1.1

dx

dt
= k+1x− k−1

(
x0 + y0 − x

)
= −k−1(x0 + y0) +

(
k+1 + k−1

)
x.

Therefore,

x∗ =
k−1

k+1 + k−1

(
x0 + y0

)
.

y∗ = x0 + y0 − x∗ =
k+1

k+1 + k−1

(
x0 + y0

)

x(t) = (x0 − x∗)e−(k+1+k−1)t + x∗

y(t) = (y0 − y∗)e−(k+1+k−1)t + y∗

9



1.2.4 Detailed mathematical analysis of Eq. 1.2
c∗

a∗b∗
=
k+2

k−2

≡ Ka ≡
1

Kd

.

c∗

(a0 − c∗)(b0 − c∗)
= Ka.

(
c∗
)2 −

(
a0 + b0 +K−1

a

)
c∗ + a0b0 = 0.
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1.2.5 Infectious disease epidemics (chuanranbing liuxing xue)

S + I
R+1

GGGGBFGGGG

R−1

2I, I
R2

−−→ R.

1.3 Four Different Types of Mathematical Models
With all the above discussions in mind, we see that there are two types of modeling, mech-
anistic and informatics, and using two types of mathematics: deterministic and stochastic.
2 × 2 = 4. Mechanistic model is also called dynamics model, kinetic model, differential
equation based model, etc.

1.4 Dynamic Models
Experimental biology follows a reductionistic approach in which modular, functional mech-
anisms are elucidated one piece at a time. But life is a complex phenomenon at every level,
from cells to organisms, to populations, due to interactions among multiple, heterogeneous
components. Therefore, in all area of biology, mathematical models provide the means for
putting the pieces together.

Dynamic models describe how a system’s properties, in a simplified representation,
change over time. Dynamic models have a unique role in science: It is the only method
that is able to definitively provide a sufficient condition for an observed phenomenon or
phenomena. In modern biology, this is called a mechanism. It establishes a causal relation
with certainty.

There are two types of models: “data-driven” descriptive models and mechanistic mod-
els. One of the best known data-driven descriptive models is perhaps Kepler’s three laws of
planetary motion. Most current statistical models obtained from “big data” belong to this
category. Even when these models can provide accurate predictions, it does not tell us why
the data behave the way they are — a fundamental element of what we call “understand-
ing”. In contrast, a mechanistic model

A dynamic model has two essential components: state variables and dynamic equa-
tions. One should visualize a dynamics as a “point” ~x = (x1, x2, · · · , xn) moving in a
n-dimensional space as a function of time. One of the most important assumptions in a
dynamic model is that the state of the system at time t + ∆t is completely determined by
the state of the system at time t: ~x(t)→ ~x(t+ ∆t).

A significant portion of the equations in biology are simply “counting the numbers”, or
density. This is discussed in the textbook as “Bathtub models”, or I would like to call it
“balance checkbooks”:

dW (t)

dt
= I(t)−O(t),

where W (t) is the amount of water in the bathtub, I(t) and O(t) are the inflow and outflow
rates, e.g., the amount of water going into and coming out the bathtub per unit time. In the
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banking language: W (t) is the amount of money in the account, I(t) is the rate of deposite,
and O(t) is the rate of expanse.

1.5 Simple Models with a Few Equations
One important application of mathematical modeling is in population dynamics. This can
be about populations of biological organisms, chemical species inside a test tube, or soci-
ological and economical agents. As long as one has the notion of different “individuals”,
there is the concept of a “population”.

Just as the bathtub problem, population dynamics usually starts with an equation like
this:

rate of population increase = birth rate− death rate + immigration rate. (1.3)

If we use x(t) to denote the population at time t, then the above equation becomes

dx

dt
= x

(
b(x)− d(x)

)
+ i(x), (1.4)

in which b and d are the per capita birth and death rates, respectively. Note that one of the
most important aspects of birth and death is that if x = 0, then there will be no possibility
of further birth or death. Without immigration, an extinct population will remain extinct.
The immigration term i(x), however, has a very different feature: It needs not to be zero
when x = 0.

Consider a population with many subpopulations ~x = (x1, x2, · · · , xn), all xi ≥ 0. In
the absence of immigration, if we denote ri(~x) = bi(~x)− d(~x), then

dxi
dt

= xiri(~x), (1.5)

and the per capita growth rate for the entire population, which is also the mean per capita
growth rate,

r =

d

dt

n∑
i=1

xi

n∑
i=1

xi

=

n∑
i=1

dxi
dt

n∑
i=1

xi

=

n∑
i=1

xi(t)ri

n∑
i=1

xi(t)

, xi ≥ 0. (1.6)

Then,

dr(~x)

dt
=

[∑n
i=1 xir

2
i∑n

i=1 xi
−
(∑n

i=1 xiri∑n
i=1 xi

)2
]

+

∑n
i,j=1 xixjrj

(
∂ri
∂xj

)
∑n

i=1 xi
. (1.7)

We shall particularly be interested in the case of ri(~x) = ri: All per capita growth rates
are constants independent of ~x. Then the term inside [· · · ] on the right-hand-side is never
negative: ∑n

i=1 xir
2
i∑n

i=1 xi
−
(∑n

i=1 xiri∑n
i=1 xi

)2

=

∑n
i=1 xi

(
ri − r

)2∑n
i=1 xi

≥ 0. (1.8)
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In fact, it is actually the variance of ri among the different subpopulations. Therefore, it is
always positive if there are variations amoug ri. This mathematical result is a part of the
ideas of both Adam Smith, on economics, and Charles Darwin, on the natural selection. In
fact, the term [· · · ] in Eq. (1.7) has been identified by R. A. Fisher, the British statistician
and evolutionary biologist, as the “growth of fitness due to natural selection”.1 And here is
a quote from Smith’s magnum opus “An Inquiry into the Nature and Causes of the Wealth
of Nations” (1776):

“As every individual, therefore, endeavours as much as he can both to employ
his capital in the support of domestic industry, and so to direct that industry that
its produce may be of the greatest value; every individual necessarily labours
to render the annual revenue of the society as great as he can. He generally,
indeed, neither intends to promote the public interest, nor knows how much he
is promoting it. By preferring the support of domestic to that of foreign indus-
try, he intends only his own security; and by directing that industry in such a
manner as its produce may be of the greatest value, he intends only his own
gain, and he is in this, as in many other eases, led by an invisible hand to pro-
mote an end which was no part of his intention. Nor is it always the worse for
the society that it was no part of it. By pursuing his own interest he frequently
promotes that of the society more effectually than when he really intends to
promote it. I have never known much good done by those who affected to
trade for the public good. It is an affectation, indeed, not very common among
merchants, and very few words need be employed in dissuading them from it.”

With non-constant ri(~x), Eq. 1.7 can be written as:

d

dt

(∑n
i=1 xiri∑n
i=1 xi

)
−
∑n

i=1 xi
dri(~x)
dt∑n

i=1 xi
=

∑n
i=1 xi

(
ri − r

)2∑n
i=1 xi

. (1.9)

This equation can be phrased as “the change in the per capita growth rate of an entire
population is never less than the average change in per capita growth rate of the sub-
populations”.2 Eq. 1.7 also shows that dr/dt could be negative if the last term on the
right-hand-side is large and negative. Therefore, it is interesting to investigate under what
circumstances it is positive or negative.

First, we note that if all ri are constant, independent of ~x, then this last term is zero
since

(
∂ri/∂xj

)
= 0.

Second, if ri is a linear function of ~x: ri(~x) =
∑n

k=1wikxk. Furthermore, one can
always decompose a matrix into a symmetric and an anti-symmetric parts: wij = wSij +wAij .

1Edwards, A.W.F (1994) The fundamental theorem of natural selection. Biol. Rev. 69, 443–474.
2Price, G.R. (1972) Fishers fundamental theorem made clear. Ann. Hum. Genet. Lond. 36, 129–140.
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Then ∑n
i,j=1 xixjrj

(
∂ri
∂xj

)
∑n

i=1 xi
=

∑n
i,j,k=1 xiwijxjwjkxk∑n

i=1 xi

=

∑n
i,j,k=1 xiw

S
ijxjw

S
jkxk∑n

i=1 xi
+

∑n
i,j,k=1 xiw

A
ijxjw

A
jkxk∑n

i=1 xi

=

∑n
j=1 xj

(∑n
i=1 xiw

S
ij

)2∑n
i=1 xi

−

∑n
j=1 xj

(∑n
i=1 xiw

A
ij

)2∑n
i=1 xi

. (1.10)

Hence, a symmtric interaction between subpopulations i and j increases the r, and an anti-
symmetric interaction between subpopulations i and j decreases the r. Competition and
symbiosis are the former type, and predator and prey are the latter type.

1.6 Complex Dynamics Such as a Single Protein in Water
http://www.youtube.com/watch?v=iaHHgEoa2c8
http://www.youtube.com/watch?v=gFcp2Xpd29I
http://www.youtube.com/watch?v=Y79Xl0LfYI4

1.7 Michaelis-Menten Enzyme Kinetics

S + E
k+1

GGGBFGGG

k−1

SE
k2−→ P + E (1.11)

The law of mass action from chemical reaction theory states that a chemcial reaction
like

n1X1 + n2X2 + · · ·nνXν
k−→ m1Y1 +m2Y2 + · · ·mµXµ (1.12)

has a rate constant k, and the rate of reaction J , e.g., number of chemical reaction (1.12)
per unit time:

J = kxn1
1 x

n2
2 · · ·xnνν ,

where xk is the concentration of chemical species Xk among the reactants. Then

dxk
dt

= −nkJ, k = 1, 2, · · · , ν;

and
dyk
dt

= mkJ, k = 1, 2, · · · , µ,

where yk is the concentration of chemical species Yk among the products.
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Applying the law of mass action to Eq. (1.11), we have

ds

dt
= k−1c− k1es, (1.13a)

de

dt
= (k−1 + k2)c− k1es, (1.13b)

dc

dt
= k1es− (k−1 + k2)c, (1.13c)

dp

dt
= k2c. (1.13d)

The initial conditions are

s(0) = s0, e(0) = e0, c(0) = p(0) = 0. (1.13e)

We observe that dc
dt

+ de
dt

= 0 and ds
dt

+ dc
dt

+ dp
dt

= 0. This can be understood by going
through the biochemical reaction “mechanism” and recognize that the total enzyme e0 and
total substrates s0 are conserved. Substituting equations

c+ e = e0, s+ c+ p = s0

into Eq. (1.13), and eliminating e and p, we have

ds

dt
= k−1c− k1e0s+ k1cs, (1.14a)

dc

dt
= k1e0s− k1cs− (k−1 + k2)c (1.14b)

s(0) = s0, c(0) = 0. (1.14c)

Steady-state approximation:
dc

dt
= 0,

k1e0s− k1cs− (k−1 + k2)c = 0,

c =
k1e0s

k1s+ (k−1 + k2)
=

e0s

s+KM

(1.15)

where KM = k−1+k2
k1

. Therefore,

ds

dt
= k−1c− k1e0s+ k1cs

=

[
k−1 + k1s

s+KM

− k1

]
e0s

=

[
k−1 + k1s− k1s−KMk1

s+KM

]
e0s

= − Vmaxs

s+KM

, (1.16)
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in which Vmax = k2e0.

Non-dimensionalization. The two equations in (1.18) are not yet ready to be analyzed
computationally. Note that since a computation has to have all the parameters in the equa-
tions assigned with numerical values, explore the general behavior of a system differential
equations involves many calculations for differet parameter values. Thus the fewer the pa-
rameter, the better. The system (1.18) seems to have four parameters: k1, k−1, k2, e0, and
s0. But actually, it has less.

Note that the one does not have to use the standard unit, such as molar, for the concen-
trations s and c, nor standard unit for time, such as second, for t. Rather, one can try to
use some “internal units”. First, we note that k−1 must have “dimension” of [time]−1

since k−1c ∼ ds
dt

which is [concentration][time]−1. Similarly, k1 has a dimension of
[concentration]−1[time]−1, thus k1e0 has a dimension of [time]−1. Now let us introduce
“non-dimensionalized variables”

u =
s

s0

, v =
c

e0

, and τ = k1e0t (1.17)

Then, (1.18) becomes

du

dτ
=

(
k−1

k1s0

)
v − u+ uv, (1.18a)(

e0

s0

)
dv

dτ
= u− uv −

(
k−1 + k2

k1s0

)
v, (1.18b)

u(0) = 1, v(0) = 0. (1.18c)

in which combined parameters e0/s0 = ε, k2/(k1s0) = λ and (k−1 + k2)/(k1s0) = K are
all dimensionless. We finally arrive at

du

dτ
= −u+ (u+K − λ)v, (1.19a)

ε
dv

dτ
= u−

(
u+K

)
v, (1.19b)

u(0) = 1, v(0) = 0. (1.19c)

It has only three parameters!

One of the important features of enzyme reaction systems inside a cell is that e0 � s0.
That is ε� 1.
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Chapter 2

Radioactive decay and exponential
random time

2.1 Random variables, probability density function, etc.
A random variable X taking a real value has a probability density function (pdf) fX(x):∫ ∞

−∞
fX(x)dx = 1. (2.1)

The meaning of the fX(x) is this

Pr{x < X ≤ x+ dx} = fX(x)dx. (2.2)

Then, the cumulative distribution of X:

FX(x) = Pr{X ≤ x} =

∫ x

−∞
fX(z)dz, and fX(x) =

dFX(x)

dx
. (2.3)

The mean (or expected value) and variance of X are

〈X〉 = E[X] =

∫ ∞
−∞

xfX(x)dx, (2.4)

Var[X] =

∫ ∞
−∞

(
x− µ

)2
fX(x)dx. (2.5)

in which we have denoted E[X] by µ. Two most important examples of random variables
taking real values are “exponential” and “normal”, also called Gaussian.

Learn to use rnorm( ), rexp( ), hist( ), and nls(log(hdata[,2]) ˜ a-b*hdata[,1]ˆ2, start=c(a=1,b=1) ),
in which hdata contains the density function obtained from hist.
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The pdf of a function of a random variable X . Let us have a random variable X
with pdf fX(x). Now consider a differentiable, monotonic increasing function g(·) and let
Y = g(X). So Y is also a random variable. What is the distribution of Y ? We note that

Pr{Y < y} = Pr{X < g−1(y)}, i.e., FY (y) = FX

[
g−1(y)

]
. (2.6)

Therefore,

fY (y) =
d

dy
Pr
{
Y < y

}
=

d

dy

∫ g−1(y)

−∞
fX(x)dx = fX

(
g−1(y)

) d
dy

(
g−1(y)

)
. (2.7)

Eq. (2.7) should be remembered as

fY (y)dy = fX(x)dx, in which x = g−1(y) or y = g(x). (2.8)

There is a clear graphical interpretation of the formulae (2.6) and (2.8).

2.2 Exponential distribution
The simplest linear ordinary differential equation

dx

dt
= −rx (2.9)

is widely taught as a model for radioactive decay problem. More precisely, consider a block
of radioactive material, the x(t) is the remaining radioactive material at time t:

x(t) = x(0)e−rt. (2.10)

The parameter r is the “rate of decay” per atom.
If all the atoms in the block are identical and independent, then x(t) can also be inter-

preted as the probability of a single atom in the population still not decayed at time t:

p(t) = e−rt. (2.11)

Sometime, this is called “survival probability” in the population dynamics.
However, a more careful inspection of the decays of individual atoms, one realizes that

the occurrence of the “event”, i.e., a click in a Geiger counter, is random. The time when
an atom decay, T is a random variable with a probability density function fT (t):

fT (t)dt = Pr{t < T ≤ t+ dt}, (t ≤ 0) (2.12)

which reads “fT (t)dt is the probability of random time T being in the interval (t, t + dt].
Then, at time t, the probability the atom is still no decayed, i.e., T > t, is the survival
probability:

p(t) = Pr{T > t} =

∫ ∞
t

fT (s)ds. (2.13)
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We therefore have

fT (t) = −dp(t)
dt

= re−rt. (2.14)

The random time T has an exponential distribution. Its mean value, also called expected
value, is

〈T 〉 =

∫ ∞
0

tfT (t)dt =
1

r
. (2.15)

In fact, there is a variance in the random time T :

V ar[T ] = 〈T 2〉 − 〈T 〉2 =

(
1

r

)2

. (2.16)

2.3 The minimum ofn identical, independent distribution
Why is the exponential distribution so prevalent in nature? To answer this question, let
us consider the following problem: T1 and T2 are two independnet distributions for two
random times T1 and T2. We are interested in the

T ∗ = min
{
T1, T2

}
. (2.17)

And we have

Pr{T ∗ > t} = Pr{T1 > t, T2 > t} = Pr{T1 > t}Pr{T2 > t}. (2.18)

This is because the multiplication rule of two independent random events: The joint proba-
bility is the product of the probabilities. Therefore, if one has n identical and independently
distributed random times T1, T2, · · · , Tn, then their minimum T ∗ has a distribution

Pr
{
T ∗ > t

}
= Pr{T1 > t} · · ·Pr{Tn > t} =

(
ϕT (t)

)n
, (2.19)

in which ϕT (t) = Pr{T > t} is a monotonically decreasing function with ϕT (0) = 1 and
ϕT (∞) = 0. Therefore, if ϕ′T (0) = r 6= 0 and n is very large, we have

lim
n→∞

[
ϕT

(
t

n

)]n
= lim

n→∞

[
1 + ϕ′T (0)

(
t

n

)]n
= e−rt. (2.20)

Why is there a 1/n on the left-hand-side of Eq. (2.20)? This is because with larger and
larger n, the mean time for T ∗ is getting smaller and smaller. In fact, it scales as 1/n. If we
had not introduced the 1/n, the limit of

(
ϕT (t)

)n would be 0 for all t > 0.
n exponential iid. In statistics, “iid” stands for “identical and independently dis-

tributed”. If we consider n idential, independent atoms, each with an exponential wait-
ing time e−rt, then the time for the first decay, T ∗ = min{Ti, 1 ≤ i ≤ n} follows the
distribution

Pr{T ∗ > t} = Pr{T1 > t, · · · , Tn > t} =
(

Pr{T > t}
)n

= e−nrt. (2.21)
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Note we have used the fact that all Ti are independent. Therefore, the rate for one decay
from n atoms is nr.

Exponential time is memoryless. Two measurements of T , one starts at t = 0, another
starts at t = t0, will give identical result:

Pr{T > t0 + t}
Pr{T > t0}

=
e−r(t0+t)

e−rt0
= e−rt. (2.22)

2.4 Dynamics of a decreasing population
We can now re-interpret the equation in (2.9):

dp(t) = −rp(t)dt. (2.23)

In an infinitesimal time interval (t, t+ dt], the change in the survival probability of a single
atom is rp(t)dt.

Now consider a population of identical, independently distributed (iid) atoms. Let pn(t)
be the probability of having n radioactive atoms. There are two events that change the pn(t):

(a) A decay of one of n + 1 radioactive atoms. This increases pn(t) while
decreases pn+1(t); the rate is (n+ 1)r.

(b) A decay of one of n radioactive atoms. This decreases pn(t) while increases
pn− 1(t). The rate is nr.

Therefore, considering each event can ocurr in the infinitesimal time interval (t, t+ dt], we
have

dpn(t) = (n+ 1)rpn+1(t)dt− nrpn(t)dt. (2.24)

We now consider a population with N total individuals at t = 0. The individuals are
identical and independent, with individual “death rate”, i.e., death rate per capita, r.

To characterize the dynamics of population, X(t), X takes values 0, 1, 2, · · · , N , one
no longer can say that at time t, the X(t) is such and such. However, one can predict at
time t, the probabilitity of X(t) = n:

pn(t) = Pr{X(t) = n}. (2.25)

The pn(t) satisfies the system of differential equations

d

dt
pn(t) = r(n+ 1)pn+1(t)− rnpn(t). (2.26)

2.5 Mean value of the population dynamics
If the population Xn(t) is random with distribution pn(t), then its mean value is

〈X(t)〉 =
∑
i=0

nPr{X(t) = n} =
∑
i=0

npn(t). (2.27)

20



Then we have

d

dt
〈X(t)〉 =

∑
n=0

n
dpn(t)

dt

=
∑
n=0

n (r(n+ 1)pn+1(t)− rnpn(t))

= r
∑
n=0

n(n+ 1)pn+1(t)− r
∑
n=0

n2pn(t)

= r
∑
n=0

(n+ 1)2pn+1(t)− r
∑
n=0

(n+ 1)pn+1(t)− r
∑
n=0

n2pn(t)

= −r
∑
n=0

(n+ 1)pn+1(t)

= −r〈X(t)〉.

This is the true meaning of equation (2.9).
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Chapter 3

Discrete-time dynamics

Not all dynamics requite a continuous counting of time. In fact, any realistic measurements
of any biological phenomenon are in discrete time. We now concern ourselves with dynam-
ics with discrete time. For population dynamics without immigration, these dynamics has
the form

Nt+1 = NtF
(
Nt

)
= f

(
Nt

)
. (3.1)

The simplest example of such dynamics is a linear system with F (N) = a constant; the
best-known example of such nonlinear dynamics is the logistic growth with F (N) =
r
(
1 − N/K

)
. Interestingly, this is not really the discrete-time counterpart of the logistic

differential equation. A more faithful discrete time version of logistic differential equation
is F̃ (N) = r

1+N/K
.

Now if we compare such dynamics with an ordinary differential equation (ODE) dx/dt =
f(x), and remember that one can study the ODE in terms of its distribution:

∂ρ(x, t)

∂t
= − ∂

∂x

(
f(x)ρ(x, t)

)
, (3.2)

then one expects that there is also “another equation” for the same dynamics in Eqn. (3.1).
Note that Eqn. (3.2) is a map of ρ(x, t) to ρ(x, t + dt), which is interpreted as distribution
changing with time. Therefore, we similarly have

ρ(y, t+ 1) =

∫ ∞
−∞

ρ(x, t)K(x, y)dx. (3.3)

For each y, if K(y, x) is only concentrated at one point, then we say the dynamics is
“deterministic”. If there is a spread, we say the dynamics is “stochastic”. if for a given x to
which therer are more than one y, then we say the dynamics is “many-to-one”.

The most important properties of K(x, y) are ≥ 0, and∫ ∞
−∞

K(x, y)dy = 1 ∀x. (3.4)
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Then, for any normalized ρ(x, t):∫ ∞
−∞

ρ(y, t+ 1)dy =

∫ ∞
−∞

dy

∫ ∞
−∞

ρ(x, t)K(x, y)dx =

∫ ∞
−∞

ρ(x, t)dx

∫ ∞
−∞

K(x, y)dy

=

∫ ∞
−∞

ρ(x, t)dx = 1. (3.5)

A linear dynamics is “one-to-one”. The logistic map is “two-to-one”, but the F̃ (N)
is one-to-one. A stochastic dynamics can be “one-to-many”. One of the most important
features of the “1-to-1” dynamics is that one knows exactly where the dynamics is coming
from and where it goes. All other cases, there are some uncertainties, either in the past or
in the future.

We want to introduce a mathmatical representation of the above idea. The mathematics
is not very hard, but somewhat unfamiliar. It only involves calculus!

The idea is related to the notion of “entropy” — a very elusive concept. But don’t be
discouraged; very few people really understand it anyway. Maybe mathematics can help us
to understand it better.

We start with Eqn. (3.3). Let us consider a functional

H
[
ρ(x, t)

]
=

∫ ∞
−∞

ρ(x, t) ln

(
ρ(x, t)

ρ∗(x)

)
dx, (3.6)

in which we assume that

ρ∗(x) =

∫ ∞
−∞

ρ∗(y)K(y, x)dy. (3.7)

Note that this is called a “functional” with “al” at the end: It is a function of a function: For
each function ρ(x, t), Eqn. (3.6) returns a single scalar number. The ρ∗(x) is considered
known.

We now first show that H
[
ρ(x, t)

]
≥ 0 for any normalized ρ(x, t), ρ∗(x) ≥ 0:

H
[
ρ(x, t)

]
=

∫ ∞
−∞

ρ(x, t) ln

(
ρ(x, t)

ρ∗(x)

)
dx

= −
∫ ∞
−∞

ρ(x, t) ln

(
ρ∗(x)

ρ(x, t)

)
dx

≥ −
∫ ∞
−∞

ρ(x, t)

(
ρ∗(x)

ρ(x, t)
− 1

)
dx

≥ −
∫ ∞
−∞

(
ρ∗(x)− ρ(x, t)

)
dx

≥ −
∫ ∞
−∞

ρ∗(x)dx+

∫ ∞
−∞

ρ(x, t)dx = 0.
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More importantly even we don’t have ρ∗(x), let us consider two sequences of ρ(x, t) and
ρ̂(x, t), started respectively with normalized ρ(x, 0) and ρ̂(x, 0)

H
[
ρ(x, t)

∥∥ρ̂(x, t)
]

=

∫ ∞
−∞

ρ(x, t) ln

(
ρ(x, t)

ρ̂(x, t)

)
dx ≥ 0. (3.8)

Now we consider

H
[
ρ(x, t+ 1)

∥∥ρ̂(x, t+ 1)
]
−H

[
ρ(x, t)

∥∥ρ̂(x, t)
]

=

∫ ∞
−∞

ρ(y, t+ 1) ln

(
ρ(y, t+ 1)

ρ̂(y, t+ 1)

)
dy −

∫ ∞
−∞

ρ(x, t) ln

(
ρ(x, t)

ρ̂(x, t)

)
dx

=

∫ ∞
−∞

dx ρ(x, t)

{[∫ ∞
−∞

dyK(x, y) ln

(
ρ(y, t+ 1)

ρ̂(y, t+ 1)

)]
− ln

(
ρ(x, t)

ρ̂(x, t)

)}

=

∫ ∞
−∞

dx ρ(x, t)

{∫ ∞
−∞

dyK(x, y)

[
ln

(
ρ(y, t+ 1)

ρ̂(y, t+ 1)

)
− ln

(
ρ(x, t)

ρ̂(x, t)

)]}

=

∫ ∞
−∞

dx ρ(x, t)

{∫ ∞
−∞

dyK(x, y) ln

(
ρ(y, t+ 1)ρ̂(x, t)

ρ̂(y, t+ 1)ρ(x, t)

)}

≤
∫ ∞
−∞

dx ρ(x, t)

{∫ ∞
−∞

dyK(x, y)

(
ρ(y, t+ 1)ρ̂(x, t)

ρ̂(y, t+ 1)ρ(x, t)
− 1

)}

=

∫ ∞
−∞

dy

∫ ∞
−∞

ρ(x, t)K(x, y)dx

(
ρ(y, t+ 1)ρ̂(x, t)

ρ̂(y, t+ 1)ρ(x, t)
− 1

)

=

∫ ∞
−∞

dy

(
ρ(y, t+ 1)

ρ̂(y, t+ 1)

)∫ ∞
−∞

ρ̂(x, t)K(x, y)dx−
∫ ∞
−∞

dy

∫ ∞
−∞

ρ(x, t)K(x, y)dx

=

∫ ∞
−∞

dy

(
ρ(y, t+ 1)

ρ̂(y, t+ 1)

)
ρ̂(y, t+ 1)−

∫ ∞
−∞

dy

∫ ∞
−∞

ρ(x, t)K(x, y)dx

=

∫ ∞
−∞

dy ρ(y, t+ 1)−
∫ ∞
−∞

dy ρ(y, t+ 1) = 1− 1 = 0.

So we have shown that

H
[
ρ(x, t)

∥∥ρ̂(x, t)
]
−H

[
ρ(x, t+ 1)

∥∥ρ̂(x, t+ 1)
]
≤ 0. (3.9)

Now, if the dynamics is one-to-one, then one can introduce a K−1(x, y) such that

ρ(y, t) =

∫ ∞
−∞

ρ(x, t+ 1)K−1(x, y)dx. (3.10)
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Then, all the above mathematics can be repeated, and one has

H
[
ρ(x, t)

∥∥ρ̂(x, t)
]
−H

[
ρ(x, t+ 1)

∥∥ρ̂(x, t+ 1)
]
≥ 0. (3.11)

Now combining Eqns. (3.9) and (3.11), we have

H
[
ρ(x, t)

∥∥ρ̂(x, t)
]
−H

[
ρ(x, t+ 1)

∥∥ρ̂(x, t+ 1)
]

= 0, (3.12)

or
H
[
ρ(x, t)

∥∥ρ̂(x, t)
]

= const. (3.13)

What is the significance of this mathematical result? Especially to biological dynamics?
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Chapter 4

Birth, death, and population dynamics

In ordinary differential equations, dx/dt = rx with a positive r or a negative r are solved
in a same manner. The negative r problem is known as radioactive decay; and a positive r
is about the growth of a population and the cumulation of bank interests. In the last section,
however, we have seen that the negative r problem is actually related to an exponentially
distributed time. Can we also applied the same discussion above to a growing population?
Is the dynamics of a popultion with death rate d1 and birth rate b1, b1 − d1 = r the same as
another population with b2, d2 and b2 − d2 = r?

Certainly, the exponential time problem, with distribution fT (t) = re−rt, does not make
any sense if the r is negative! However, the idea of an exponential time for an event of birth
rather than death, can still apply.

To have a better understanding of “births” as a sequence of birthing events with random
time, let us consider the following problem.

4.1 Rare event and exponential waiting time
We consider a repeated event that ocurrs at a random time. This can be births, or deaths,
or arriving at a shop, or a molecular reaction. We assume that the events follows three
assumptions:

(i) the event occurrence is homogeneous in time, with number of events per
unit time being r. r is the rate of the occuring events.

(ii) the occurrences of the events in disjointed intervale [t1, t2] and [t2, t3] are
independent;

(ii) in an infinitesimal time interval [t, t + dt], the probability of two events
occur is negligible, i.e., on the order of o(dt).

These three assumptions lead to the following equation:

P (t+ dt) = P (t) (1− rdt+ o(dt)) . (4.1)
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Therefore,
P (t+ dt)− P (t) = −rP (t)dt+ o(dt), (4.2)

taking the limit dt→ 0, we have

d

dt
P (t) = −rP (t). (4.3)

We note that decay of a block of radioactive material is not homogeneous in time.

4.2 General birth and death dynamics of a single popula-
tion

0
u0

GGGBFGGG

w1

1 · · · GGGBFGGG

wn−1

n− 1
un−1

GGGBFGGG

wn
n

un
GGGBFGGG

wn+1

n+ 1
un+1

GGGBFGGG · · · (4.4)

in which u` and w` are the birth and death rates with population `. They are not rate
per capita. They are the rates for increasing one individual and decrease one individual,
respectively.

Let us consider the simplest case of with birth and death rates, per capita, b and d. Then
one has un = nb and wn = nd. Let X(t) be the population in numbers, and pn(t) =
Pr{X(t) = n} be the probability of having n individuals in the population at time t. Then

d

dt
pn(t) = (n− 1)bpn−1 − (nb+ nd)pn + (n+ 1)dpn+1, (n ≥ 0). (4.5)

d

dt
〈X(t)〉 =

d

dt

(
∞∑
n=0

npn(t)

)

=
∞∑
n=0

(n− 1)2bpn−1 − n2(b+ d)pn + (n+ 1)2dpn+1

+
∞∑
n=1

(n− 1)bpn−1 −
∞∑
n=0

(n+ 1)dpn+1

=
∞∑
n=1

(n− 1)bpn−1 −
∞∑
n=0

(n+ 1)dpn+1

= (b− d)〈X(t)〉. (4.6)

Indeed, the dynamics for the mean 〈X(t)〉 depends only one the difference of b− d. How-
ever, one can also compute the variance of X(t):

V ar[X(t)] = 〈X2(t)〉 − 〈X(t)〉2, (4.7)
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in which

〈X2(t)〉 =
∞∑
n=0

n2pn(t). (4.8)

Then,

d

dt
〈X2(t)〉 =

d

dt

∞∑
n=0

n2pn(t)

=
∞∑
n=0

b
[
n2(n− 1)pn−1 − n3pn

]
+ d

[
n2(n+ 1)pn+1 − n2pn

]
=

∞∑
n=0

b
[
n2(n− 1)pn−1 − n(n+ 1)2pn + (2n+ 1)npn

]
+ d

[
n2(n+ 1)pn+1 − n(n− 1)2pn − (2n− 1)npn

]
=

∞∑
n=0

[b(2n+ 1)n− d(2n− 1)n] pn

= 2b〈X2(t)〉+ b〈X(t)〉 − 2d〈X2〉+ d〈X(t)〉. (4.9)

d

dt
V ar[X(t)] =

d

dt

[
〈X2(t)〉 − 〈X(t)〉2

]
= 2(b− d)〈X2(t)〉+ (b+ d)〈X(t)〉 − 2〈X(t)〉(b− d)〈X(t)〉

= 2(b− d) V ar[X(t)] + (b+ d)〈X(t)〉. (4.10)

The differential equation for V ar[X(t)],

d

dt
V ar[X(t)] = 2(b− d)V ar[X(t)] + (b+ d)〈X(t)〉, (4.11)

is a linear, constant coefficient, inhomogeneous, first-order ordinary differential equation.
Its solution can be obtained using the procedure in Sec. 4.3. Therefore, the mean and the
variance of the population X(t) are

〈X(t)〉 = Xoe
(b−d)t, (4.12)

V ar[X(t)] = Xo

(
b+ d

b− d

)
e(b−d)t

(
e(b−d)t − 1

)
. (4.13)

The relative variance
V ar[X(t)]

〈X(t)〉2
=

1

Xo

(
b+ d

b− d

)(
1− e−(b−d)t

)
. (4.14)

We see that for the same net growth rate r = b− d, larger the b+ d, larger the variance.
In a realistic population dynamics, the different rates of birth and death, b and d, matter;
not just their difference r = b− d.
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4.3 Solving a linear inhomogeneous equation

dx

dt
= −rx+ g(t). (4.15)

First, one obtains the general solution to the homogeneous equation, xho(t) = Ae−rt.
To obtain a paticular solution to the inhomogeneous equation, one apply the method of
variation of parameters by consider

xinh(t) = A(t)e−rt. (4.16)

Substituting this into Eq. (4.15), we have

A′(t)e−rt − rA(t)e−rt = −rA(t)e−rt + g(t);

A′(t)e−rt = g(t);

A′(t) = g(t)ert;

A(t) =

∫ t

0

g(s)ersds;

Hence, the general solution to Eq. (4.15) is

x(t) = xho(t) + xinh(t) =

(
x(0) +

∫ t

0

g(s)ersds

)
e−rt. (4.17)

4.4 Time inhomogeneous dynamics with random ξ(t)

Let us now assume that there are complex sources contributing to the growth dynamics in
Eqn. (4.15). We shall model the g(t) in Eqn. (4.15) as a piecewise constant “random”
function ξ(t), over each short δ time interval and taking values, independently, from a
distribution fξ with zero mean:

x(t) = e−rt
(
x(0) +

∫ t

0

ersξ(s)ds

)
. (4.18)

We have 〈
x(t)

〉
= x(0)e−rt + e−rt

∫ t

0

ers
〈
ξ(s)

〉
ds = x(0)e−rt. (4.19)

30



More interestingly,

V ar
[
x(t)

]
=

t/δ∑
k=1

V ar[ξ]

(∫ kδ

(k−1)δ

e−rsds

)2

= V ar
[
ξ
] t/δ∑
k=1

(
e−r(k−1)δ − e−rkδ

r

)2

=

(
1− e−rδ

r2 (1 + e−rδ)

)(
1− e−2rt

)
V ar[ξ]

≈
(
1− e−2rt

)
V ar[ξ]

{
δ
2r

rδ � 1

1
r2

rδ � 1
(4.20)

Finally, the relative “error”√
V ar

[
x(t)

]〈
x(t)

〉 =

(
1− e−rδ

r2 (1 + e−rδ)

) 1
2
(√

1− e−2rt

e−rt

) √
V ar[ξ]

x(0)
. (4.21)

And for large time rt � 1, we have a stationary stochastic dynamics x(t) fluctuating
around x = 0 with variance

V ar
[
xstationary(t)

]
=

(
1− e−rδ

r2 (1 + e−rδ)

)
V ar[ξ]. (4.22)
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Chapter 5

Population dynamics with multi-stability

5.1 Population growth with predation
We are now consider a classic problem in population dynamics: a logistic growing popula-
tion encounters a predation:

dX

dτ
= r̂X

(
1− X

K̂

)
− BX2

A2 +X2
. (5.1)

It is easy to check that the parameters A and K̂ have the same dimensions as X , r̂ has
dimension [time]−1, and B has the dimension of [X][time]−1. r̂ is the per capita growth
rate when there is no intra-population interaction; K̂ is the carrying capacity;A is a measure
of a threshold at which the predation becomes significant; and B is amount of predator.

Before proceeding with analyses or computations, it is almost obligatory to simplify
the equation through non-dimensionalization with

x =
X

A
, r =

Ar̂

B
, q =

K̂

A
, t =

Bτ

A
. (5.2)

Substituting the those in (5.2) into (5.1), we have

dx

dt
= b(x)− d(x) = rx

(
1− x

q

)
− x2

1 + x2
. (5.3)

Let the right-hand-side of (5.3)

f(x; r, q) = rx

(
1− x

q

)
− x2

1 + x2
.

The roots of f(x), the function on the right-hand-side of the ordinary differential equation
(5.3), is a very important quantity for the population dynamics described by an ODE: they
are the steady states of the dynamical system. In other words, if a system starts exactly at a
steady state, the dx

dt
= 0, hence x(t) = x(0) forever!
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For certain parameters, the system in (5.3) can have four steady states. For example,
when r = 1

2
and q = 10. The four steady states are at 0, 0.67, 2, and 7.3. The zerro steady

state x = 0 should always be there for a reasonable population dynamics: In the absence
of immigration, if there is no one there at time zero, it will have nobody for all time later.
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Figure 5.1: The right-hand-side of the differential equation in (5.3), f(x, r, q), with q = 10,
and r = 0.5, 0.6, and 0.35. We observe that they corresponding to respectively, in addition
to a steady state at x = 0, “three steady states”, “one steady state”, and “one, another steady
state”.

Using the R command curve(y(x),x0,x1,lwd=3), Fig. 5.1 shows the functions
f(x; 0.5, 10), f(x; 0.6, 10), and f(x; 0.35, 10). We note that the number of roots of f(x)
changes with different r.

5.2 The Schlögl chemical bistability

Let us consider a biochemical reaction system that involves autocatalysis, or positive feed-
back, known as the Schlögl model:

A+ 2X
k1

GGGBFGGG

k2

3X, B
k3

GGGBFGGG

k4

X. (5.4)
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The ordinary differential equation (ODE) according to the law of mass action is

dx

dt
= k1ax

2 − k2x
3 + k3b− k4x, (5.5a)

da

dt
= −k1ax

2 + k2x
3, (5.5b)

db

dt
= −k3b+ k4x. (5.5c)

We note that combining the two reversible reactions in (5.4) yields an overall transforma-
tion between A and B: A GGGBFGGG B.

A closed biochemical system. What is the steady state of the biochemical dynamics in
(5.4)? Letting the right-hand-side of Eq. (5.5) to be zero, we have

−k3b+ k4x = −k1ax
2 + k2x

3 = k1ax
2 − k2x

3 + k3b− k4x = 0. (5.6)

This yields
x∗

b∗
=
k3

k4

,
a∗

x∗
=
k2

k1

, =⇒ a∗

b∗
=
k2k3

k1k4

. (5.7)

This is in fact well-known in chemistry: Neglecting all the intermediates:

A
k1

GGGBFGGG

k2

· · ·
k4

GGGBFGGG

k3

B,

the chemcial equilibrium concentrations of A and B:(
[A]

[B]

)eq
=
k2k3

k1k4

. (5.8)

Note that in a chemical or biochemical equilibrium, there is no net flux in each and every
reaction.

The equilibrium relations in (5.7) determine the ratio of equilibrium concentrations,
but not their actual values. They have to be determined by the initial concentrations of the
participating chemical species.

In a closed biochemical reaction system, no matter how many different biocheimical
species involved in how many complex biochemical reactions, in the long time the system
will reach a chemical equilibrium.

An open biochemical system. Now consider a single living cell, as those in a cell
culture in a biomedical laboratory, as a complex biochemical reaction system. The “A”
and “B” in (5.4) can be glucose (C6H12O6) and CO2+H2O. The X can be all the important
biochemicals inside a single cell: vitamins, proteins, and DNA. Then the most important
aspect in a cell culture is to constantly change the “cell culture medium”, that is to keep the
A and B out of their equilibrium.

In fact, from the stand point of cell biochemistry, it is reasonable to simply assume that
the concentrations of A and B are at some constant level of a and b, fixed; not changing
with time at all. Such a device in a biomedical laboratory is called a “chemostat”.
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Let us now consider some numbers: If we have k1 = 3, k2 = 0.6, both in the unit
of (mM)−2sec−1, and k3 = 0.25, k4 = 2.95 both in the unit of sec−1, then ([A]/[B])eq

= 0.6 × 0.25/(3 × 2.95) = 1
59

. Fig. 5.2 shows the steady state of the biochemical system
with fixed concentrations of a and b for A and B.
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Figure 5.2: The right-hand-side of the differential equation in (5.5a) with various fixed
values of a and b. Left panel: a = 1 and b = 59 give an equilibrium steady state in which
xeq = 5. Middle panel: a = 1 and b = 1 yield a bistable system with two stable steady
states. Right panel: a = 0.8 and b = 1, again a single steady state; the another one this
time.

5.3 Local stability analysis
Are all the steady states the same in Fig. 5.1, or in Fig. 5.2? There are stable and unstable
steady states. In fact, one can re-write the right-hand-side of the ODE as

dx

dt
= f(x) = −dU(x)

dx
in which U(x) = −

∫ x

0

f(z)dz. (5.9)

Then, a stable steady state of the ODE is represented by a minimum of the U(x), and an
unstable steady state of the ODE is represented by a maximum of the U(x). The dynamics
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described by the differential equation can be visualized as a “down-hill” movement on a
“energy landscape”.

Both Figs. (5.1) and (5.2) show that the number of steady states of a differential equa-
tion can change with the parameters. One can in fact plot the steady state(s) of an ODE as
a multi-valued function of a parameter.

5.4 Multivalued scalar functions
In the section, we carry out, hopefully a thorough, analysis of a multivalued scalar function:
first with a single independent variable, u(q), and then with two variables u(q, r).

A multivalued scalar function usually is defined as the roots to an algebraic equation
with a parameter or several parameters, like f(u; q) = 0 or f(u; q, r) = 0. Assuming
the f(u; q) is smooth and differentiable with respect to both u and q, then in calculus we
have learned that the root to equation f(u; q) = 0 is a continuous curve in the (u, q) plane.
Taking q as the abscissa and u as the ordinate, this curve in general can have zero, one, or
more u values for each q.

Single variable f(u; q) = 0⇒ u(q). If f(u; q) is linear function of u, then:

f(u; q) = a(q)u+ b(q) = 0;

u = − b(q)
a(q)

, for q with a(q) 6= 0.

In fact, at q where a(q) = 0, the root u simply tends to positive or negative infinity. In-
cluding the positive and negative infinity, there is one and only one u for each q. There
could be several q’s with a same u, however. One of the simple examples is f(u; q) =
sin q − (cos q)u = 0; then u = tan q.

What happens if the function f(u; q) is a nonlinear function of u? In R, the command

> library(rootSolve)
> uniroot.all(function(x) 0.5*x*(1-x/10)-xˆ2/(1+xˆ2),

lower=-1,upper=8)

yields

[1] -2.062765e-05 6.833736e-01 2.000000e+00 7.316625e+00

which should be compared with the left panel of Fig. 5.1. Now, by using a for-loop, we
can have

> rval <- seq( from=0.35, to=0.65, by=0.003 )
> xss <- matrix (ncol=3, nrow=101)
> for (i in 1:101) { xss[i] <- uniroot.all ( function(x)

rvalue[i]*x*(1-x/10)-xˆ2/(1+xˆ2),
lower=0.01, upper=8 )

37



}
> x1 <- matrix (ncol=2,nrow=101)
> x1[,1] = rval; x2= x1; x3 = x2
> for (i in 1:100) { x1[i,2]=xss[i,1]

x2[i,2]=xss[i,2]
x3[i,2]=xss[i,3]

}

Fig. 5.4 shows the multiple values of the roots to algebraic equation rx(1−x/10)−x2/(1+
x2) = 0 for the value of r ∈ [0.35, 0.65]. This figure should be compared with all three
panels in Fig. 5.1. One of the most striking features of Fig. 5.4 is the “abrupt appearance
or disappearance” of a pair of roots, “out of blue”. This corresponds to a pair of roots
“becoming complex” so they no longer exist in the real space with x ∈ R.

Two-variable f(u;α, β) = 0 ⇒ u(α, β). We note that the rhs of Eq. (5.3) has
actually two parameters r and q. Therefore, the roots of f(u; q, r) are actually a scalar,
multivalued function of two independent variables. The curve in Fig. 5.4 then becomes a
multi-layered surface in a three-dimensional real space. Searching the words “catastrophe”
with “Rene Thom” on the web and looking for images, your will see how such a surface
has a very novel feature: Treating q and r as independent variables and u(q, r) as a multi-
layered surface, there are regions in (q, r) plane that correspond to a single layer of u, while
other regions that have three layers. At the boundary of these two regions the u has exactly
two values.

One would like to be able to locate this boundary. Let us now solve this very intriguing
math problem. It requires some skill in your calculus. Using again the rhs of (5.3) as an
example. We already knew that it always has a root x = 0. So the remaining problem is to
find the other, possibly three, roots from

f(u;α, β) = α(β − u)− u

1 + u2
= 0, (5.10)

in which α = r/q and β = q. This change of notations simplifies a little bit of the algebra.
Fig. 5.5A shows the root of the equation as a function of β, for several different α.

The situation with exactly two roots is a critical case. It occurs when f(u;α, β) is
tangent to the f = 0 axis, say at x = ξ. So both f(ξ) = 0 and f ′(ξ) = 0 at ξ:

α(β − ξ)− ξ

1 + ξ2
= 0, −α− 1− ξ2

(1 + ξ2)2
= 0. (5.11)

If we eliminate the ξ from this pair of equations, we establish a relation between α and β,
which gives the boundary for the region in which the system has three roots.

Unfortunately, the elimination of ξ from Eq. (5.11) is not a simple task! However, we
note that we can obtain the following two equations from Eq. (5.11)

α =
ξ2 − 1

(1 + ξ2)2
, β =

2ξ3

ξ2 − 1
, 1 ≤ ξ ≤ ∞. (5.12)
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Recall that if both α and β can be expressed in terms of a parameter ξ, then Eq. (5.12) is
known as a parametric equation for the curve β(α). A well-known example is x = R cos t
and y = R sin t actually define a circle x2 + y2 = R2. Fig. 5.5B shows the function α
vs. β: α increases with ξ for ξ ∈

[
1,
√

3
]
, then decreases with ξ >

√
3. There is a cusp at

ξ =
√

3 .
One can understand the cusp qualitatively by simply considering the multi-layered sur-

face u(α, β) defined by Eq. (5.10).

5.5 Nonlinear bifurcation
We now return to the ODE in (5.3). Note that all the discussion below applies equally well
to One of the most striking features of Fig. 5.4 is the “abrupt appearance or disappearance”
of a pair of roots, “out of blue”. This corresponds to a pair of roots “becoming complex”
so they no longer exist in the real space with x ∈ R. the ODE in (5.5a) with constant a and
b.

In nonlinear dynamical systems theory, the phenomenon of “abrupt appearance or dis-
appearance” of a pair of steady states, “out of blue”, is called a “saddle-node bifurcation”.
It indicates certain qualitative change in the dynamics. A plot of steady states as a multi-
valued function of a parameter, such as shown in Figs. 5.4 and 5.5A, are called bifurcation
diagram. Then in the case of two parameters, the behavior of the red, orange and green
curves in Fig. 5.5A is known as catastrophe. It involves two saddle-node bifurcation
events.

Saddle-node, transcritical, and pitchfork bifurcations. The canonical forms are

dx

dt
= µ− x2, ⇒ xss =

{
−√µ non-existent when µ ≤ 0, unstable when µ ≥ 0√
µ non-existent when µ ≤ 0, stable when µ ≥ 0

(5.13)
dx

dt
= µx− x2, ⇒ xss =

{
0 stable when µ < 0 and unstable when µ > 0
µ unstable when µ < 0 and stable when µ > 0

(5.14)

and

dx

dt
= µx− x3, ⇒ xss =

{
0 stable when µ < 0 and unstable when µ > 0
±√µ non-existent when µ < 0, stable when µ > 0

(5.15)
with bifurcation diagrams as shown in Fig. 5.6A, B, and C.

XPPAUT. XPPAUT is a computer program particularly designed to analyze ordinary
differential equations and bifurcations, developed single-handedly by Professor G. Bard
Ermentrout of University of Pittsburgh:

http://www.math.pitt.edu/˜bard/xpp/xpp.htm
Fig. 5.7 are two examples generated by XPPAUT.

Supercritical, subcritical, and structural stability. What is the relation between an
ODE dx

dt
= f(x) and dx

dt
= −f(x)? All the arrows in Fig. 5.6 change directions, all the

solid lines and dash lines switch, and all the filled circle and open circle exchange. The
pitchfork bifurcation in this case is called a subcritical pitchfork bifurcation.
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Both transcritical and pitchfork bifurcations are structurally unstable; saddle-node bi-
furcation, however, is structurally stable. The distinction between “structurally stable phe-
nomenon” and “structurally unstable phenomenon” is very important in biological model-
ing.

Here is an example: Consider both logistic population growth

dX

dt
= rX

(
1− X

K

)
and

dX

dt
= rX

(
1− X

K

)
+ ε,

where the positive ε represent a very small rate of immigration. There is a transcritical
bifurcation in the first model at K = 0. The two steady states of the second model are

Xss
1,2 =

K ±
√
K2 + 4Kε/r

2
,

in which the positive and negative branches no longer interset for any K value. The trans-
critical bifurcation phenomenon disappeared! From a biological standpoint, of course, the
negative K and negative Xss have no meaning. But as we shall show later in stochastic
population dynamics, there is a real significance of ε > 0, no matter how small.

Waddington’s epigenetic landscape.
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Figure 5.3: Let panel: solutions to the ODE in Eq. (5.3) with q = 10 and r = 0.5;
right panel: solutions to the ODE in (5.5a) with a = b = 1, and other parameters k1 =
3, k2 = 0.6, k3 = 0.25, k4 = 2.95. Both ecological dynamics and biochemical dynamics
exhibit bistability: Depending on the initial state of a system, its ultimate fates can be very
different. The unstable steady state is often called a “threshold”.
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Figure 5.6: Bifurcation diagrams and corresponding vector fields before, during, and after
bifurcations. An arrow along a line indicates the directions of a vector field, while an
open circle and a filled circle represent a unstable and a stable fixed point, respectively.
(A) Saddle-node (out-of-blue) bifurcation has a pair of stable and unstable fixed points
simultaneously appear. (B) Transcritical bifurcation does not change the number of fixed
points, rather there is a switch of stability. (C) Pitchfork bifurcation turns a stable fixed
point into a unstable one surrounded by a pair of stable fixed points. All bifurcations
shown here are “local”, which means that a vector field has an infinitesimal local change at
the critical bifurcation point when µ = 0.

Figure 5.7: Two views of saddle-node and pitchfork bifurcation diagrams, generated by
XPPAUT, for the differential equations in (5.13) and (5.15). The red lines represent stable
fixed point, and the gray lines represent unstable fixed point.
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Chapter 6

Chemical reaction: A nonlinear
bifurcation in molecular mechanics

6.1 Newtonian mechanics and the concept of energy
The concept of center-of-mass. It is the concept of center-of-mass that allows Newtonian
mechanics being able to be applied to a wide variety of scenarios, to complex objects.

The concept of mechanical energy. We start with Newton’s second law of motion:

m
d2x

dt2
= F (x). (6.1)

If one introduces a potential of force

U(x) = −
∫ x

x0

F (y)dy, (6.2)

then one has
dU(x)

dx
= −F (x), (6.3)

and
m

2

(
dx

dt

)2

+ U(x) = constat , (6.4)

in which the term 1
2
mv2, called by Gottfried Leibniz as vis viva, is now called kinetic

energy. Here is an excerpt from wikipedia on “Energy”:

The word energy derives from Greek ενέργεiαζ (energeia), which possibly
appears for the first time in the work of Aristotle in the 4th century BC.

The concept of energy emerged out of the idea of vis viva (living force), which
Leibniz defined as the product of the mass of an object and its velocity squared;
he believed that total vis viva was conserved. To account for slowing due to
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friction, Leibniz theorized that thermal energy consisted of the random motion
of the constituent parts of matter, a view shared by Isaac Newton, although
it would be more than a century until this was generally accepted. In 1807,
Thomas Young was possibly the first to use the term ”energy” instead of vis
viva, in its modern sense. Gustave-Gaspard Coriolis described “kinetic en-
ergy” in 1829 in its modern sense, and in 1853, William Rankine coined the
term “potential energy”. It was argued for some years whether energy was a
substance (the caloric) or merely a physical quantity, such as momentum.

It has to wait for Einstein’s theory that unifies energy and mass: E = mc2.
Energy conservation to include heat. In Eq. 6.4, the force from −dU

dx
is called conser-

vative since kinetic energy and potential energy can forever convert back-and-forth. This
is not the case if there is an energy dissipation due to frictional force. A frictional force is
proportional to the velocity of a moving object:

m
d2x

dt2
= −dU(x)

dt
− ηdx

dt
, (6.5)

the last term no the right-hand-side is a frictional force. It is equal to zero if velocity dx
dt

= 0.
Now parallel to the deviation of Eq. 6.4, we now have

d

dt

[
m

2

(
dx

dt

)2

+ U(x)

]
= −η

(
dx

dt

)2

. (6.6)

The right-hand-side is the instantaneous rate of heat energy produced, which is equal to
the rate of energy decreasing in the mechanical system. The total mechanical energy (=
kinetic + potential) is no longer conserved in this system with friction. However, counting
the rate of heat dQ

dt
:

d

dt

[
m

2

(
dx

dt

)2

+ U(x)

]
= −dQ

dt
⇔ d

dt

[
m

2

(
dx

dt

)2

+ U(x) +Q

]
= 0. (6.7)

The total energy conservation, including mechanical and thermal, is again regained.

6.2 Simple harmonic oscillator with damping
Let us now consider a Newtonian mechanical system with a point mass at x, which is
attached to a Hookean spring with re-storing force −kx and a frictional force −η dx

dt
. Then

according Newton’s second law of motion:

m
d2x

dt2
= total force = − kx︸︷︷︸

elastic

− η
dx

dt
.︸︷︷︸

frictional

(6.8)
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The standard way to solve this linear, constant coefficient equation (6.8) is to assume
the general solution with the form ert. Then we obtain the characteristic polynomial for r:

mr2 + ηr + k = 0, (6.9)

whose two roots are

r1,2 =
−η ±

√
η2 − 4mk

2m
. (6.10)

The general solution to Eq. 6.8 is

x(t) = c1e
r1t + c2e

r2t. (6.11)

We see that that if η 6= 0 (η has to be positive from the physical requirement), then with
increasing t, x(t) in (6.11) tends to zero.

However, depending on whether η2 ≥ 4mk or η < 4mk, the x(t) approaches to zero
either monotonically or oscillatorily with frequence

√
4mk − η2. The latter corresponds

to Eq. 6.9 having a pair of complex roots.
Heavily overdamped system. When η2 � 4mk, the mechanical system is called heav-

ily overdamped. In this case, one can approximate the two roots in (6.10). We use the
important formula

(1 + s)1/2 ≈ 1 +
s

2
− s2

8
+ · · · (6.12)

for small s. Then

r1,2 =
−η ±

√
η2 − 4mk

2m
=
−η ± η

√
1− 4mk/η2

2m

≈
−η ± η

(
1− 2mk/η2 − 2m2k2/η4

)
2m

=

{
−k/η

(
1 +mk/η2

)
≈ −k

η

−η/m
(
1−mk/η2 −m2k2/η4

)
≈ − η

m

Both r1 and r2 are negative. Since η2 � 4mk, |r2| � |r1|. Therefore, an overdamped
system has a very rapid acceleration phase in which “inertia balancing friction”, e.g.,mẍ =
−ηẋ, and a relatively slow motion in which “friction balances elasticity”, i.e., ηẋ = −kx.

Significantly underdamped system. What happens if η2 � 4mk? In this case, we have

r1,2 =
−η ±

√
η2 − 4mk

2m
=
−η ± i

√
4mk

√
1− η2/(4mk)

2m

≈ − η

2m
± i
√
k

m
.

We have a decaying oscillation with frequency ω =
√
k/m and a much slower decaying

rate η/(2m) � ω. On the fast time scale, the inertia balances the elasticity: mẍ = −kx,
just like a Harmonic oscillation without damping.
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Figure 6.1: Upper pannel: A schematic overview of protein-ligand complex separation
with the AFM. Lower pannel: One-dimensional model. The position of the ligand will be
denoted by x.

6.3 Mechanical modeling of biomolecular transitions
In this section, we shall develop a mathematical model for the phenomenon of “forced
biomolecular ‘bond’ rupture” first observed by Florin, Moy and Gaub in 1994. Their ex-
perimental observations were published in Science.1 However, their “interpretations” were
quite erroneous.

The problem, even though it is on a single biological molecule (a protein) and its natural
partner (called a ligand) in water, is a very ideal Newtonian mechanical system. One can
develop a mechanistic model (or theory) based two laws: Newton’s law of motion and van
der Waals’ formula for the force between two molecules, together with a list of further
assumptions.

We model the external force exerted by a cantilever from an atomic force microscope
(AMF) as a linear, harmonic spring:

m
d2x

dt
= −Fint(x) + k(d− x)− ηdx

dt
, (6.13)

in which x is the distance between the center-of-mass of the ligand to the center-of-mass
of the protein, which is assumed to be fixed.2 m is the mass of the ligand, η is its frictional
coefficient in water, k(x − x0) represents the force exerted by the AFM cantilever, with d

1Florin, E.L., Moy, V.T. and Gaub, H.E. (1994) Adhesion between individual ligand receptor pair. Science
264 415–417.

2This immediately gives the insight that the internal structure of the protein can change under the pulling.

48



0.5

1

1.5

2

2.5

3

3.5

0 5 1 5 2 5 3 5

Li
ga
n
d
 p
o
si
ti
o
n
  z

(A)

0.5

1

1.5

2

2.5

3

3.5

0.5 1.5 2.5 3.5

Li
ga
n
d
 p
o
si
ti
o
n
  z

AFM cantilever position  

(A)

Figure 6.2: Mechanical equilibrium position of the ligand, z, as a function of δ, the position
of the base of the cantilever, with several different αs, the stiffness of the cantilever. z = 1
is the equilibrium position of the ligand in the absent of the AFM force. Red: α = 0.1;
blue: α = 0.3, and green: α = 0.7.

being the position of the base of the cantilever. Fint(x) is the interaction force between the
ligand and the protein, it has the celebrated van der Waals potential Uvdw(x)

Fint(x) =
dUvdw(x)

dx
, Uvdw(x) = −U0

[
2
(x0

x

)6

−
(x0

x

)12
]
. (6.14)

Because water is a rather viscous medium, we further assume that (1) the mechanical
system is overdamped, i.e., we can neglect the mass term. Therefore, Eq. (6.13) can be
simplified into

η
dx

dt
= −Fint(x) + k(d− x). (6.15)

We now ask the question: When d is slowly increased, i.e., the AFM is pulling the
ligand away from the protein, how does the position of the ligand change?

This is in fact a static, force balance problem: Fint(x) = k(d− x). That is,

U0

x0

[
12
(x0

x

)7

− 12
(x0

x

)13
]

= k(d− x). (6.16)

The solution x to the equation, as a function of d, is the answer to our question.

But if our meassurement for x is precisely the distance between the center-of-masses, then it does not matter.
However, in real world experiments, this is nearly impossible. So there will be consequences.
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Figure 6.3: Total mechanical energy, Utot(z), as a function of the ligand-protein (center of
masses) distance z for several different values of δs. Red: δ = 1.3, green: δ = 2.2, and
orange: δ = 3.3. All with α = 0.1, correspond to the red curve in Fig. 1.

There are many parameters in the equation. But they can be grouped together:

z = x/x0, δ = d/x0, and α = kx2
0/(12U0),

then,
z−7 − z−13 = α (δ − z) . (6.17)

Note that all three quantities, z, δ, and α are dimensionless. non-dimensionalization is
a very useful way to simplify mathematical models without involving any approximation.
It uses the internal scales as units for physical quantities in a model.

This equation can not be solved in a closed form for z(δ). However, one can obtain a
parametric equation for the function:

z =

(
1±
√

1− 4ξ

2

)− 1
6

, δ = z +
ξ

αz
, ξ ∈

[
−∞, 1

4

]
. (6.18)

Fig. 1 shows several z as functions of δ with different α’s. We see with increasing α, i.e.,
the spring becoming more stiff, the “sluggish” behavior disappears.

One can also understand the behavior in the figure in terms of the “potential energy
function”:

η
dx

dt
= −dUtot

dx
, (6.19)

where

Utot(x) = Uvdw(x) +
1

2
k(x− d)2 = −U0

[
2
(x0

x

)6

−
(x0

x

)12
]

+
1

2
k(x− d)2. (6.20)
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In non-dimensionalized form, it is

Utot(z)

U0

= −

[
2

(
1

z

)6

−
(

1

z

)12
]

+ 6α(z − δ)2. (6.21)

Fig. 2 shows the total potential energy function Utot(z) for three different values of δ.
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Chapter 7

Nonlinear dynamics of two interacting
populations

7.1 The Lotka-Volterra predator prey model
Let N(t) be the population density of a prey, and P (t) be the population of a predatory.
The prey has its own growth rate a in the absence of predator; and the predator has its own
negative growth rate −d in the absence of prey, which is its essential food source. Then we
have

dN(t)

dt
= N(a− bP ),

dP (t)

dt
= P (cN − d). (7.1)

Introducing non-dimensionalized variables

u(t) =
cN(t)

d
, v(t) =

bP (t)

a
, τ = at, α =

d

a
,

we have
du

dτ
= u(1− v),

dv

dτ
= αv(u− 1). (7.2)

Putting the pair of nonlinear ordinary differential equations into R, we see that u(τ) and
v(τ) are both oscillatory as functions of time. In fact, in the (u, v) phase space, the u(τ)
and v(τ) form closed orbits, with different intial data, as shown in Fig. 7.2.

Lotka’s original chemical reaction dynamics. A. J. Lotka’s original work, published
in the Proceedings of the National Academey of Sciences of the USA, vol. 6, pp. 410–415,
in 1920, entitled “Analytical note on certain rhythmic relations in organic systems”, is a
mathematical model for nonlinear chemica oscillations. In fact, consider the autocatalytic
reaction system:

A+X
k1−→ 2X, Y +X

k2−→ (ν + 1)Y, Y
k3−→ B. (7.3)

It dynamics is described by the law of mass action:

dx

dt
= k1cAx− k2xy,

dy

dt
= νk2xy − k3y. (7.4)

53



0 1 2 3 4

0
1

2
3

4

Vector field

Predator population

P
re

y 
po

pu
la

tio
n

Figure 7.1: Predator-prey dynamics, as described by the differential equation (7.2), with
various initial values and α = 1: Red: u = 1, v = 0.1, orange: u = 2, v = 0.2, blue:
u = v = 2, brown: u = v = 1.7, and green u = v = 1.2.

So compared with (7.2) we have a = k1cA, b = k2, c = νk2, and d = k3.
Can we obtained the closed orbit in Fig. 7.2 from solving the differential equations?

The answer is yes. From Eqn. (7.2) we have

du

dv
=

u(1− v)

αv(u− 1)
. (7.5)

The solution to this equation is actually

α

(
u− 1

u

)
du =

(1− v)

v
dv,

α

∫ (
1− 1

u

)
du =

∫ (
1

v
− 1

)
dv,

αu+ v − ln (uαv) = C, (7.6)

where C is a constant of integration. Now we consider a two-variable function H(u, v) =
αu + v − ln (uαv). It can be shown that H(u, v) has its minimum at u = v = 1, and the
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surface has a curvature matrix
∂2H

∂u2

∂2H

∂u∂v

∂2H

∂v∂u

∂2H

∂v2

 =

(
α/u2 0

0 1/v2

)
, (7.7)

which is positive definite. That means the surface H(u, v) is “bowl like”. the the solution
in Fig. 7.2 are the contour curves of H(u, v) = C.

7.2 Linear analysis and matrix exponential

7.3 Competition dynamics
Consider two competing populations N1 and N2:

dN1

dt
= r1N1

(
1− N1

K1

− b12
N2

K1

)
, (7.8)

dN2

dt
= r2N2

(
1− N2

K2

− b21
N1

K2

)
. (7.9)

We introduce nondimensionalized variables:

x1 =
N1

K1

, x2 =
N2

K2

, τ = r1t, (7.10)

and

r =
r2

r1

, β12 = b12
K2

K1

, β21 = b21
K1

K2

. (7.11)

Then,
dx1

dτ
= x1(1− x1 − β12x2) = f(x1, x2), (7.12)

dx2

dτ
= rx2(1− x2 − β21x1) = g(x1, x2). (7.13)

Drawing null clines, it is easy to see that
(
x∗1 = x∗2 = 0

)
,
(
x∗1 = 1, x∗2 = 0

)
,
(
x∗1 =

0, x∗2 = 1
)
, and (

x∗1 =
1− β12

1− β12β21

, x∗2 =
1− β21

1− β12β21

)
,

are four fixed points. Furthermore, the last fixed point is in the positve quardrant if both
β12, β21 < 1, or both β12, β21 > 1. In other words, if one of the β’s is greater than 1, and
the other less than 1, then there is no fixed point in the first quardrant.
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We now carry out linear stability analysis. We are interested in the Jacobian matrix:

A =

(
∂f
∂x1

∂f
∂x2

∂g
∂x1

∂g
∂x2

)
(x∗1,x

∗
2)

=

(
1− 2x1 − β12x2 −β12x1

−rβ21x2 r(1− 2x2 − β21x1)

)
(x∗1,x

∗
2)

. (7.14)

Now applying this to the four fixed points.
At (0.0) we have λ1 = 1, λ2 = r. It is unstable.
At (1, 0), we have λ1 = −1, λ2 = r(1 − β21). Therefore, it is stable if β21 > 1 and

unstable if β21 < 1.
Then at (0, 1) we have a similar result: it is stable if β12 > 1 and unstable if β12 < 1.
Finally, for the positive fixed point:

A =
(
1− β12β21

)−1
(

β12 − 1 β12(β12 − 1)
rβ21(β21 − 1) r(β21 − 1)

)
(7.15)

We see that its trace
Tr[A] = β12 − 1 + r(β21 − 1), (7.16)

and its determinant

det[A] = r(1− β12β21)−1(β12 − 1)(β21 − 1). (7.17)

Therefore, if both β12, β21 > 1, then Tr[A] > 0 and det[A] < 0. Thus the positive fixed
point is a saddle.

If both β12, β21 < 1, then Tr[A] < 0 and det[A] > 0, and the positive fixed point is
stable.

A large β means strong competition; a smaller β means weaker competition. Therefore,
only when the two populations have equal balanced strength, there is the possibility for co-
existence. Then both are strong competitors, the initial situation matters.

7.4 The Morris-Lecar model for excitable dynamics
We now study another planar system, the Morris-Lecar model for excitable, membrane
electrochemical dynamics. ML model is a simplified version of the Hodgkin-Huxley (HH)
model originally developed in 1950s. The latter is a system of four ordinary differential
equations for (V, n,m, h)(t). In contrast, the ML model is

C
dV

dt
= −gCam∗(V )(V − VCa)− gKw(t)(V − VK)− gL(V − VL), (7.18a)

dw

dt
= −w − w

∗(V )

τw(V )
, (7.18b)
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in whivh

m∗(V ) = 0.5

(
1 + tanh

(
V − v1

v2

))
, (7.18c)

w∗(V ) = 0.5

(
1 + tanh

(
V − v3

v4

))
, (7.18d)

τw(V ) = τ ∗ cosh−1

(
V − v3

2v4

)
. (7.18e)

In physiological applications, this model was developed for the dynamics with an interplay
between calcium ions and potassium ions in muscles. Note that one can re-write the Eq.
(7.18b) as

dw

dt
= αw(V )(1− w)− βw(V )w,

with

αw(V ) =
w∗(V )

τ(V )
and βw(V ) = τ−1

w (V ).

The implicit assumption of usingm∗(V ) in (7.18a) rather than a dynamic equation form(t)
is that calcium dynamics is extremely fast on the time scale considered in Eq. (7.18).

We shall analyzing the ML equations with the following two sets of parameters:

Table I.

Parameter C gCa gK gL Vca VK VL (τ ∗)−1 Iext v1 v2 v3 v4

Set 1 20 4.4 8 2 120 -84 -60 0.04 90 -1.2 18 2 30
Set 2 20 5.5 8 2 120 -84 -60 0.22 90 -1.2 18 2 30

7.5 The Schnakenberg chemical oscillation
Known as the Schnakenberg model:

A
k1−→ X, X + 2Y

k2−→ 3Y, Y
k3

GGGBFGGG

k−3

B. (7.19)

According to the Law of Mass Action:

dcX
dτ

= k1cA − k2cXc
2
Y ,

dcY
dτ

= k2cXc
2
Y − k3cY + k−3cB. (7.20)

After non-dimensionalization:

x =

√
k2

k3

cX , y =

√
k2

k3

cY , t = k3τ, a =
k1

k3

√
k2

k3

cA, b =
k−3

k3

√
k2

k3

cB,
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Figure 7.2: Phase portrait of the Morris-Lecar excitable membrane dynamics, described by
the system (7.18) with the first set of parameters in Table I. Red line is the nullcline for
dw
dt

= 0 and the blue line is the nullcline for dV
dt

= 0. Their intersection is a stable fixed
point, a spiral as illustrated by the orange trajectory. The black trajectory also indicates
there is a stable limit cycle. Between the stable fixed point and stable limit cycle, there is
a unstable limit cycle as shown by the green trajectory. The green trajectory is obtained by
solving the system (7.18) with t→ −∞.

we have
dx

dt
= a− xy2 = f(x, y),

dy

dt
= b− y + xy2 = g(x, y). (7.21)

Planar system (7.21) has a single, positive steady state:

x∗ =
a

(1 + b)2
, y∗ = a+ b,

at which, the Jacobian matrix

A =

( ∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
(x∗,y∗)

=

(
−(y∗)2 −2x∗y∗

(y∗)2 −1 + 2x∗y∗

)

with determinanat and trace

det(A) = (a+ b)2, tr(A) =
a− b− (a+ b)3

a+ b
.

58



When tr(A) = 0, fixed point changes from stable to unstable. This is called a Hopf bi-
furcation. The Jacobian matrix actually provides a “frequency” for the spiral. The two
eigenvalues are

λ1,2 =
1

2

(
tr(A)±

√
tr2(A)− 4 det(A)

)

whose imaginary part, at the critical condition of Hopf bifurcation is det(A) = (a+ b)2.

7.6 Hopf bifurcation

7.7 Bifurcation and structural stability
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Chapter 8

Dynamics of gene regulatory networks

In modern cell biology, a key word is “regulation”.

8.1 Simple Goodwin’s model with feedback

Following the central dogma of molecular biology first stated by Francis Crick in 1958,1 Dr.
Brian Carey Goodwin (1931–2009) developed a mathematical model for gene expression
as early as 1965. It deals with three types of biochemical species: an mRNA (X), a protein
as an enzyme (Y ), and a metabolite (Z) whose formation is catalyzed by the enzyme:

dx

dt
= f(z)− d1x, f(z) =

V

K + zm
(8.1a)

dy

dt
= k1x− d2y, (8.1b)

dz

dt
= k2y − d3z. (8.1c)

In the system of equations (8.1), the synthesis of mRNA (X) is regulated by the “end
product”, the metabolite Z, with a negative feedback: If z increases, the rate ofX synthesis
f(z) decreases. Other forms of f(z) have also been studied. For example f(z) = a+zm

1+zm

with 0 < a < 1 represents a positive feedback.
One of the important features of biochemistry inside a living cell is that all biochemical

materials are continuously been degradated, e.g, decomposed. A constant level of a partic-
ular biochemical is only maintained with a continuous synthesis and degradation. d1, d2,
and d3 represent the degradation rates for mRNA, protein, and metabolite.

As we shall see, Goodwin’s model is still very influential in the current studies of the
dynamics of gene regulations.

1Crick, F. H. C. (1958) On protein synthesis. Symp. Soc. Exp. Biol. 12, 139–163.
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8.2 Self-regulating gene network
To understand epi-genetic differences of genomically identical cells, self-regulating gene
network has received tremendous attentions in recent years. In its simplest form, it has a
transcription factor (TF) binding to DNA step, two possible TF synthesis steps, and a TF
degradation step:

DNA +m TF
α

GGGBFGGG

β
DNA · TFm , (8.2a)

amino acids + DNA
g0−→ TF + DNA, (8.2b)

amino acids + DNA · TFm
g1−→ TF + DNA · TFm , (8.2c)

TF d−→ amino acids . (8.2d)

If g0 < g1, we say the gene expression has a positive feedback; if g0 > g1, we say the gene
expression has a negative feedback.

In the simplest form, the mathematical model for the biochemical system in (8.2) is
a planar system. We use X to denote the probability of the DNA with mTF bound, thus
(1−X) for the probability of the DNA without TF, and Y as the concentation of the TF:

dX

dτ
= αY m(1−X)− βX, dY

dτ
= g0a(1−X) + g1aX − dY, (8.3)

in which a stands collectively for the concentration of amino acids, which is assumed to be
a constant.

Now, with non-dimensionalization:

x = X, y =
Y

g1a
, t = τ d, g =

g0

g1

, ω =
β

d
, θ =

(
α

β

)(
g1a
)m
,

we have

dx

dt
= ω

[
θym(1− x)− x

]
= f(x, y),

dy

dt
= g + (1− g)x− y = h(x, y). (8.4)

Very large ω � 1. If the FT unbinding to DNA is much more rapid than its own
degradation, i.e., ω = β

d
� 1, then x(t) reaches its quasi-steady state quickly while y

barely changes:

x(y) =
θym

1 + θym
.

Therefore, substituting this into the second equation in (8.4),

dy

dt
=
g + θym

1 + θym
− y. (8.5)

Very small ω � 1. If the FT unbinding to DNA is much slower than its own degra-
dation, i.e., ω = β

d
� 1, then this time y(t) reaches its quasi-steady state quickly while x

barely changes:
y(x) = g + (1− g)x.

62



Substututing this into the first equation in (8.4), we have

dx

dt
= ω

{
θ
[
g + (1− g)x

]m
(1− x)− x

}
. (8.6)

8.3 A gene network as a clock
We now consider again a system of gene regulatory network in which there are three-step
relay: TF-1 is the repressor for gene expression of TF-2, which in turn is the repressor for
gene expression of TF-3, which in turn is the repressor for gene expression of TF-1.

We shall use mi and pi for the concentrations of mRNA and protein of FT-i:

dmi

dt
= f

(
pi−1

)
−mi, f(p) = α0 +

α1

1 + pn
, (8.7a)

dpi
dt

= −β
(
pi −mi

)
, (8.7b)

in which i = 1, 2, 3 and p0 = p3. That is, the (i − 1)th protein inhibits the synthesis of
ith mRNA. This model is known as repressilator, e.g, repression-driven oscillator. It is a
successful stroy of several independent engineering studies in 2000: A single pair of (m, p)
developed by Becskei and Serrano, two pairs of (m, p) giving rise to bistability investigated
by Gardner, Cantor, and Collins, and three pairs of (m, p), as in an oscillatory system (8.7)
by Elowitz and Leibler.

The steady state of the three systems with one, two, and three pairs of (m, p) can be
obtained as the roots to

f
(
f
(
f︸ ︷︷ ︸

k

(x)
))
− x = 0, (8.8)

in which k = 1, 2, 3. Note that f(x) is a monotonically decreasing function of x. Hence
f(f(f(x))) is also a monotonically decreasing function of x. This implies there is only a
single root to Eq. (8.8). It is the same root as f(x) = x:(

x− α0

)(
1 + xn

)
− α1 = 0. (8.9)

On the other hand, the function f(f(x)) is actually a monotonic increasing function of x.
Fig. 8.1 shows that f(x), f(f(x)) and f(f(f(x))) all intersect with x at a same x∗.

The system with two pairs of (m, p) are two genes with mutual repression. It actually
constitutes a positve feedback, as shown by the red curve in Fig. 8.1.
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Figure 8.1: f(x) = x, f(f(x)) = x, and f(f(f(x))) = x all have a same root. However,
f(f(x)) = x has two additional roots. Parameters α = 4 and m = 2.
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Chapter 9

A mathematical theory of conservative
ecology

The populations of biological species and organisms, or even the biochemical species inside
a living cell, usually are not at constant levels. Ecological conservation(s) should be under-
stood as a phenomenon among inter-related species, with a conservation of certain quanti-
ties that are combinations of the participating populations. To see how this works, one of
the good examples is the Lotka-Volterra predation-prey dynamics, in which the dynamics
populations of prey and predator, (u(t), v(t)), satisfy H(u, v) = α(u− lnu) + (v− ln v) =
const.

A mathematical theory of conservation ecology, therefore, is to discover and to define
these hidden relations and their manifestations. In this chapter, we shall outline the funda-
mentals of this approach.

9.1 H-function, geometric shape of invariant manifold,
and external parameters

Two essential notions of a “state”. In the very detailed dynamical perspective, a (micro-
)state is determined by the dynamics variables. So a single point in the phase space is
considered a representation of the system, which is continuously changing with time.

In a long-time, stationary perspective, a (steady-)state is an entire, ergodic invariant
manifold. The dynamics proceeds continously on the manifold.

9.2 Extending the conservation law to a broad context

9.3 From extensive quantity h to intensive quantity θ
The analysis carried out in the previous sections requires the invariant manifold to be er-
godic under the dynamics. For a complex dynamical system, the H-function is not single
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valued, rather, there are a set of conserved quantities ~h =
(
h1, h2, · · · , hK

)
. The the geo-

metric characterization A = A
(
~h, α

)
.

In many ecological problems, however, the complete list of conserved quantities is dif-
ficult to obtain. In this case, a changing of perspective from extensive quantity to intensive
quantity solves the problem of non-ergodicity. Coming with this change, however, is an in-
troduction of uncertainty: The theory of probability enters into the deterministic dynamical
systems theory.

9.4 Changing the dimensionality and Gibbs paradox
We now discuss one of the most important concepts in the theory of ecological conserva-
tion: the notion of chemical potential. We again consider a predator-prey system which
consists of n-pair of predator and prey, each and every one follows the same dynamic equa-
tion (7.2). This is a reducible dynamical system of 2n-dimensions.

It is easy to show that the total H-function is

Hn(x1, y1, x2, y2, · · · , xn, yn) =
n∑
i=1

H1(xi, yi), (9.1a)

in which
H1(x, y) = α

(
x− lnx

)
+
(
y − ln y

)
. (9.1b)

There is a very important, distinct feature in this system: A given Hn can in fact corre-
spond to many different possibility of H1, H2, · · · , each one of them are conserved in the
dynamics. Such dynamical system is known as non-ergodic. Therefore, treating n as an
external variable, the meaning of

An+1 −An
=

[
Hn+1

(
x1, y1, x2, y2, · · · , xn, yn, xn+1, yn+1

)
−Hn

(
x1, y1, x2, y2, · · · , xn, yn

)]
h,α

(9.2)

requires a careful analysis. One way to carry out this analysis is to change from a constant
h, an extensive quantity, perspective to a constant θ, an intensive quantity, perspective.

9.5 Chemical potential in reaction systems
Let us start with arguably the simplest chemical reaction

A+B
k+

GGGBFGGG

k−
C +D. (9.3)

We have, according to the Law of Mass Action:

−dcA
dt

= −dcB
dt

=
dcC
dt

=
dcD
dt

= k+cAcB − k−cCcD. (9.4)
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In chemistry, the chemical potential of a chemical specie X in a reaction system is defined
as

µX = µoX + kBT ln cX .

It has two parts: the first part, µoX , is solely determined by the nature of chemical structure
of a chemical species. It is related to something called “the internal energy”. The second
part is related to the amount of the chemical in a system. kB is kown as the Boltzmann
constant: 1.3806488× 10−23 m2 kg s−2 K−1, T is temperature in Kelvin.

The chemical potential of the right-hand-side of reaction (9.3) is µA+µB; and the chem-
ical potential of the right-hand-side of the reaction is µC + µD. In a chemcial equilibrium,
one has

µA + µB = µC + µD. (9.5)

This leads to

µoA + µoB − µoC − µoD = kBT ln

(
ceqC c

eq
D

ceqA c
eq
B

)
. (9.6)

From the dynamic equation in (9.4), however, we have(
ceqC c

eq
D

ceqA c
eq
B

)
=
k+

k−
. (9.7)

Putting these together, we have the chemical potential difference across the reaction (9.3)

∆µ = µA + µB − µC − µD = kBT ln

(
k+cAcB
k−cCcD

)
. (9.8)

Now consider a chemical reaction as (9.3) in a controlled test tube, where all the four
chemcial species are activated being maintained by an experimenter. Then The reaction
flux, i.e., the net number of reactions per unit time, from the left to the right, is

J = k+cAcB − k−cCcD. (9.9)

When ∆µ > 0, J > 0; when ∆µ < 0, J < 0. More importantly,

J ×∆µ =
(
k+cAcB − k−cCcD

)
kBT ln

(
k+cAcB
k−cCcD

)
≥ 0. (9.10)

always. It equals to zero if and only if the chemical reaction is at chemical equilibrium.
What is the meaning of the term J ×∆µ? Why is it never negative?

This is related to the First and Second Laws of thermodynamics. J ×∆µ in fact is the
amount of work the experimentor has to do in order to keep the concentrations of cA, cB, cC ,
and cD. This amount of work is released as heat in the chemical reaction. The reason why
it is always positive is the Second Law of Thermodynamics: you can turn chemical and
biochemical energy into heat, but you can not turn 100% heat into chemical energy with a
single temperature bath (Lord Kelvin’s statement).

Reactions with multiple steps. If a raction has intermediate steps:

A+B
k+1

GGGBFGGG

k−1

X1

k+2

GGGBFGGG

k−2

X2 + Y2 + Z2

k+3

GGGBFGGG

k−3

· · ·
k+n
GGGBFGGG

k−n
C +D. (9.11)

67



It can be easily shown that

∆µ = kBT ln

(
k+1k+2 · · · k+ncAcB
k−1k−2 · · · k−ncCcD

)
. (9.12)

9.6 The energy expanditure in cellular signaling
All biological organism require“food” in the form of chemicals. How are the various types
of food used in a biological system, more specifically on a cellular level? According to the
current biology, there are three major “energy sinks” at the cellular level: (i) biosynthesis,
(ii) powering mechanical movements, and (iii) sustaining ionic and chemical gradients.
Note that these three ways of using energy are very classic; well established in 18th and
19th centuries. How about “information processing”? Does information processing require
energy expenditure?

In current cell biology, information processing is known as “regulations” and “signal-
ings”.

Reversible enzyme kinetics. Let us again consider an enzmatic reaction:

E + S
k̂+1

GGGBFGGG

k−1

ES
k+2

GGGBFGGG

k̂−2

E + P. (9.13)

Now consider this is a single-enzyme system in terms of Markov probability p0(t) and p1(t)
for the states E, and ES at time t:

dp0

dt
= k+2p1 −

(
k−2 + k+1

)
p0 + k−1p1, (9.14a)

dp1

dt
= k+1p0 −

(
k−1 + k+2

)
p1 + k−2p0, (9.14b)

in which we introduced two new notations k+1 = k̂1cS and k−2 = k̂−2cP . cA and cB are
assumed to be constant in a living steady state.

Now let us solve the steady state probabilities pss0 and pss1 from (9.14), and more impor-
tantly the steady state flux from S → P :

pss0 =
k−1 + k+2

k+1 + k−1 + k+2 + k−2

,

pss1 =
k+1 + k−2

k+1 + k−1 + k+2 + k−2

,

JssS→P = pss0 k+1 − pss1 k−1 = pss1 k+2 − pss0 k−2

=
k+1k+2 − k−1k−2

k+1 + k−1 + k+2 + k−2

=
k̂+1k+2cS − k−1k̂−2cP

k̂+1cS + k−1 + k+2 + k̂−2cP
. (9.15)
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Eq. (9.15) can be written as

JssS→P =
Vf

cS
KMS

− Vr
cP
KMP

1 +
cS
KMS

+
cP
KMP

. (9.16)

with

KMS =
k−1 + k+2

k̂+1

, KMP =
k−1 + k+2

k̂−2

, Vf = k+2, Vr = k−1.

Eq. (9.16) is known as Briggs-Haldane’s theory of reversible enzyme. When k−2 = 0, it
is reduced to the Michaelis-Menten kinetics with linear relationship between

(
Jss
)−1 and

c−1
S .

JssS→P =
VfcS

KMS + cS
.

Three-state enzyme cycle. We now consider a more complex enzymatic reaction:

E + A
k̂+1

GGGBFGGG

k−1

EA1

k+2

GGGBFGGG

k−2

EA2

k+3

GGGBFGGG

k̂−3

E +B. (9.17)

Now consider this is a single-enzyme system in terms of Markov probability p0(t), p1(t)
and p2(t) for the states E, ES1 and ES2 at time t:

dp0

dt
= k+3p2 −

(
k−3 + k+1

)
p0 + k−1p1, (9.18a)

dp1

dt
= k+1p0 −

(
k−1 + k+2

)
p1 + k−2p2, (9.18b)

dp2

dt
= k+2p1 −

(
k−2 + k+3

)
p2 + k−3p0, (9.18c)

in which we introduced two new notations k+1 = k̂1cA and k−3 = k̂−3cB. cA and cB are
assumed to be constant in a living steady state.

Now let us solve the steady state probabilities pss0 , pss1 , and pss2 from (9.18), and more
importantly the steady state flux from A→ B:

JssA→B =
k1k2k3 − k−1k−2k−3{

k+1k+2 + k−1k−3 + k+2k−3 + k+2k+3 + k−2k−1 + k+3k−1

+k+3k+1 + k−3k−2 + k+1k−2

} (9.19)

=
k̂1k2k3cA − k−1k−2k̂−3cB{

· · · · · ·
} . (9.20)

We now use the result in (9.20) to study a class of enzyme also known as molecular
motors.
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Phosphorylation-dephosphorylation signaling. We now turn our attention to phos-
phorylation signaling in cell biology. In particular, we shall discuss phosphorylation-
dephosphorylation mechanism for cellular biochemical signaling.

E + ATP +K
α1

GGGBFGGG

β1

E∗ + ADP +K, (9.21a)

E∗ + P
α2

GGGBFGGG

β2

E + Pi+ P, (9.21b)

in which E∗ is the phosphorylated form of enzyme E; K stands for a protein kinase, and
P stands for a phosphatase.

If one combines the two reactions in (9.21), then

ATP
α1

GGGBFGGG

β1

· · ·
β2

GGGBFGGG

α2

ADP + Pi,

the chemical potential difference for ATP hydrolysis is

∆µ = kBT ln

(
α1α2cATP
β1β2cADP cPi

)
.

According to the Law of Mass Action, we have

−dcE
dt

=
dcE∗

dt
= α1cATP cEcK − β1cADP cE∗cK − α2cE∗cP + β2cPicEcP . (9.22)

Therefore, in the steady state, the fraction of E in the phosphorylated E∗ state is(
cE∗

cE + cE∗

)ss
=

α1cATP cK + β2cPicP
α1cATP cK + β2cPicP + α2cP + β1cADP cK

=

θ1

(
cK
cP

)
+ θ2

θ1

(
cK
cP

)
+ θ2 +

θ1

θ2

(
cK
cP

)
e−∆µ/(kBT ) + 1

(9.23)

in which parameters

θ1 =
α1cATP
α2

and θ2 =
β2cPi
α2

.

Fig. 9.1 shows the fraction of phosphorylated E∗ as a function of θ1(cK/cP ) with various
values of ATP hydrolysis ∆µ. With small ∆µ, the upsteam kinase can no longer signal the
phosphorylation the down-stream substrate enzyme.
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Figure 9.1: Down-stream fraction of steady state phosphorylation, cE∗
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Chapter 10

Stochastic birth-and-death process
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10.1 Steady state of birth-and-death process
The general dynamics for the probability distribution of a birth-and-death process is

d

dt
pn(t) = un−1pn−1 − (wn + un) pn + wn+1pn+1. (10.1)

The stationary solution to the equation is

psn
ps0

=
psn
psn−1

×
psn−1

psn−2

× · · · × ps1
ps0

=
un−1

wn
× un−2

wn−1

× · · · × u0

w1

= exp

{
n∑

m=1

ln
um−1

wm

}
. (10.2)

We now introduce continuous variable x = n/b, and similarly m/b = z. Then the sum in
Eq. (10.2) can be written as an integral, through a Riemann integral: patition, sum, taking
limit. First, let us denote

lim
b→∞

ubz−1

wbz
=
u(z)

w(z)
. (10.3)

Then the sum
n∑

m=1

ln
um−1

wm
= b

∫ x

0

dx ln
u(z)

w(z)
, dx =

1

b
. (10.4)

Now let us consider birth and death rates according to the ecological model given in
Eq. (5.1):

un = rn, wn =
rn2

q
+

an2

b2 + n2
. (10.5)

Then

u(x)

w(x)
= lim

b→∞

rbx
r(bx)2

q
+ a(bx)2

b2+(bx)2

= lim
b→∞

rb
rb2x
q

+ ax
1+x2

= lim
b→∞

αβ

αx+ x
1+x2

(10.6)

Then, the probability density function for the continuous population x,

f(x) = lim
b→∞

psxb = A exp

{
b

∫ x

0

dv ln
αβ(1 + v2)

αv(1 + v2) + v

}

= A exp

{
b

∫ x

0

dv
[
ln β + ln(1 + v2)− ln v − ln

(
σ2 + v2

)]}
= A exp (−bφ(x)) , (10.7)
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Figure 10.1: φ(x) given by Eq. (10.8) with different values of β and α = 0.03, correspond-
ing to σ = 5.86.

in which σ2 = 1+α
α

, A is a constant, and

φ(x) = x ln

(
σ2 + x2

1 + x2

)
+ 2σ arctan

(x
σ

)
+ x ln

(
x

β

)
− 2 arctanx− x. (10.8)

10.2 Relation between deterministic and stochastic steady
states and time scales

Fig. 10.1 shows that φ(x) for α = 0.03 and β = 10, 12, 12.7, 14 and 19. Comparing Figs.
?? and 10.1, it seems that the minima of φ(x) are located at the steady state of ordinary
differential equation (??). This turns out to be exactly true: The minima of φ(x) are located
exactly at the stable steady states of the ODE; and the maxima are located at the unstable
steady states of the ODE. To show that we only have to carry out the derivative

dφ(x)

dx
= − ln

αβ(1 + x2)

αx(1 + x2) + x
= − ln

b(x)

d(x)
. (10.9)

Therefore, steady states xs where b(xs) = d(xs) is also the place d
dx
φ(xs) = 0.

We note that with b→∞, the probability density function f(x)→ δ(x− x∗) where x∗

is the global minimum of φ(x). The global minimum will have probability 1 while all the
local minima have probability 0. A local minimum is called a metastable state.
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The concept of Lyapunov property. If for a deterministic dynamics ẋ = f(x) a function
L(x) satisfies

d

dt
L (x(t)) ≤ 0, (10.10)

then we say function L(x) has Lyapunov property with respect to the dynamics. φ(x) has
Lyapunov property with respect to the ODE ẋ = b(x)− d(x):

d

dt
φ (x(t)) =

(
dφ(x)

dx

)
dx

dt
= − ln

(
b(x)

d(x)

)
× (b(x)− d(x)) ≤ 0. (10.11)

In an evolutionary time scale, ODE’s t = ∞ is very short. For any finite b, i.e., finite
population, its dynamics is stochastic and in a correspondingly long time, ∼ ecb (c > 0)
the dynamics will have finite probabilities near both stable steady state. This is represented
by the e−bφ(x). However, in order for such a stationary distribution to emerge, the dynamics
has to be in the two regines back and forth many times. This is a time scale beyond the
infinite of the ODE dynamics. We shall call this “evolutionary time scale”.

Some philosophical implications. Deterministic dynamics is the cornerstone of New-
tonian theory of our physical world. Simple differential equations have stable steady states.
The dynamics is usually “converging” to stable steady states; depending on the initial con-
dition.

However, as we have shown, this coverging dynamic view is only valid on a very short
time scale. In a much longer “evolutionary” time scale, the dynamics will be “diverging”.
For highly nonlinear systems, there are many many stable attractors, and the “evolutionary
dynamics” is stochastic and jumps among all the different attractors. Deterministic dy-
namics is intra-attractoral while the stochastic evolutionary dynamics is inter-attractoral.
They are on a completely different time scale.

10.3 Two stochastic dynamics with idential macroscopic
ODE

This section is required for 523, but optional for 423.
We now discussion how different two stochastic systems can be, even though they have

idential macroscopic dynamics. We use the logistic growth model as an example:

dn

dt
= rn

(
1− n

q

)
, (10.12)

We shall interpret the Eq. (10.12) as
(i) birth rate rn and death rate rn2/q; and
(ii) death rate zero while the percapita birth rate r(1− n/q) decreases with n.
Again, we introduce continuous variable x = n/q: Then the macroscopic ODE is

dx

dt
= rx(1− x). (10.13)
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Linear growth rate and quadratic death rate. un = rn and wn = rn2/q. Then we
have

d

dt
pn(t) = r(n− 1)pn−1 − rn

(
1 +

n

q

)
pn +

r(n+ 1)2

q
pn+1. (10.14)

In the limit of n, q →∞ and n/q = x:

ln f s(x) = −
∫ x

0

dz ln

(
rqz

rqz2

)
+ Const.

= x lnx− x+ Const. (10.15)

This function has a single minimum at x = 1, corresponds to the stable steady state of Eq.
(10.13).

Pure birth process with decreasing birth rate. un = rn(1− n/q) and wn = 0. Then,

d

dt
pn(t) = r(n− 1)

(
1 +

n− 1

q

)
pn−1 − rn

(
1 +

n

q

)
pn. (10.16)

The long time dynamics n = q is an absorbing state. The stationary distribution is psn =
δn,q. That is, x = 1 is an absorbing state of the system with stationary distribution f s(x) =
δ(x− 1).

One can, however, compute the so-called quasi-stationary distribution, i.e., the distri-
bution among the population that has not been absorbed:

ln f qs(x) = ln x+ ln (1− x) + const. (10.17)

10.4 Scaling of population size and “large-system limit”

In the light of all the discussions on discrete, random events involved in the birth and
death of individuals in a population, we need to have a more precise description of how to
“justify” the continuous differential equations in the previous sections. One of the natural
way to do this is to introduce a new variable x = n/b, or x̂ = n/q. Note that with a very
large given b (or q), the quantities like x tends to continuous variables. The differential
equation (??) appears independent of b.

It is also becomes clear that the dynamics described by the differential equation is not
the dynamics of the mean value per se. It is the dynamics of an infinitely large population
with x being a population density. x is an intensive quantity in the ODE (??), not an
extensive quantity as n in Eq. (??).
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Chapter 11

Numerical methods

11.1 Euler’s method

11.2 Runge-Kutta method

11.3 von Neumann rejection method for random number
generation

1

11.4 Tau-leaping

11.5 First-reaction and next-reaction methods
2

1Chen, Y. (2005) Another look at rejection samplingthrough importance sampling. Statistics & Probabil-
ity Letters, 72, 277–283.

2Gibson, M. A. and Bruck, J. (2000) Efficient exact stochastic simulation of chemical systems with many
species and many channels. Journal of Physical Chemistry A, 104, 1876–1889.
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Chapter 12

Reaction-Diffusion Equation, Traveling
Wave and Pattern Formation

∂u

∂t
=
∂2u

∂x2
− βu+ (1 + β)u2 − u3, (β < 1) (12.1)

with boundary conditions
u(−∞) = 0, u(∞) = 1. (12.2)

The nonlinear equation has an exact solution

u(x, t) =
β exp

(
λ1ξ1

)
+ exp

(
λ2ξ2

)
1 + exp

(
λ1ξ1

)
+ exp

(
λ2ξ2

) , (12.3a)

in which

ξi = x− cit+ φi, (12.3b)
ci =

√
2
(
1 + β

)
− 3λi, i = 1, 2, (12.3c)

λ1 =
β√
2
, λ2 =

1√
2
. (12.3d)

The solution is obtained as follows. Let us introduce a transformation

u(x, t) = µ
wx

w + σ
, (µ 6= 0) (12.4)

where σ is a constant. Substituting this into the original equation, we have, since constant
σ is arbitrary:

wxx = wxxx − βwx, (12.5)
wt = 3wxx − (1 + β)µwx, (12.6)

µ = ±
√

2. (12.7)
1

1Petrovskii, S. and Li, B.-L. (2003) An exactly solvable model of population dynamics with density-
dependent migrations and the Allee effect. Mathematical Biosciences, 186, 79–91.
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Chapter 13

Rare event and catastrophe

We have shown that a birth-and-death model with birth rate un and death rate wn corre-
sponds to, as the stochastic counterpart, of ordinary differential equation ẋ = b(x)− d(x),
with b(x)↔ un and d(x)↔ wn. And a fixed point for ẋ is when un = wn.

The fundamentally new phenomenon in this context is the “barrier crossing” which is
absolutely impossible in an ordinary differential equation system. To investigate this new
phenomenon, we consider a model of the model — a random walk with a drift. We consider
the discrete time and process with rightward pn = p and leftward qn = q = 1− p. We ask
a new question: What is the mean time from one place to another?

First we have the probability at position n at time m, Pn(m), satisfying the equation

Pn(m+ 1) = pPn−1(m) + qPn+1(m). (13.1)

In fact, tihs is the discrete version of the partial differential equation

∂f(x, t)

∂t
= D

∂2f(x, t)

∂x2
− V ∂f(x, t)

∂x
, (13.2)

in which D = (∆x)2

2∆t
and V = (p−q)∆x

∆t
.

The mean time from position n to another position, Tn, satisfies

Tn = qTn−1 + pTn+1 + 1. (13.3)

Let us consider the end point is N . This is famously known as “the gambler’s ruin prob-
lem”.

Then we have
TN = 0, and T0 = T1. (13.4)

How do we solve the general solution for Tn? Again, it is an inhomogeneous llinear
difference equation. The solution to the homogeneous problem is λn:

λn = qλn−1 + pλn+1.
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This yields λ1 = 1 and λ2 = q
p
. To find a particular solution to the inhomogeneous

equation, we try Tn = an:

an = qa(n− 1) + pa(n+ 1) + 1 =⇒ a =
1

q − p
, if p 6= q. (13.5)

(
Note that if p = q = 1

2
, then the particular solution is −n2.

)
Therefore, the general

solution to (13.3) is

Tn = a1 + a2

(
q

p

)n
+

n

q − p
. (13.6)

Applying the boundary conditions in (13.4) we have

a1 =
N

p− q
+

p

(p− q)2

(
q

p

)N
, a2 = − p

(p− q)2
.

Therefore,

Tn =
N − n
p− q

+
p

(p− q)2

[(
q

p

)N
−
(
q

p

)n]
,
(
0 ≤ n ≤ N

)
(13.7)

Let us now discuss the solution in (13.7). First, if p > q, then for large n and N ,
the terms in the [· · · ] ≈ 0, and we have Tn ≈ N−n

p−q — distance divided by the velocity.
However, when p < q:

Tn→N ≈
p

(p− q)2

(
q

p

)N
∼ eN ln(q/p)

is actually independent of initial position n, and it is exponentially large with respect to N .
Catastrophe in bistable system is induced by a changing “environment”; but the rare

events in bistable system are spontaneous.
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